IncidentNet: Traffic Incident Detection, Localization and Severity Estimation with Sparse Sensing

by

Sai Shashank Peddiraju

A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science

Approved May 2024 by the Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Yezhou Yang
Sangram Redkar

ARIZONA STATE UNIVERSITY
August 2024
ABSTRACT

Prior art in traffic incident detection rely on high sensor coverage and are primarily based on decision-tree and random forest models that have limited representation capacity, and as a result cannot detect incidents with high accuracy. This paper presents IncidentNet - a novel approach for classifying, localizing, and estimating the severity of traffic incidents using deep learning models trained on data captured from sparsely placed sensors in urban environments. IncidentNet model works on microscopic traffic data that can be collected using cameras installed on traffic intersections. Due to the unavailability of datasets that provide microscopic traffic details and traffic incident details at the same time, a methodology is also presented to generate synthetic microscopic traffic dataset that matches given macroscopic traffic data. IncidentNet achieves traffic incident detection rate of 98%, with false alarm rates of less than 7% in 197 seconds on average in urban environments with cameras on less than 20% of the traffic intersections.
DEDICATION

To my family, for their support and love.
ACKNOWLEDGMENTS

I would like to express my most sincere gratitude to my advisor, Dr. Aviral Shrivastava, for his active and patient support throughout my Thesis.

I am also profoundly grateful to Kaustubh and Edward, whose assistance and contributions have been immeasurable.

Additionally, I extend my heartfelt thanks to Abhinav, Rishabh, Vinayak, Sumedh, Atharva, Adam, Guna, Shail and Srihari for their invaluable help and constructive feedback; which have greatly enriched my work.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION ... 1
2. RELATED WORK .. 4
 - Challenges of Macroscopic Datasets 4
 - Limitations of Existing Incident Detection and Localization Methods 4
3. PROPOSED METHOD .. 6
 - Microscopic Traffic Dataset Generation 6
 - Microscopic Traffic Flow Simulation from Macroscopic Data 6
 - Traffic Incident Simulation 8
 - Dataset Generation 8
 - Traffic Incident Detection, Localization and Severity Estimation 9
 - Feature Extraction from Raw Data 10
 - Model Selection 10
 - IncidentNet’s Model Architecture Design 11
4. EXPERIMENTS .. 13
 - Simulation Setup for Dataset Generation 13
 - Pre-processing Raw Dataset 13
 - Model Training and Evaluation Considerations 13
5. RESULTS ... 15
 - Our Microscopic Data Matches Very Well with Real-World Macro-
 scopic Data ... 15
CHAPTER

IncidentNet is Better at Detecting Incidents in Urban Regions

Compared to the Previous Works 17

IncidentNet Works Even In Sparse Sensing Condition 18

IncidentNet can Detect Incidents on Highways 19

6 CONCLUSION .. 20

REFERENCES ... 21
2.1 Summary of incident detection works and their observed metrics. Given our interest in urban regions, Zhu et al. [2018] has shown the best detection and false alarm rates. ... 5

4.1 Model training hyper-parameters for TabNet. ... 14

4.2 Traffic Incident Detection Metrics and their definitions based on confusion matrix, where TP = true positives, TN = true negatives, FP = false positives, FN = false negatives. ... 14

5.1 The table compares the previous state-of-the-art, XGBoost and our approach for the microscopic dataset generated for urban traffic scenarios. Our approach performed exceptionally well when compared to the previous state-of-the-art. The other outcome we observed was that XGBoost performed better than the state-of-the-art, proving the importance of microscopic datasets. Our method predicted incidents every 30 seconds instead of every 5-minute interval, as in [Zhu et al. (2018)]. .. 16

