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Abstract—This work presents a supervised machine learning
(ML) technique to suppress static and dynamic errors in time-
interleaved (TI) successive-approximation-register (SAR) analog-
to-digital converters (ADCs). Traditional methods rely on high-
speed buffers and complex calibration algorithms to address
reference ripple, gain mismatch, timing mismatch, and offset
mismatch, increasing area/cost and design complexity. By con-
trast, the proposed ML-based approach uses a low-speed SAR
ADC to digitally correct these errors, enhancing performance
and lowering power consumption without requiring implicit
knowledge of error sources or complex calibration procedures.
The proposed ML calibration is demonstrated on a 2-channel
time-interleaved ADC test-chip fabricated in 28nm CMOS and
improves SNDR/SFDR by more than 21/38dB respectively.

keywords- successive approximation register (SAR), analog-
to-digital converter (ADC), machine learning, time-interleaving

I. INTRODUCTION

Time-interleaving of low-speed analog-to-digital converters
(ADCs) is the most widely used approach to reach high-
speeds using silicon. Successive approximation register (SAR)
has emerged as the choice of architecture for time-interleaved
ADCs (TI-ADCs) due to the mostly digital architecture of
SAR ADC and its high energy-efficiency. The key challenges
in designing high-performance SAR TI-ADCs are - a) regula-
tion of reference voltage for each SAR ADC; b) mismatches
(gain, timing, offset and bandwidth) between each sub-ADC.
As the capacitors in SAR ADC switch during conversion, the
reference voltage line is disturbed. For high-speed SAR ADCs,
ripples on the reference voltage line do not settle before the
next conversion which might lead to incorrect bit decisions
and manifest as spurs and increased noise floor in the SAR
output. For TI-ADCs, mismatches between each sub-ADC
further increases spurs and noise floor.

Several existing techniques address the key limitations of
high-speed SAR ADCs. Ripples in reference line in high-
speed SAR ADCs are suppressed through a variety of tech-
niques, such as using pre-charged reservoir capacitors [1]-[3],
dynamic reference regulation [4], charge neutralization [5],
and canceling the reference ripple by emulating ripple with
a replica DAC [6]. However, these techniques still need either
a large reservoir capacitor or a clean supply voltage or are lim-
ited by replica matching. Similarly, many works have proposed
background calibration techniques to address interleaving mis-
matches in TI-ADCs. While offset and gain mismatches are
usually easy to calibrate digitally, time-skew calibration is
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the most challenging. Existing digital calibration techniques
typically estimate error due to mismatches by either — a)
extracting differences in cross-correlation of sub-ADC outputs
to estimate time-skew [7], [8]; b) dithering the input buffer and
cross-correlation of sub-ADC output with the injected dither
to estimate time-skew [9], [10]; c) adaptive signal processing
to suppress mismatches by minimizing correlations between
the actual signal and its images [11], [12]. These techniques
perform calibration with the erroneous ADC samples and
have limited spurious free dynamic range (SFDR) usually less
than 60dB. Additionally, some of these calibration techniques
either require prior knowledge of signal frequency and do not
work for multi-tone signals or require complicated frequency-
domain techniques (shifting/folding/Hilbert transform) that are
difficult to implement on-chip with low area/power cost. In
contrast, this work proposes a supervised machine learning
(ML) approach for blind digital calibration that uses a low-
speed, high accuracy ADC as reference for comparing the
erroneous ADC samples against and correcting errors. The use
of a high accuracy reference ADC improves SFDR to > 70dB
in this work.

The rest of this paper is organized as follows: Section II
presents a brief review of existing blind digital calibration
techniques for both non-ML and ML approaches, Section III
introduces the proposed technique, Section IV presents mea-
surement results on a 2x interleaved TI-ADC test-chip fab-
ricated in 28nm CMOS, and finally, Section V brings up the
conclusion.

