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ABSTRACT

This work presents a machine learning (ML) technique to suppress
reference ripple errors in successive approximation register (SAR)
analog-to-digital converter (ADC). Reference voltage ripple due
to switching in SAR ADC introduces dynamic error which mani-
fests as spurs in the output spectrum and limits ADC resolution.
Conventional techniques to suppress reference ripple require large
decoupling capacitor and high-speed reference voltage buffer which
consume large area and power. The proposed ML approach uses
a supervised technique in which a low-speed 10MHz SAR ADC is
used for learning and correcting reference ripple error in a 200MHz
SAR ADC. Simulated in 28nm CMOS technology, the proposed ML
approach reduces overall ADC power consumption by 4.9x without
degrading performance.
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1 INTRODUCTION
Successive approximation register (SAR) analog-to-digital converter
(ADC) is a popular architecture for data conversion due to its high
energy-efficiency. At high-speed, performance of SAR ADC is lim-
ited by ripples on the reference voltage line that are caused as the
digital-to-analog converter (DAC) capacitors are connected or dis-
connected from the reference voltage line during each conversion
step, and manifests as spurs in the ADC output. Conventional tech-
niques try to suppress reference ripple error by connecting large
decoupling capacitors to the reference line and using on-chip, high-
speed reference buffers that can consume > 10x larger power than
the core ADC circuits [1]. Recent works have tried to address this
through different techniques such as pre-charged reservoir capaci-
tor [2], dynamic reference regulation [3], charge neutralization [4]
and emulating reference ripple with a replica DAC [5]. However,
these techniques still need either a large reservoir capacitor, a clean
supply voltage or are limited by replica matching.

This work proposes a supervised machine-learning (ML) ap-
proach to suppress reference ripple error line in high-speed SAR
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Figure 1: Proposed supervised ML technique to suppress ref-
erence ripple in SAR ADC

ADCs as shown in Fig. 1. The proposed technique uses a low-speed
SAR ADC to create ground truth and learn ripple induced error
in the high-speed SAR ADC biased with the low-speed reference
buffer. The error estimated by the ML model is then digitally can-
celed from the high-speed SAR ADC output. This technique offers
the following key benefits: a) power consumption is significantly
reduced since high-speed reference buffer and/or large decoupling
capacitor is not required; b) accurate knowledge of reference rip-
ple generation is not needed, thus simplifying the circuit design
efforts. The proposed techniques are demonstrated by suppressing
reference ripple error in a 10-bit, 200MHz asynchronous SAR ADC
using a 10MHz, 12-bit SAR ADC to train the ML model.
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Figure 2: Circuit schematic showing reference buffer driving
capacitors in the SAR ADC

2 REFERENCE RIPPLE SUPPRESSION BY ML

2.1 SAR ADC architecture

The SAR ADC architecture used in this work is shown at a high-
level in Fig. 1. The 200MHz ADC is an asynchronous 10-bit SAR
with 1-bit redundancy and DAC capacitors sized as [512C,, 256C,,
128C, 64C, 64C, 32C, 16C, 8C, 4C, 2C, C,] where C, is the
unit capacitor with value of 0.34fF. The 10MHz reference ADC is
a synchronous 12-bit SAR ADC with 1-bit redundancy and DAC
capacitors sized as [2048C, 1024C, 512C, 256C, 128C, 128C, 64C,
32C, 16C, 8C, 4C, 2C, C,] with the value of C, as 0.6fF. Both
ADCs use bi-directional single-sided switching technique [6]. While
the redundant capacitor provides some degree of reference ripple
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error suppression, it is not adequate to fully mitigate the effect of
reference ripple as shown in Section 2.3.

Fig. 2 shows schematic of a reference buffer driving the capacitors
in SAR DAC. A single-ended schematic is shown for the sake of
simplicity even though a fully differential configuration is used for
the SAR ADC. A flipped voltage follower (FVF) is used as reference
buffer. The FVF accepts a band-gap reference voltage, Vj,, as input
and outputs the voltage, V,, that drives the SAR DAC. FVF reduces
the output resistance compared to a regular single-transistor voltage
follower by gain of common-source amplifier (M, in Fig. 2). This
ensures that SAR DAC is driven by a very low resistance and thus,
capacitors in the DAC can settle quickly.
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Figure 3: Circuit schematic showing reference buffer driving
capacitors in the SAR ADC

2.2 ML for ADC error correction

The key challenges in applying ML to correct errors in ADC are —
a) accuracy requirement of error correction, and b) convergence
speed. While a 90-95% accuracy of ML algorithms is perfectly ac-
ceptable for most applications, ADCs need correction algorithms to
have accuracies greater than 99.999% for SNDR> 60dB. However,
complex ML models with thousands of trainable parameters cannot
be employed to improve accuracy since their power and area con-
sumption will far exceed that of the ADC. The proposed technique
uses a circuits-informed approach to extract key features from the
ADC output to achieve ML accuracies greater than 99.999%. The
ML model uses the current output of the main SAR ADC and its
temporal derivative to learn reference ripple error in the main ADC
output. All the features used for training the ML model are con-
verted into binary bits which converts all matrix multiplications
in the first hidden layer in the ML model to additions and reduces
hardware cost. Since reference ripple error is dynamic in nature,
the ML training needs to happen continuously in the background.
This requires fast convergence of the ML algorithm. The proposed
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approach uses RMSprop optimizer during backpropagation to up-
date weights of the ML model during training. RMSprop updates
learning rate for each model weight adaptively which results in
faster convergence than the popular stochastic gradient descent.
2.3 Results
Fig. 3 shows simulation results demonstrating reference ripple sup-
pression using ML. The ML model used is a two-layer neural net-
work - a hidden layer with 10 neurons and tanh activation, and an
output layer with 1 neuron that performs linear regression. The
ML model is synthesized digitally and consumes 1.1mW power.
The 10MHz reference ADC consumes 46yW with 130uW refer-
ence buffer for 66.4dB signal-to-noise-and-distortion ratio (SNDR),
while the 200MHz main ADC consumes 0.68mW with 9mW ref-
erence buffer for 57.3dB SNDR. The SNDR drops to 25.8dB when
the 200MHz ADC is biased with 130uW reference buffer. However,
the ML model is able to improve SNDR of the 200MHz ADC to
56.5dB with the low-power 130pW reference buffer, thus achieving
4.9x lower power consumption and 4.2x better energy-efficiency
(FoM,,). The proposed technique achieves better energy efficiency
than state-of-the-art SAR ADCs that employ reference ripple error
correction as shown in Table 1.

Table 1: Comparison with state-of-the-art

[7] [5] This work
Process (nm) 65 40 28
Resolution (bit) 11 10 10
Supply (V) 1.2 1.1/1.3 0.9/1.2
Fs (MHz) 100 100 200
Sampling cap (pF) 0.77 1 0.7
Ref. buff. (mW) 0.84 0.31 0.26!
Ref. Ripple Ref. Replica Machine-learning
correction Calibration | DAC
SNDR (dB) 58 57.9 | 56.5(with ML) | 57.3 (w/o ML)
Power (mW) 2.44 14 | 2.1(with ML)?| 9.7(w/o ML)
FoM,,(f)/step)® 37.9 26.2 | 18.8(with ML) | 79.1(w/o ML)

lincludes power of 2 reference buffer; includes power of ML training and
inference; 3FoMy, = Power/2ENOB /Fg

3 CONCLUSION

This work has demonstrated the potential application of ML into
ADC design space and can be extended to digitally correcting other
static and dynamic errors in high-performance ADCs.
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