5.2 Highway performance of IncidentNet our approach compared against XGBoost model architecture on our microscopic dataset. Results demonstrate that the performance of XGBoost improves because of the microscopic dataset, and IncidentNet performs better than XGBoost, where the DR is higher and the FAR is lower, with a slight increase in MTTD. .. 19
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The plot of the vehicle counts for a 24-hour period from the Department of Transportation of Tempe for the 12 roads between the placed sensors of interest from the selected Tempe region shown in Fig. 3.3.</td>
<td>7</td>
</tr>
<tr>
<td>3.2</td>
<td>Representation of averaged ground truth vehicle counts and generated traffic flow model. To ensure variance in generated vehicle counts, a small deviation α is considered.</td>
<td>7</td>
</tr>
<tr>
<td>3.3</td>
<td>Shows a Tempe, AZ region selected as the test area for our implementations. All the plotted points indicate the locations where cameras can be deployed for simulation. However, the deployed locations are highlighted in red to make the deployment of cameras similar to the real world.</td>
<td>9</td>
</tr>
<tr>
<td>3.4</td>
<td>The block diagram depicts IncidentNet's architecture. The raw data from the simulator is transformed into processed data. For training, all data points are used for the incident detection model, and data points with positive incident labels are used for incident localization and severity estimation models. During prediction phase, localization and severity estimation models depend on incident detection model's prediction.</td>
<td>11</td>
</tr>
<tr>
<td>5.1</td>
<td>The KS Statistic and the p-value obtained from the KS test for the four days of data made available by Tempe are shown. The p-value threshold is indicated as the red line.</td>
<td>16</td>
</tr>
<tr>
<td>5.2</td>
<td>Our approaches' performance with consideration for different sparsity levels. Notice that the incident detection rate is still high for sparsity, as high as 93%. Tabnet performs better in incident detection with a low false alarm rate.</td>
<td>18</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

In 2019, traffic accidents alone caused approximately 28 million incidents, risking people’s safety [Blincoe et al. (2022)]. According to the study [Byrne et al. (2019)] conducted across 2268 US counties, a 5-minute delay in emergency response increased fatality rates by 46%, while response times under 7 minutes reduced fatality rates by 58% in urban and rural areas. Along with traffic accidents, cargo spills, stalled vehicles, road maintenance, and other emergency scenarios are also considered part of traffic incidents. Traffic incidents are generally defined as non-recurring events that reduce the roadway’s capacity [PB Farradyne Inc. (2000)]. These incidents lead to secondary issues such as road congestion, and delayed emergency support [Alvi et al. (2020)]. This motivates us to work towards detecting traffic incidents quickly, leading to improved emergency response time and re-routing traffic faster.

Faster and more accurate incident detection presents two main challenges. (i) Need for an algorithm to detect, locate, and estimate the severity of incidents in urban regions: Most existing traffic incident detection algorithms, such as [Liang et al. (2022)], are tailored for highways. However, the existing algorithms for urban regions, like [Yu et al. (2015)], introduced an algorithm that compares current traffic conditions, including travel times, to a predefined threshold, and [Han et al. (2020)] proposed a pattern-matching algorithm that uses a database of GPS trajectories to identify incidents. However, the performance of such comparative and pattern-matching algorithms heavily depends on thresholds, requiring continuous adjustment due to traffic’s dynamic nature. (ii) Nonavailability of microscopic datasets: Existing well-known datasets like PEMS, San Francisco I-880 [Skabardonis et al. (1996)],
and METR-LA [Li et al. (2018)] primarily use inductive loop detectors to capture macroscopic data focusing on highways by aggregating metrics like average vehicle speed and average flow-rate density obtained through these sensors without any vehicle distinguishing features. This level of aggregation makes it challenging to get high accuracy in dynamic urban settings. Alternatively, datasets using GPS sensors like NYC Taxi Data [Ren et al. (2024)] and Bluetooth sensors like Highway 99-W [Yu et al. (2015)] offer microscopic features but suffer from issues like signal loss and interference and data latency [Al-Turjman and Lemayian (2020); Pang et al. (2020)], hindering their use in time-critical traffic incident detection tasks.

Owing to the vast development of Computer Vision and quality of cameras over the last decade, the deployment and utility of cameras for traffic use cases have increased in urban environments and highways [Yu et al. (2021)]. They can capture microscopic data like speed, location, timestamp, direction, and unique vehicle identifiers for each vehicle. Due to this, developments have focused on traffic incident detection approaches within the camera’s field of view [Shah et al. (2018)]. However, incidents outside their field of view remain undetected. Deploying cameras to increase the coverage to 100% is challenging and not desirable. So, in this paper, we develop methods to identify incidents outside the camera’s field of view using existing infrastructure, even with sparse coverage of roads in urban regions. We address these challenges through our two key contributions:

- A repeatable approach for generating realistic fine-grain synthetic datasets using traffic flow data within a microscopic traffic simulator, facilitating researchers with more realistic data. Our method takes readily available coarse-grain public traffic flow data. It generates a synthetic dataset using traffic data within a simulator that closely matches the coarse-grain distributions of the public traffic flow real-world dataset.
- A novel technique that can detect and localize a traffic incident without the incident being directly in the field of view of a visual sensor. Localization of the incident is achievable without knowing the precise distance between sensors. This incident detection technique is also robust to sparse sensor placement in urban regions.

