MAE 523 Fracture Mechanics

Instructor:	Dr. Yongming Liu
	ERC 419; Tel: 480-965-6883
	E-mail: yongming.liu@asu.edu
Office Hours:	MW 10:00 -12:00; and anytime when I am in the office with
the door open	
Lecture/Lab:	MW 1:30-2:45 PSA108
Web access:	ASU Blackboard System
	•

Catalog Description: Linear elastic fracture mechanics. Modification with small scale yielding. Fatigue Fracture. Experimental Methods in Fracture.

Prerequisites: MAE 520 or CEE 521.

Textbook: Fracture Mechanics Fundementals and Applications, T.L. Anderson, Third Edition, Taylor & Francis. ISBN 0-8493-1656-1 (recommended) <u>Advanced Fracture Mechanics</u>, M. F. Kanninen and C. H. Popelar. Oxford University Press. (reference book)

Software: Matlab, ANSYS/ABAQUS

Course Objectives:

- 1. To examine and comprehend the principle involved fracture analysis of engineering materials.
- 2. To enable students to use fundamental principles of mechanics for the development and applications of material/structural fracture analysis.
- 3. To train students of scientific computation, engineering statistics, data analysis, and academic writing.
- 4. To introduce of advanced and currently active research topics in the damage, fracture, and fatigue communities.

Topics Covered:

Topic	Hours
Introduction	2 hours
Review of mechanics of materials	2 hours
Linear Elastic Fracture Mechanics	8 hours
Elastic Plastic Fracture Mechanics	8 hours
Numerical and Experimental Fracture Analysis	2 hours
Fatigue Fracture Analysis	8 hours
Advanced topics	6 hours
Exams	2 hours

Class Schedule:

Two 75-minute lectures per week

Examination policy:

The in-class exam will be given in PSA108 on Monday October 19 at 1:30 am. There will be no make-up exam. In unusual circumstances excuses may be granted for the in-class exams. For predictable absences excuses must be requested well in advance of the exam day. Excused exam will increase the weight of the term paper. There will be **no Final Exam**. Exams will be open book and open notes. The original problem papers and your solutions will be stapled together and turned in.

One project, **one term paper**, and an **oral presentation** will be required. Detailed requirements and formatting will be given separately during the semester.

Evaluation Methods:

1. Exam I (October 19)	20	20%
2. Project	20	20%
2. Term paper	25	25%
3. Homework	20	20%
4. Oral Presentation	15	15%

100 total points

Letter grades will be assigned based on the following scale:

A+:	95 and above		
A:	87.5	- 100	
B:	77.5	- 87.5	
C:	67.5	- 77.5	
D:	55.0	- 67.5	
E:	otherwise		

CE 525 – Mechanical Damage of Materials

Introduction

Survey of structural failures Historical perspective Fracture mechanics and design

Review of Mechanics of Materials and Elasticity

Analysis of stress and strain Stress-Strain relationships Plane elasticity Plastic deformation of materials and components Notched members

Fundamentals of Linear Elastic Fracture Mechanics

Energy principle and Griffith theory Crack tip stress/strain analysis Stress Intensity Factor Mixed-mode fracture

Fundamentals of elastic-plastic fracture mechanics

Crack tip opening displacement J integral Relationship between J and CTOD J controlled fracture and crack growth

Numerical and Experimental Fracture Analysis

Overview Finite element method Stress and displacement matching Mesh and convergence Other simulation approaches Fracture testing

Fatigue fracture of materials

Overview of fatigue analysis of materials Fatigue crack growth laws and life prediction Crack closure Variable and random loading crack growth Subcycle failure mechanisms Material microstructure effect

Advanced topics

Probabilistic fracture mechanics and uncertainty quantification Non-continuum based fracture analysis Rate and environment dependent fracture of materials

Persons(s) who prepared this description and date of preparation:

Y. Liu Aug 15, 2015