
1

AI-Enabled Fusion of Electrocardiograph and
Demographics for Prediction of Acute Kidney

Injury Onset
Vasundhara Damodaran‡, Jose Sanchez‡, Tushar Gupta‡, Phaneendra Bikkina†, Esko Mikkola†, Abdul-Muhsin

Haidar∗, Imon Banerjee∗, and Arindam Sanyal‡
∗Mayo Clinic, Phoenix, AZ, USA.

†Alphacore Inc., AZ USA.
†School of Electrical, Computer and Energy Engineering, Arizona State University, AZ, USA. Email:

vdamoda2@asu.edu

Abstract—Acute kidney injury (AKI) is a commonly encoun-
tered medical problem that is associated with poor health
outcomes in AKI survivors, including increased mortality and
re-admission to the hospital. Despite their high-risk status,
only a small fraction (< 10%) of patients receive specialized
nephrologist follow-up after AKI event. To address the gap in
care for AKI patients, this work proposes an artificial intelligence
(AI) based fusion technique that combines patient’s single-lead
electrocardiograph (ECG) and demographics to predict AKI
recurrence 3-7 days before onset. The ECG data is analyzed with
an on-chip reservoir-computer (RC) prototyped in 28nm CMOS
process to create a compressed representation for predicting AKI
onset from ECG. After fusion with demographics, the proposed
technique is able to predict AKI recurrence 3-7 days before onset
with 75.8% accuracy when evaluated on a retrospective patient
dataset collected from Mayo Clinic Enterprise.

Index Terms—Machine learning, electrocardiograph, acute
kidney injury, reservoir-computer and sensor fusion

I. INTRODUCTION

Acute kidney injury (AKI) is a commonly encountered
medical problem associated with poor health outcomes in AKI
survivors, including increased mortality and re-admission to
the hospital. A recent study of AKI survivors [1] showed 18%
hospital re-admission rate and 8% mortality within 30 days
after discharge, with recurring AKI being the most common
factor for re-admission. Despite the high re-admission and
mortality rates, a majority of AKI patients decline enrollment
to specialized renal follow-up care for reasons including
hospital fatigue and long travel times [1].

This work proposes an at-home monitoring solution for AKI
patients that uses artificial intelligence (AI) to predict AKI re-
currence within a 3-7 days window prior to onset of AKI event.
The proposed technique combines patient’s electrocardiograph
(ECG) and demographic information (age, race and gender)
to predict AKI recurrence. Fig. 1 presents an overview of the
proposed AKI recurrence prediction technique. A reservoir-
computer (RC) is used to analyze single-lead ECG samples
locally and encode into a compressed and dense representation.
Single-lead ECG signal captures electrolyte abnormalities in
severe case of AKI. A neural network analyzes the dense
representation from the RC to predict AKI onset and is referred
to as ECG model in Fig. 1. Similarly, a neural network predicts

AKI onset from the demographic information obtained from
the patient’s electronic medical record (EMR) and is referred
to as EMR model in Fig. 1. Finally, a third neural network
combines prediction scores from the ECG and EMR models
to predict AKI onset with higher accuracy than either the
ECG or EMR models individually. The RC is implemented
as a test-chip fabricated in 28nm CMOS process, while the
ECG, EMR and fusion AI models are realized in software
with the eventual goal of running these AI models natively on
a smartphone. Encoding the ECG data using in-sensor RC is
expected to extend battery lifetime of ECG sensor by reducing
radio-frequency (RF) transmission. This is plausible since RC
can extract key information from sparse ECG signal using
a small number of neurons due to hyper-dimensionality of
RC [2].

Fig. 1: Overview of the proposed technique for predicting AKI
onset through AI-enabled fusion of ECG and demographic
information with the contributions of this paper enclosed
within red, dotted boxes

The rest of this paper is organized as follows: Section II
introduces the retrospective dataset that is used in this work,
Section III presents the circuit architectures and AI-based
fusion model, Section IV presents measurement results on a
28nm test-chip, and finally Section V brings up the conclusion.
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II. DATASET