We generated a synthetic dataset for Tempe, AZ, for 12 separate urban backbone roads for an area of about 4 square miles with a traffic approximation model and confirmed by the Kolmogorov-Smirnov test kst (2008). TabNet \cite{arik2019} models were trained on 31 days of simulated data. In an urban region, IncidentNet detection rate of traffic incidents was 98%, the mean time to detect incidents was 197.44 seconds, and the false alarm rate was a mere 6.26% with a sensor sparsity of 81.4%. Furthermore, applied to a highway scenario, IncidentNet achieved a detection rate of 99% with a false alarm rate of 4.17%, making it suitable to tackle both environments.
Chapter 2

RELATED WORK

Challenges of Macroscopic Datasets

The PEMS Bay dataset collects traffic data using inductive loop detectors placed throughout the highways in the Bay area and other parts of California. Traffic metrics like average speed, occupancy, and vehicle count are gathered and aggregated at 5-10 minute intervals without distinguishing information about individual vehicles. I-880 Skabardonis et al. (1996) and METR-LA Li et al. (2018) also capture macroscopic data through inductive loop detectors, similar to the PEMS dataset. These datasets (i) don’t capture the nuance details essential for better accuracy detection in urban areas, and (ii) primarily originate from highway and freeway sensors, not reflecting urban-level traffic dynamics, making it difficult to build accurate incident detection systems. We address these challenges by simulating fine-grained traffic using microscopic traffic simulation built on real-world coarse datasets.

Limitations of Existing Incident Detection and Localization Methods

Various incident detection algorithms and their metrics like Detection Rate (DR), False Alarm Rate (FAR), Mean time to detect (MTTD), region (type of road), and type of data (microscopic and macroscopic) have been summarized in Table 2.1. Liang et al. (2022) used multiple highway cameras to detect incidents via spatial trajectory anomalies but did not address complex scenarios like ramps or lane closures. Chen et al. (2023); Xu et al. (2024) used the XGBoost algorithm for highway incident detection with Xu et al. (2024) also calculating incident severity. However, they make
<table>
<thead>
<tr>
<th>Work</th>
<th>Region</th>
<th>Dataset</th>
<th>DR</th>
<th>FAR</th>
<th>MTTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liang et al. (2022)</td>
<td>Highway</td>
<td>Macroscopic</td>
<td>88.09 %</td>
<td>2.80 %</td>
<td>26.80 sec</td>
</tr>
<tr>
<td>Chen et al. (2023)</td>
<td>Highway</td>
<td>Macroscopic</td>
<td>99.33 %</td>
<td>6.50 %</td>
<td>NA</td>
</tr>
<tr>
<td>Han et al. (2020)</td>
<td>Urban</td>
<td>Microscopic</td>
<td>86.40 %</td>
<td>8.69 %</td>
<td>61 sec</td>
</tr>
<tr>
<td>Zhu et al. (2018)</td>
<td>Urban</td>
<td>Macroscopic</td>
<td>86.6 %</td>
<td>5.12 %</td>
<td>NA</td>
</tr>
<tr>
<td>Yang et al. (2023)</td>
<td>Both</td>
<td>Macroscopic</td>
<td>80 %</td>
<td>4.68 %</td>
<td>450 sec</td>
</tr>
<tr>
<td>Atilgan et al. (2023)</td>
<td>Highway</td>
<td>Macroscopic</td>
<td>74 %</td>
<td>7.6 %</td>
<td>300 sec</td>
</tr>
<tr>
<td>Ours</td>
<td>Both</td>
<td>Microscopic</td>
<td>98 %</td>
<td>6.26 %</td>
<td>197.4 sec</td>
</tr>
</tbody>
</table>

Table 2.1: Summary of incident detection works and their observed metrics. Given our interest in urban regions, Zhu et al. (2018) has shown the best detection and false alarm rates.

