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Abstract: In this work, we study the crystalline defect induced optical scattering loss inside 
photonic waveguide. Volume current method is implemented with a close form of dyadic 
Green’s function derived. More specifically, threading dislocation induced scattering loss 
inside AlN waveguides in UV–visible spectrum wavelengths are studied since this material is 
intrinsically accompanied with high densities of dislocations (typically on order of 108–
1010cm−2). The results from this study reveal that threading dislocations contribute significant 
amount of scattering loss when material is not MOCVD grown. Additionally, the scattering 
loss is strongly dependent on polarization and waveguide geometries: TM modes exhibit 
higher scattering loss compared with TE modes, and the multimode large core waveguides are 
more susceptible to threading dislocations compared with single mode waveguides and high-
aspect-ratio waveguides. Conclusions from this work can be supported by several recently 
published investigations on III-N based photonic devices. The model derived from this work 
can also be easily altered to fit other material systems with other types of crystalline defects. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

III-nitride (III-N) based integrated photonic waveguides (WGs) and resonators have enabled a
wide variety of applications including modulators [1], harmonic generations [2,3], comb
generations [4,5], quantum emitters [6,7], and light-emitting diodes/lasers [8,9]. Due to its
wide bandgap and active integration capability, recently III-nitrides have attracted growing
attentions for applications in UV-visible spectrum regime [10–12]. For traditional WGs
working at IR wavelengths, wave propagation losses are mainly contributed by sidewall
scattering, and they can be reduced by implementing geometries [12] that minimize the
overlap between modes and scattering non-idealities. This design strategy is feasible for most
of WG materials such as SiNx [12,13]. However, there is another complicating factor for III-N
materials grown on foreign substrates such as sapphire: high defect densities. For example,
the metalorganic chemical vapor deposition (MOCVD) grown III-N thin films on sapphire
exhibit high density of threading dislocations (TDs) over 1019 cm−2 [14], and density of TDs
will be even higher for sputtered films [15]. Therefore, for III-N WGs, in addition to the
sidewall scattering loss, internal defect induced scattering loss is also be of crucial importance
to WG performance. Furthermore, as Rayleigh’s law suggests, the scattering cross-section is
proportional to 4λ− , indicating that small non-idealities (crystalline defects) will cause higher
scattering loss in UV-visible wavelengths than in IR wavelengths. Since III-N materials are
commonly employed as light-emitting/WG materials in UV-visible spectrum, III-N optical
devices are expected to be more vulnerable to defect induced scattering losses.
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(TMAl) and ammonia (NH3) were used as precursors for Al and N, respectively. The details 
about the fabrication process of AlN WGs can be found elsewhere [10–12]. High density of 
TDs along c-axis can be clearly observed in AlN as shown in Fig. 1(a). It should be noted that 
the defect considered in this work is TD due to its large population in III-N. Other types of 
defects such as point defects and grain boundaries can also be analyzed using the proposed 
model. In this work, VCM is implemented to analyze the scattering properties [13,20]. A 
closed form of dyadic Green’s function is derived for far-field response of point source 
excitation inside WG. This dyadic Green’s function is implemented together with proper 
array factor [20] to estimate TD induced scattering loss inside AlN WGs. The model 
proposed in this research can be easily converted for different types of defects in different 
material systems. To model TD induced scattering loss properly, the distribution of TDs 
should be converted into a corresponding dielectric distribution, which in turn determines the 
scattering objectives. This task can be accomplished by making the following physical 
approximations. In the vicinity of TDs, the abnormal atom arrangements [Fig. 1(b)] result in 
strain fields near its neighboring sites [Fig. 1(c)]. This in turn leads to the photoelastic effect 
that causes a change of permittivity εΔ  and thus nΔ  as indicated in Fig. 1(d). According to 
[19], 2εΔ =  can be served as a typical order-of-magnitude estimate. 

In this work, for simplicity, TDs are modeled by randomly (but with a correlation in 
between) distributed cylinders that perpendicular c-plane of sapphire substrate. Although the 
dimensions of TDs’ cross-sections are in atomic scale, the strain field can extend to its 
neighboring sites, resulting in a lager effective cross-section. In this work, we assume that the 
radius of each “cylinder” is 0.5 nm [21]. The density of TD with screw (Ns) and edge (NE) 
types can be estimated bawd on the X-ray diffraction (XRD) rocking curves (RC) of AlN thin 
films on (0002) plane and (2024) plane using Eqs. (1) and (2), respectively, where β  is the 
full-width-half-maximum (FWHM), b is the length of Burger’s vector [22,23]. A typical 
XRD RC of AlN thin film grown by MOCVD is shown in Fig. 1(e), in which the FWHM of 
(0002) and (2024) RCs are 194.1 and 313.8 arc sec, respectively, corresponding to TD density 

on order of of ~108 cm−2. 
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The VCM is utilized to compute scattering loss contributed by TDs, a method commonly 
used in the analysis of sidewall scattering loss in WGs [13,20]. Since the dyadic Green’s 
function associated with VCM derived in this work has a different format compared with 
previous studies [13,20], the derivation of VCM will be briefly revisited for complicity. To 
investigate the scattering loss in dB/cm, the first step is to compute modes within optical WG 
[Fig. 1(f)]. More specifically, the WG geometry in this study is AlN grown/sputtered on 
sapphire [5,10,11], and the cladding layer is SiOxNy deposited by plasma-enhanced chemical 
vapor deposition (PECVD) in order to match the refractive index of sapphire [10]. The index 
changes consequent from TDs can be considered as a weak perturbation, and the field 
distribution of modes is assumed to be almost unaltered. To satisfy wave equation, the change 
in refractive index will contribute a volume current density at the same location as shown in 
Figs. 1(g) and 1(h). According to [20], the amplitude of this volume current density J


 is

governed by: 