II. REVIEW OF PRIOR BLIND DIGITAL CALIBRATION AND
ML TECHNIQUES

Blind digital calibration techniques perform error correc-
tions in the digital domain after ADC conversion is complete.
These techniques have the advantages of — a) not requiring
any analog delay tuning, and thus, are insensitive to process,
voltage and temperature variations; b) can leverage benefits
of technology scaling to reduce hardware cost and can be
easily migrated to any TI-ADC architecture on any tech-
nology node. Recent blind digital calibration techniques can
be grouped into conventional signal processing techniques
based on digital mixing and ML based approaches. Traditional
signal processing based blind digital calibration techniques can
be further grouped into three categories. The first category
extracts timing skew from correlations between the sub-ADCs
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in a TI-ADC. The work in [13] extracts polarity of timing skew
from digital mixing while [8], [14] extracts the timing-skew
itself by calculating derivative of auto-correlation function.
However, [8], [14] needs knowledge of the signal frequency
for Hilbert transform that is used for calculating derivative
of the ADC output which limits the application of this work.
The second category combines digital mixing and redundancy
to calculate derivative of auto-correlation function without
requiring knowledge of the input signal statistics. However,
this advantage comes at the cost of significant overhead due to
the need of multiple redundant sub-ADCs as well as the need
for careful control of timing skew between main and auxiliary
sub-ADCs. The third category [11] minimizes correlation
between the original signal and its images to suppress errors
due to interleaving mismatches. While this technique does
not need to knowledge of input signal statistics, it needs
complicated signal processing techniques such as frequency
shifting, folding and Hilbert transform for computing images.
Additionally, all these conventional digital mixing techniques
use erroneous TI-ADC samples for all computations which
limits the improvement in ADC performance after calibration.

A few recent works have applied supervised ML to improve
TI-ADC performance [15]-[18]. While [17], [18] presents
simulation results, [15], [18] presents measurement results on
test-chip. All these techniques generate ground truth through
digital filtering of the actual ADC output or fitting a sine-wave
on the ADC output during training with sinusoidal inputs.
This can lead to the ML model converging to incorrect local
minima. [16] addresses this by re-fitting the ADC output to a
sinewave recursively. In contrast, this work uses a reference
ADC to generate ground truth for training which ensures that
the ML model will always converge to the correct operating
point.

III. PROPOSED ARCHITECTURE

A. ADC design

Fig. 1 shows the proposed TI-ADC architecture with su-
pervised ML calibration. A low-speed SAR ADC is used as
reference ADC whose output samples align alternately with

samples from one of the two interleaved sub-ADCs. The ML
model is trained when the reference and sub-ADC samples
align. To reduce the training requirement, the ML model is
trained to estimate only errors between the main TI-ADC and
reference ADC outputs rather than letting the ML model learn
the sub-ADC transfer functions. While the training happens
only when the sampling instants of the main and sub-ADCs
are aligned, the trained ML model performs calibration for all
the TI-ADC outputs.

The main ADC is a (11+1)-bit, top-plate sampled syn-
chronous SAR ADC with 1-bit redundancy and unit capacitor
of 0.6fF. The ADC uses bi-directional single-sided switching
(BDSS) technique to reduce switching energy [19]. In this
work, the reference ADC used for supervised ML training
is a copy of the main ADC but runs at Fs/15 where the Fs
is the sampling speed of the main TI-ADC. The speed of the
main TI-ADC is an odd integer multiple of the reference ADC
which ensures that the reference ADC aligns with samples
from both sub-ADCs and the ML model learns errors in both
sub-ADCs. In-order to achieve high SFDR without requiring
a complex deep neural network for calibration, this work
proposes a circuits-informed approach that allows the use
of a shallow artificial neural network (ANN). The proposed
technique derives insights from ADC behavior to extract
key features for training the ANN. Static errors, such as
capacitance mismatch and comparator offset can be estimated
by comparing the main ADC and reference ADC outputs
directly when they align. On the other hand, dynamic errors
depend upon both past and current ADC samples. Timing
skew and bandwidth error depend upon derivative of the input
signal, and hence, requires knowledge of both current and
previous ADC samples. Similarly, reference ripple in SAR
ADCs depend on outputs from previous conversions. Hence,
the current and several past samples of the main ADC output
are used as features to the ML model for calibrating both
dynamic and static errors. The ANN adaptively computes
derivatives from the current and past samples of the main
ADC without requiring knowledge of the input signal. Since,
the derivative computation is a function of the input statistics,
the ANN has to keep training in the background.

The ADCs used in this work does not use reference decou-
pling capacitors or on-chip reference buffers which reduces
area and power costs but comes with the trade-off of increased
reference line ripple which leads to spurs in the output. The
inadequate reference line regulation is also corrected by the
proposed ML calibration. One of the sub-ADCs from another
chip is used as reference ADC in this work. Since the reference
ADC runs at much slower speed than the main ADC, its
performance is not degraded by reference ripple. A one-time
foreground calibration is performed on the reference ADC to
suppress capacitor mismatch.