Predictions every 5 minutes, introducing increased incident detection time. In urban settings, Yu et al. (2015) and Han et al. (2020) detected incidents using comparative and pattern-matching approaches with thresholds but failed to work well in dynamic traffic conditions, and they also require the installation of additional infrastructure to enable communication. Alternatively, Zhu et al. (2018) utilized a deep learning approach using traffic volume data from inductive loop detectors to detect incidents. However, its reliance on an adjacency matrix representing a sensor network and using macroscopic data raises scalability and efficiency concerns. Also, similar to Xu et al. (2024), they predict incidents at 5-minute intervals, leading to delayed incident detection.

Incident detection algorithms reliant on data from all sensors during inference face efficacy challenges as some sensors may become non-functional over time. This was shown in the report Bikowitz and Ross (1985), which highlighted that about 25% of New York’s traffic sensors were nonfunctional during the survey. This has not been
a focus area in previous studies, making it a crucial problem to be addressed.
Chapter 3

PROPOSED METHOD

Microscopic Traffic Dataset Generation

Most real-world traffic flow information is macroscopic, but we need microscopic data to detect incidents accurately in urban environments. We can obtain microscopic data through simulators such as SUMO [Lopez et al. (2018)], VSIM [Yang et al. (2023)], and AIMSUN [Aimsun (line)]. We do this in three parts: (i) Microscopic traffic flow simulation from macroscopic data, (ii) Traffic incident simulation, and (iii) Dataset generation.

Microscopic Traffic Flow Simulation from Macroscopic Data

It’s essential to model macroscopic data such as publicly available vehicle counts to create realistic traffic simulations, as simulators don’t have this capability inherently. The city of Tempe provides vehicle count data aggregated and reported every 15 minutes for multiple days. We use a 24-hour period of data as shown in Fig. 3.1 and generate microscopic traffic information that can produce vehicle counts for every second, allowing simulators to use this data to simulate the traffic. We start by computing the average vehicle counts across all roads of interest at every time step in an urban region.

We then apply Fast Fourier Transforms (FFT) [Cooley and Tukey (1965)] to the averaged vehicle count data points as shown in Fig. 3.2 and obtain the top two frequencies to build a non-linear equation that can approximately model the average traffic behavior over time, represented by the Equation 3.
Figure 3.1: The plot of the vehicle counts for a 24-hour period from the Department of Transportation of Tempe for the 12 roads between the placed sensors of interest from the selected Tempe region shown in Fig. 3.3

\[f(t) = A_1 \sin(B_1 t + C_1) + A_2 \sin(B_2 t + C_2) + D + \alpha \]

(3.1)

Figure 3.2: Representation of averaged ground truth vehicle counts and generated traffic flow model. To ensure variance in generated vehicle counts, a small deviation \(\alpha \) is considered.
To determine the parameters that best represent the original vehicle counts, we use the Levenberg-Marquardt algorithm (Equation 3) to tune the parameters, which results in minimizing the difference between the original vehicle counts and traffic flow model predictions.

$$\delta = \frac{J^T[y - f(t)]}{(J^T \cdot J + \lambda I)}$$ (3.2)

In this equation, λ represents the damping factor ($= 0.01$); δ represents the amount by which the parameters are updated in each step; J is the Jacobian matrix of partial derivative of the Equation 3 with respect to its parameters; $f(t)$ represents the vehicle count that we obtain from Equation 3.

Traffic Incident Simulation

Traffic incidents are simulated by halting vehicle(s). Depending on the likelihood of incident occurrence per vehicle, we first determine if we must insert an incident. If we have to insert an incident, we pick a random vehicle and halt it for a duration, also picked randomly based on the probability of the incident’s severity. Once an incident is inserted, the radius of impact of the incident is calculated based on the severity of the incident. Inside the radius of impact, the vehicles are slowed down to emulate real-world crash behavior.

Dataset Generation

Fig. 3.3 shows all the intersections at which traffic lights and, therefore, cameras can be placed. The red dots indicate the locations where the sensors are placed to
Figure 3.3: Shows a Tempe, AZ region selected as the test area for our implementations. All the plotted points indicate the locations where cameras can be deployed for simulation. However, the deployed locations are highlighted in red to make the deployment of cameras similar to the real world.

capture simulation data, leading to an inherent sparsity in data capture. The simulation process is executed for multiple days, depending on the simulation configuration. We use an API service called Traci, provided by SUMO, to extract all the available features like vehicle counts, occupancy, vehicle speed, time of the day, and vehicle identifiers within a range of sensor locations similar to cameras for every second and consolidate them into a tabular format, generating huge raw microscopic traffic flow and incident dataset.