Retrospective patient data with more than 30000 samples
was collected from Mayo Clinic Enterprise. The patient data
was filtered to ensure that an ECG sample was collected from
the patient within 3-7 days prior to diagnosis (AKI/normal).
This narrowed down the number of samples to 295 from 117
unique patients, with 69 males and 48 females spanning an
age range from 25 years to 90 years. The average age of
males is 65 years and the average age of females is 69 years.
The train and test data sets were split to ensure no overlap,
i.e., each patient is either present in the train or test dataset
but not in both. The train data set has 233 samples from 94
unique patients and the test data set has 62 samples from 23
unique patients. 12-lead ECG and demographic information
(age, race and gender) are collected for each patient. Single-
lead median-filtered ECG data from V4 lead is used for this
work. Fig. 2 shows an example of ECG data from V4 lead
which shows a regular rhythm ECG signal and after median
filtering. Median filtering suppresses noise on the ECG signal
and reduces its size. The median-filtered ECG signals are
directly sent as inputs to the RC without any feature extraction.
This allows the RC to extract relevant information from the
ECG signal directly without any loss introduced by feature
extraction and also simplifies the circuit design by removing
the feature extractor.
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Fig. 2: Example of a) rhythm ECG signal from V4 lead; and
b) ECG signal after median filtering

III. PROPOSED ARCHITECTURE

A. Overview of RC circuits

RC is a well-known computing paradigm that uses static
nonlinearity to project the input signal to high-dimensional
space, thus allowing easier separation of different input
classes. No training is performed in the input or reservoir
layers, and the weights are drawn from random distribution.
Since RC uses nonlinear projection to separate data classes,

it does not need high linearity circuits which significantly re-
duces power consumption. RC also performs natural encoding
and compression of the sensor input which reduces RF trans-
mission packet size and power. While RC has been extensively
used in the machine-learning literature, hardware implemen-
tations have been mostly on optics/photonics platform with
few analog silicon implementations [3]–[6]. The works in [3]–
[5] require either large capacitors to realize biological time-
constants which is energy-inefficient, or background calibra-
tion for analog delay elements or nonlinearity element. Our
prior work [6] presented an on-chip analog RC that used time-
multiplexing to create multiple virtual neurons from a single
physical neuron without requiring large capacitors or calibra-
tion. However, the RC in [6] used continuous-time circuits
which are not power efficient for bio-medical applications with
slowly varying signals. The key differentiation of this work
over [6] is the adoption of switched-capacitor architecture for
realizing RC neurons which reduced energy consumption by
5×, and putting all the neurons physically on-chip.

B. Circuit design

Output of the RC with N reservoir neurons can be mathe-
matically expressed as

~Rk[n] = H
(
Gi

~W × ~XT +Gf
~Wr × ~Rk[n− 1]

)
(1)

where ~X = [X1X2 · · ·XD] is analog ECG input with D
samples, ~W is N ×D input weight matrix, (D >> N ), ~Wr is
N ×N inter-connection weight matrix for the reservoir layer,
H(·) is nonlinear activation for RC, Gi is input scaling factor
and Gf is feedback gain.

Fig. 3a) shows the schematic of the proposed switched-
capacitor RC architecture. As seen from (1), each neuron
behaves as a leaky integrator which is realized by using a
switched-capacitor integrator with low gain (≈ 25) as shown
in Fig. 3b). Each neuron is connected to its immediate two
neighboring neurons and the corresponding ~Wr matrix is
shown in Fig. 3a). The integrator is reset if its output voltage
exceeds a threshold voltage. The reservoir layer has built-in
lateral inhibition which resets all three neurons in a cluster if
one of the neurons is reset. This functionality is inspired by
human retina in which lateral inhibition plays an important role
in detecting transients, such as QRS complex in ECG signal.
The feedback gain Gf and input scaling factor Gi are set by
ratios of sampling capacitors Cin, Cf1 and Cf2 to the feedback
capacitor Cintg . The number of RC neurons N , feedback gain,
input scaling factor and sparsity of the interconnect matrix are
set by simulating the software RC model. All the sampling
capacitors Cin, Cf1 and Cf2 are set to 14.8fF each and Cintg

is set to 44.4fF. The RC accepts median-filtered ECG signals
with D = 600 samples as input and uses N = 30 neurons
for encoding, i.e., the ECG data is compressed by a factor of
20× by the RC. Nonlinearity of H(·) comes from multiple
sources - a) nonlinearity of the amplifier which operates in
slew mode; b) reset functionality in the integrator; c) charge
injection error from the switches. In contrast to conventional
analog design which requires careful matching, large area, and
power to suppress mismatch and nonlinearity, the proposed
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analog RC neurons can be extremely small since nonlinearity
due to component mismatch and biasing (such as slewing)
are absorbed into the nonlinear RC kernel and leveraged for
classification. The input weight matrix ~W is restricted to
binary ‘1/0’ elements only and multiplication of the input
samples with ~W is performed off-chip to allow testing the
chip with different input sample sizes D.