B. ML model

A two-layer ANN is used in this work. The ANN has one
hidden layer with tanh activation and an output layer with one
neuron and linear activation. Fig. 2 plots the improvements
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Fig. 2: SNDR/SFDR as a function of ML parameters and
SNDR/SFDR of main ADC after ML calibration as a function
of model weight bit precision

in SNDR and SFDR as a function of the number of hidden
neurons and number of features (m). The ANN performance
initially improves and then saturates as the model size becomes
larger. For this work, the number of hidden neurons and
number of features are selected as 45 and 50 respectively.
Fig. 2 also plots the SNDR and SFDR of the main ADC after
calibration as a function of model weight precision. A 12-
point fixed-precision is used for the ANN implementation.
The small size of the ANN model is a key enabler for it
to be included in the back-end DSP for calibration. The
ML model also needs fast convergence, and plots the SNDR
and SFDR convergence performance with different popular
backpropagation algorithms. RMSprop algorithm is used for
backpropagation [20] which results in faster convergence than
gradient descent since the learning rate for each model weight
is tuned adaptively throughout the training instead of using a
fixed, global learning rate for all the model weights. The trade-
off for quicker convergence comes at the cost of increased
hardware but the power consumption of training the model is
lower compared to inference since the training happens at a
lower speed than that of the main ADC.

IV. MEASUREMENT RESULTS

Fig. 3 shows layout and die photo of a test-chip fabricated
in 28nm CMOS. The TI-ADC operates at 157.5MHz while the
reference ADC operates at 10.5MHz. The TI-ADC consumes
2.1mW at Fs=157.5MHz and the reference ADC consumes
0.1mW at Fs=10.5MHz from 0.9V supply. The ML model is
synthesized digitally and is estimated to consume 1.16mW
from 0.5V supply (0.62mW for training and 0.54mW for
inference) with 12-bit fixed-point precision. Fig. 4 plots the
measured FFT of the TI-ADC before and after proposed ML
correction as well as with background calibration techniques
from [14] and [11] for low frequency and near-nyquist input
for 1V pk-pk amplitude sinusoid signals. Fig. 4a) shows
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Fig. 3: Layout and die photograph of the ADC

results for 1IMHz input frequency. After digital gain and
offset calibration, the TI-ADC has SNDR/SFDR of 29/32.5dB
which is primarily limited by reference ripple. The low-
speed reference ADC has SNDR/SFDR of 54.9/75.9dB. The
background calibration techniques of [11], [14] improves
SNDR/SFDR to 33/41.3dB and 33.7/47.6dB respectively and
only suppresses mismatches between the two sub-ADCs. In
contrast, the proposed ML calibration suppress both errors due
to reference ripple and interleaving mismatches and improves
SNDR/SFDR to 51.5/70.5dB. As shown in Fig. 4b), the
TI-ADC performance is further degraded at 74MHz input
frequency due to timing mismatches with SNDR/SFDR of
24.8/28.6dB and is improved to 50.3/72.1dB after the pro-
posed ML calibration. The SNDR/SFDR improvement from
the background calibration techniques of [11], [14] is still
limited by reference ripple even though they improve SFDR
by approximately 12dB over the original TI-ADC compared to
9dB at 1MHz input frequency. The proposed ML calibration
improves DNL/INL from 123.8/-158.2 LSB to 0.8/-3 LSB
respectively as shown in Fig. 5. Fig. 6 summarizes perfor-
mance of the proposed ADC. The proposed ML calibration
significantly improves both SNDR/SFDR as well as energy-
efficiency of the ADC which is captured by Walden figure-of-
merit (FoM).

V. CONCLUSION

This work has presented an ML approach to correcting
errors in time-interleaved ADCs through supervised learning.
The proposed technique results in significant improvement in
SNDR and SFDR of TI-ADCs through fully digital back-end
correction without requiring complex circuit design efforts or
detailed knowledge of error sources. A 2-channel TI-ADC
with relatively low sampling frequency is used in this work as
proof-of-concept, but the ML calibration will be applied to our
future GHz speed TI-ADCs. While the ML model is off-chip
for this work, the relatively small size and simple architecture
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of the model needed underscores the possibility of integration
of ML into ADC chips for real-time error correction given the
recent advances in high energy-efficiency ML accelerators in
silicon.
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