Traffic Incident Detection, Localization and Severity Estimation

The captured raw dataset has (i) low variance as data is captured second, and traffic does not change significantly in such short intervals, leading to repeated data, (ii) frequent zero values, which are important from a data perspective but difficult to use from a deep learning perspective, like traffic counts, which makes sense for data, but acts as a sparse value for deep learning approaches and (iii) missing critical
features such as vehicle travel time, limiting its effectiveness in training deep learning models. We consider data pre-processing approaches to overcome these challenges.

Feature Extraction from Raw Data

As travel time between intersections is an essential metric for incident detection, we used vehicle re-identification \cite{Huang2022} to compute the travel time between all possible combinations of two contiguous intersections based on the sensor placements. Incorporating these travel times, junction mean speed, vehicle count, and vehicle occupancy into our dataset resulted in a feature-rich data source, significantly improving the dataset’s utility and addressing the raw dataset’s challenges.

Due to the presence of outlier data points, for example, when vehicles make unscheduled stops, we apply rolling window averages to reduce their impact. This technique involves averaging historical and current data, which allows us to smooth out anomalies in the dataset. If the current duration is labeled as an incident in the raw data, we label the rolling window average data points as incidents.

Model Selection

Despite these pre-processing efforts, we still observe missing data due to vehicles bypassing major intersections through interior roads and not getting re-identified. However, it still represents valuable information on traffic behavior. So, it is crucial to consider deep learning approaches that can better handle missing data.

Self-attention-based transformer models have worked exceptionally well to understand long-range sequences. TabNet \cite{Arik2019} is an architecture designed for interpretable learning from tabular data. For training, the data is processed by the TabNet encoder, which uses a decision-making decoder to classify the results. Each TabNet encoder block comprises an attentive transformer block, a learn-
able mask, and a feature transformer. The learnable mask performs a soft selection of salient features, the feature transformer processes the filtered features from the learnable mask, and the attentive transformer learns the importance of each feature during training. Multiple layers of these encoder blocks form the TabNet Encoder. The authors claim that this instance-wise feature engineering and learning allows for a better performance than Decision Tree-based models like XGBoost, making it a significant factor for us to consider this as our model architecture.

IncidentNet’s Model Architecture Design

![IncidentNet’s Model Architecture Design](image)

Figure 3.4: The block diagram depicts IncidentNet’s architecture. The raw data from the simulator is transformed into processed data. For training, all data points are used for the incident detection model, and data points with positive incident labels are used for incident localization and severity estimation models. During prediction phase, localization and severity estimation models depend on incident detection model’s prediction.

Our incident detection architecture employs a stacked ensemble of three models dedicated to incident detection, localization, and severity estimation tasks. All three
models are trained individually, with varying input data. For the incident detection model, the complete data with all the features of the pre-processed dataset is provided as input and trained to predict if an incident has occurred in the complete selected urban region. For localization and severity estimation models, the data points with positive ground truth incident labels are considered for training. The localization model predicts the roads on which the incident occurred, and the severity estimation classifies if an incident is severe. Our ensemble model can localize and estimate severity only due to the microscopic dataset we generated. A unique aspect of our architecture is its robustness in accommodating sparse sensor settings, a common challenge in real-world traffic monitoring scenarios. Unlike existing incident detection methods, our models are evaluated under various levels of sensor sparsity to assess the performance of each task under various degrees of sparsity.
Chapter 4

EXPERIMENTS

Simulation Setup for Dataset Generation

We generate simulation files using the OSM Web Wizard for a continuous period of 30 days to simulate traffic flow for the selected Tempe region and generate the microscopic data using the process described in our approach.

Pre-processing Raw Dataset

We test with three variations: 300, 600, and 900 seconds to pre-process the raw data and select the rolling window size. We train our model using pre-processed data aggregated using different window sizes and observe F1 scores of 93.12%, 96%, and 96%, respectively, for the three window sizes. Given that more data increases the computational requirement, we choose 600 seconds as our window size choice, as the F1 score for 600 seconds and 900 seconds is the same.

Model Training and Evaluation Considerations

We used TabNet to evaluate the Tempe dataset. The model was trained on NVIDIA RTX 5000 GPU, and for TabNet, the hyperparameters used are mentioned in Table 4.1.