Fig. 3: Schematic of a) RC architecture; and b) single reservoir
neuron

The analog RC neuron outputs are serialized and digitized
using a single 10-bit successive approximation register analog-
to-digital converter (SAR ADC) before they are brought off-
chip. The SAR ADC uses bi-directional single-sided switch-
ing technique [7] to reduce switching energy of the ADC.
Non-linearities in the ADC are amortized into the reservoir
nonlinearity H(·) and does not require careful design unlike
the ADCs used in the analog front-end circuits for digitizing
sensor signals.

C. ECG and EMR Fusion

Output of the reservoir neurons are sent to a neural network
for predicting AKI onset. Basic demographic information
– age, race and gender of the patients are used for the
EMR model. Patient race and gender information are one-
hot-encoded to ensure all race and gender entries are equally
weighted when applied to a neural network, while the patient
ages are grouped into bins. The prediction scores from the
ECG and EMR models are sent to another neural network
which acts as meta-learner and performs late fusion of ECG

and EMR. In order to perform a comprehensive analysis, we
evaluated three neural network models – logistic regression
(LR), support vector machine (SVM) and artificial neural
network (ANN). Hyper-parameters of the neural networks are
optimized through grid search on training dataset, and the
evaluation results on the test set are summarized in Table I.
ANN performs the best for all of ECG, EMR and fusion
models. For the ECG model, a 3-layer ANN is used with 60
hidden neurons in the first hidden layer, 1 hidden neuron in the
second hidden layer, and 1 output neuron and tanh activation;
for the EMR model, a 3-layer ANN is used with 30 hidden
neurons in the first hidden layer, and 10 hidden neurons in the
second hidden layer, and 1 output neuron and tanh activation;
and for the fusion model a 2-layer ANN is used with 200
hidden neurons and 1 output neuron and relu activation.

TABLE I: Performance of different neural networks

ECG EMR Fusion
Logistic regression 56% 56% 61%
Support vector machine 59% 56% 64%
Artificial neural network 68% 70% 76%

IV. MEASUREMENT RESULTS

Fig. 4a) shows the microphotograph of the test-chip in
28nm CMOS and layout view. The test-chip is fully covered
with dummy metal fills to meet metal density requirements
in this technology node. Additional parasitic capacitors due
to the dummy metals are not an issue for this test-chip
since any non-linearity introduced by these additional parasitic
capacitors is amortized into the reservoir nonlinearity. The
test-chip consumes 101µW from 0.9V supply while operating
at 66.7kHz and the SAR ADC operates at 2MHz. The core
circuits occupy an area of 1.64mm×1.04mm. Fig. 4b) shows
the test board. The input ECG samples are applied to the
test-chip using National Instruments Data Acquisition (DAQ)
boxes and the chip outputs are captured by a logic analyzer.

Fig. 5 shows the confusion matrices for the ECG, EMR and
fusion models. The ECG model has a low sensitivity, while
the EMR model has a high sensitivity. Their fusion improves
both accuracy and sensitivity metrics. The EMR model has
less samples than the ECG model since the same patient
has multiple ECG samples in both train and test sets. While
performing fusion, the same EMR prediction score is used
for all occurrences of ECG from the same patient since the
demographic information is static in nature.

Table II compares this work with state-of-the-art chronic
kidney diseases (CKD)/AKI detection/onset prediction tasks
from ECG and EMR data. Fusion of single-lead ECG and
EMR allows the proposed technique to achieve comparable or
better results than state-of-the-art AI models using information
from all 12-lead ECG data. Fig. 6 plots energy/inference of
different bio-medical application specific integrated circuits
(ASICs) with energy/inference of the proposed analog RC.
The RC test-chip consumes 1.5nJ/inference which is almost
9× lower than the next best bio-medical ASIC reported
in [8] which demonstrates the potential for application of the
proposed RC circuit as a smart wearable.
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Fig. 4: a) Die photograph and layout view of the test-chip; b)
picture of the test board with the chip and equipment interfaces

TABLE II: Comparison with kidney disease detection tasks

Task Predictor Accuracy AUC
[9] CKD onset within 1 year 12-lead ECG − 0.71
[10] AKI onset within 2 days EMR 55.8% −
[11] Renal impairment 12-lead ECG − 0.86

This work AKI onset within 3-7 days 1-lead ECG+EMR 75.8% 0.76

V. CONCLUSION

This work has presented an AI-enabled fusion framework
for predicting AKI recurrence 3-7 days before onset by com-
bining single-lead ECG and demographics data. The proposed
framework is evaluated on retrospective data collected from
Mayo Clinic Enterprise and demonstrates the potential of at-
home monitoring for AKI patients using a wearable with on-
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Fig. 5: Confusion matrices from a) ECG model; b) EMR
model; and c) Fusion model
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Fig. 6: Comparison with state-of-the-art AI ASICs for different
bio-medical applications

device AI and smart phone.
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