( ) ( ) ( )J r i r E rω ε= − Δ
    (3)
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where ω  is the photon angular frequency, εΔ  is the change of permittivity, E


 is the field 
intensity obtained by solving WG modes. The loss from a single TD can be analyzed by 
calculating the radiated power from this volume current source by dyadic Green’s function. 
The dyadic Green’s function in the far-field can be analytically derived by implementing 
method of stationary phase in two dimensions given by Eqs. (4) and (5), where intermedium 
components are given by Eqs. (6)–(14). 21G ( 23G ) indicates the dyadic Green’s function when 

source is located within medium 2 and the field point in medium 1(3). 11G  and 13G  are the 

dyadic Green’s functions when the point source is located at the sidewall, formats of 11G  and 

13G  can be found in [13] and [20]. Although Eqs. (4) and (5) are originally derived in this 

work, to keep it consistent with previous studies on sidewall scattering, all notations in Eqs. 
(4)–(14) are kept the same as [20]. 
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The electric field can be computed using Eq. (15) when dyadic Green’s function is 
obtained using Eqs. (4)–(14). The total radiated power can be obtained by integrating the 
Poynting vector in the far-field, where the ensemble average of Poynting vector in the far-
field is given by Eq. (16). 

 ( ) ( ) ( )' '
, dc c c cE r i G r r J r Vωμ= ′

      (15) 

 dP S r A=  
   (16) 
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briefly investigate other loss mechanisms to clarify the applicable realistic scenarios of this 
model. Loss mechanisms that result in a positive imaginary part of refractive index are related 
to electron transitions, including free carrier absorption, one photon (defect) absorption, and 
two photon absorption. 

As shown our previous report [18], free carrier loss can be well estimated by the Drude 
model. In GaN, the abundancy of nitrogen vacancies [32] provide large density of free 
carriers on order of 1018 [18], leading to a free carrier loss on order of 0.1–1 dB/cm depending 
on material qualities and operating wavelengths. In AlN, the free carrier density is several 
orders of magnitude lower than in GaN, which result in a negligibly free carrier loss. For 
defect absorptions [33], and [16] reported the absorptive detect levels for GaN and AlN, 
respectively. In GaN, deep energy levels contribute to electron transitions in the yellow 
spectral region [33]; while for AlN, multiple channels are present at the same time [16] 
including shallow donors (SD), Al vacancies, and O substitutions. 

Then, the dominant defect related loss mechanisms will be discussed in GaN and AlN. In 
the long wavelength region, propagation loss in GaN is dominated by sidewall scattering and 
free carrier loss [18]. This observation is supported by numerous reports on GaN disk/ring 
resonators as their Q factors are capped on order of 104 [2]. In the short wavelength region, 
the losses are impacted by both the TD induced scattering loss and the free carrier loss, since 
a higher TD density is usually accompanied with a strong n-type conductivity [36]. 

However, free carrier loss is not the major loss mechanism in AlN due to the lack of 
conductivity. For MOCVD grown AlN WGs, in the short wavelength region, using the 
geometry parameters in a recent study [10] in UV-visible spectrum wavelength, by assuming 
Lc = 100 nm, the corresponding sidewall roughness is 3 nm, noting that the state-of-the-art 
ICP etching process can only provide a minimal roughness in this range, it is convincible to 
conclude that for MOCVD grown AlN, in the short wavelength, the dominated optical loss 
mechanism is still sidewall scattering, such conclusion can also be verified by another recent 
research activity on AlN ring resonator [11] where the Q factor can reach 105. For sputtered 
AlN, in the short wavelength, both defect absorption and defect induced scattering loss are 
important. As a result, the typical loss within this spectrum wavelength is on order of 15 
dB/cm. 

For MOCVD grown and sputter AlN WGs (or resonators), in the long wavelength region, 
the small photon energy is insufficient for electron transition between defect states, therefore, 
the influential mechanism is the TD induced scattering loss. The state-of-the-art MOCVD 
grown AlN ring resonator in IR exhibits intrinsic Q factor above 106, while the Q factors of 
sputtered AlN rings are in the range of mid 105 due to the large density of defects. 

It also worth noting that regarding III-N disk resonators, the anisotropic wet etching 
during undercut process could lead to additional roughness, while for III-N WGs, the dry 
etching relies on physical bombardments thus exhibit less defect density dependence. 

There are several limitations of this model. Firstly, only one pair of WG boundaries are 
involved in the scattering loss calculation. When height of WG approaches / 2nλ , the 
scattered power towards upper/lower boundaries increase. Consequently, the TD induced loss 
will be slightly higher than what we computed using this model. Additionally, other types of 
defects are not involved in this model, which leads to an underestimated optical loss. To 
improve this model, several advanced computing techniques can be employed. To compute 
the far-field distribution accurately, finite element method can be implemented [34], which 
requires intense computing. Moreover, a recently proposed model [35] allows the 
decomposition of guided mode and radiative mode, providing the opportunity to obtain the 
far-field with only near fields computed. 

5. Conclusions 

To conclude, we present a model to estimate optical scattering loss induce by TDs, the 
obtained results are compared with sidewall scattering loss. Several WG geometries in 
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interests are investigated, where TM modes are more vulnerable to TDs, and the large core 
waveguide exhibits strongest performance dependence on material crystalline quality. The 
key conclusion is that MOCVD grown III-N materials provides excellent waveguiding 
performance while sputtered WGs exhibit strong defect induced scattering loss in the short 
wavelength region. This work reveals the importance of MOCVD growth to the application of 
III-N optical devices, it is also beneficial to the modeling on III-N WGs and other
passive/active optical devices.
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