Table 4.2 shows the different metrics we use to evaluate the performance of our model. We used the three standard metrics, Detection Rate (DR), Mean Time to Detect (MTTD), and False Alarm Rate (FAR), to evaluate the performance of the incident detection algorithm.
<table>
<thead>
<tr>
<th>Hyper-parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction Layer Dimension</td>
<td>64</td>
</tr>
<tr>
<td>Attention Embedding Dimension</td>
<td>64</td>
</tr>
<tr>
<td>Optimizer Momentum</td>
<td>0.3</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>0.02</td>
</tr>
<tr>
<td>Epochs</td>
<td>80</td>
</tr>
<tr>
<td>Loss Function</td>
<td>Cross Entropy</td>
</tr>
</tbody>
</table>

Table 4.1: Model training hyper-parameters for TabNet.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR (Detection Rate)</td>
<td>$\frac{TP}{TP+FN}$</td>
</tr>
<tr>
<td>FAR (False Alarm Rate)</td>
<td>$\frac{FP}{FP+TN}$</td>
</tr>
<tr>
<td>Accuracy</td>
<td>$\frac{TP+TN}{TP+TN+FP+FN}$</td>
</tr>
<tr>
<td>Precision</td>
<td>$\frac{TP}{TP+FP}$</td>
</tr>
<tr>
<td>Recall</td>
<td>$\frac{TP}{TP+FN}$</td>
</tr>
<tr>
<td>F1 Score</td>
<td>$2 \times \frac{Precision \times Recall}{Precision+Recall}$</td>
</tr>
<tr>
<td>Specificity</td>
<td>$\frac{TN}{TN+FP}$</td>
</tr>
</tbody>
</table>

Table 4.2: Traffic Incident Detection Metrics and their definitions based on confusion matrix, where TP = true positives, TN = true negatives, FP = false positives, FN = false negatives.
RESULTS

Our Microscopic Data Matches Very Well with Real-World Macroscopic Data

To validate our simulation, traffic data accurately reflects real-world conditions in the Tempe region, and we aggregated the microscopic simulation data to match the time frame of Tempe’s macroscopic real-world traffic count data. This produces a distribution similar to the original data represented in Fig. 3.2. To assess the similarity, we used the Kolmogorov-Smirnov (KS) test [KST 2008], which evaluates the similarity between two distributions by calculating two metrics: KS statistic and p-value. The KS statistic measures the maximum discrepancy between the distribution functions of datasets. The p-value measures the probability of low discrepancy between the two datasets. The null hypothesis is true when both distributions are similar. We reject the null hypothesis if the p-value is below the accepted significance of 0.05.

The Tempe Department of Transportation provides the vehicle count data for just four days, and the days on which they were collected are randomly presented. Of the 30-day simulated data, we selected four days randomly for validation. We observed that, though there is variation in the KS Statistic and the p-value, all of them pass the cut-off according to the algorithm as shown in Fig. 5.1 indicating similarity between the simulated and original data.
Figure 5.1: The KS Statistic and the p-value obtained from the KS test for the four days of data made available by Tempe are shown. The p-value threshold is indicated as the red line.

Table 5.1: The table compares the previous state-of-the-art, XGBoost and our approach for the microscopic dataset generated for urban traffic scenarios. Our approach performed exceptionally well when compared to the previous state-of-the-art. The other outcome we observed was that XGBoost performed better than the state-of-the-art, proving the importance of microscopic datasets. Our method predicted incidents every 30 seconds instead of every 5-minute interval, as in Zhu et al. (2018).
IncidentNet is Better at Detecting Incidents in Urban Regions Compared to the Previous Works

As highlighted before, a fast and accurate traffic incident detection algorithm can reduce the impact of incidents economically and environmentally and, mainly, reduce fatality rates. Their impact can be evaluated using metrics such as DR, FAR, and MTTD, which are defined in [4]. We evaluated our work against the state-of-the-art by training a model using the architecture provided by Zhu et al. (2018), which we implemented to the best of our understanding as the official model implementation was not available, and the XGBoost model architecture, using our microscopic dataset. As XGBoost has proven to work well on tabular data [Chen et al. (2023); Xu et al. (2024)] due to its efficient selection of global features with high information value [Grabczewski and Jankowski (2005)], to assess the impact of the microscopic dataset, we also evaluate with XGBoost as the model consideration in our approach.

We evaluated all the models on a newly generated evaluation dataset for the same region, consolidated in Table 5.1. We observe that XGBoost’s performance improves drastically compared to the model’s performance on microscopic data, showing the importance of considering microscopic datasets for traffic incident detection. Our TabNet approach is more accurate than XGBoost, with a DR of 98% and FAR of 6.26%. The downside we observed is that the MTTD is 197.44s, almost 100s higher than XGBoost. However, this is offset by the much lower FAR, which indicates that our model has the ability to report incidents more accurately while remaining fast enough to be within the 7-minute mark, as defined in Byrne et al. (2019). Besides achieving good performance in Incident Detection, the models we used have quick inference times too. We evaluated the inference time of TabNet model on the Intel Xeon W-2555 CPU and found that it averaged 5 milliseconds. This swift processing
enables our models to provide timely insights and support real-time decision-making.

IncidentNet Works Even In Sparse Sensing Condition

![Graph showing performance metrics](image)

Figure 5.2: Our approaches’ performance with consideration for different sparsity levels. Notice that the incident detection rate is still high for sparsity, as high as 93%. Tabnet performs better in incident detection with a low false alarm rate.

Sensing hardware is fallible and degrades over time, thus it is reasonable to assume that not all cameras will be working at all times. It is vital for a model to have the capability to work even in such conditions. So, we test our model’s performance with increasing levels of sparsity. We start with a realistic sensor deployment at 8 of the 43 possible intersections and scale down to just 3 intersections.

In Fig. 5.2, we observe with increased sensor sparsity that our model still retains the capability to detect if an incident occurs with low variations, but the accuracy of localization and severity predictions is reduced. Interestingly, with only six sensors, the MTTD does not increase much. However, the MTTD increases more drastically with fewer than 6 sensors. The FAR also increases with an increase in sparsity.
Although we observe this increase, we show our model is still capable of predicting metrics, even during infrastructure anomalies.

IncidentNet can Detect Incidents on Highways

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>DR (%)</th>
<th>FAR (%)</th>
<th>MTTD (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Approach (XGBoost)</td>
<td>98</td>
<td>6.02</td>
<td>45</td>
</tr>
<tr>
<td>Our Approach (TabNet)</td>
<td>99</td>
<td>4.17</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 5.2: Highway performance of IncidentNet our approach compared against XGBoost model architecture on our microscopic dataset. Results demonstrate that the performance of XGBoost improves because of the microscopic dataset, and IncidentNet performs better than XGBoost, where the DR is higher and the FAR is lower, with a slight increase in MTTD.

Given that our model works in urban regions, we wanted to test if our approach works in a highway scenario. We used an 8-mile highway stretch, inserted the sensors on every available ramp, and simulated the microscopic dataset. We trained and evaluated the simulated dataset using XGBoost and our model. The metrics obtained are shown in Table 5.2. We observed that XGBoost’s performance was higher than the values reported by previous works, shown in Table 2.1. Our model performed better than XGBoost in terms of DR and FAR, with a very minimal increase in the MTTD, proving that our approach has the capability to work in both urban regions and highways.
In this paper, we have shown that IncidentNet, a lightweight TabNet model with approximately 55,000 parameters, can successfully detect traffic incidents with a high detection rate in urban roads using microscopic sensor data. For the 8 junction data comprising a section of Tempe, the model inferred incidents within 5 milliseconds, demonstrating its efficiency. In particular, the results confirm that using just 3 instrumented intersections of the 43 possible IncidentNet can accurately detect, localize, and classify incidents in a large area, marking a significant advancement in traffic management technologies. However, scaling the model’s application to cover the entire Tempe region would likely increase the number of parameters, potentially affecting the inference time. While the model’s compact nature is promising, ensuring its scalability across larger areas or the entire city while still maintaining acceptable inference times remains an area for future exploration. Building upon this supervised model, a promising next step is implementing a semi-supervised version of IncidentNet. This would allow the model to continually improve and handle recurring congestion when deployed in real-world settings. This work also highlights the importance of sensor placement in sparse sensing scenarios, highlighting the need for an algorithm to efficiently place sensors while maximizing the incident detection rate in sparse sensing. Further investigation could extend to categorizing incidents into more classes and enhancing localization accuracy, possibly including rough estimation of distances of incidents from the intersections.
REFERENCES

