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Abstract—This work presents a fully integrated on-chip clas-
sifier for on-device detection of atrial fibrillation (AFib) from
electrocardiogram (ECG) signal. The ECG signals are digitized
using 14-bit analog-to-digital converter followed by time-domain
feature extraction. The features are provided as inputs to an
in-memory computing analog, 3-layer artificial neural network
(ANN) for classification into normal sinus rhythm, AFib and
noisy data. On-device AI classification reduces radio-frequency
(RF) transmission and extends battery life of the sensing device
by performing all the analysis locally and only transmitting in
case of AFib detection. Prototype test-chip is fabricated in 65nm
and achieves 99.6% accuracy in classification of AFib while
consuming 58.3µJ/classification.

Index Terms—Machine learning, atrial fibrillation, electrocar-
diogram, mixed-signal classifier and in-memory computing

I. INTRODUCTION

Atrial fibrillation (AFib) is associated with significantly high
risks for major cardiovascular events, such as stroke and heart
failure, and requires proper timely treatment to reduce risks of
fatalities. AFib occurs sporadically and presents no symptoms
for many people which makes it difficult to detect during
routine clinic visits. Thus, many people with AFib are unaware
of their condition. This work proposes a fully integrated
classifier that can be used for continuous, at-home monitoring
of patients for early AFib detection. In contrast to existing
monitoring devices that transmit electrocardiogram (ECG)
signals wirelessly to remote server for analysis, the proposed
solution embeds machine-learning (ML) algorithms into the
ECG sensor for local classification. ML can reduce wireless
transmission by identifying abnormal segments in the ECG
and only transmitting those segments rather than transmitting
the entire raw ECG data. The proposed technique reduces
latency and saves sensor energy since radio-frequency (RF)
transmission typically consumes 60-90% of the entire wireless
sensor power consumption [1], [2]. Wireless transmission of
all ECG data is particularly energy inefficient since ECG
signal is naturally sparse and its information content is much
lower than its sampling rate. While there are several data
compression techniques, such as compressive sensing, level-
crossing sampling and adaptive resolution sampling, that can
reduce RF transmission, ML can potentially achieve much
higher compression ratio by exploiting sporadic nature of AFib
occurrence. In addition, existing data compression techniques

can be combined with ML to achieve even higher compression
in RF transmission.

The proposed classifier is fabricated in 65nm CMOS process
and the complete system comprising front-end analog-to-
digital converter (ADC), feature extractor and neural network
classifier consumes 874µW operating at 90kHz sampling rate.
The classifier is demonstrated on Physionet dataset and detects
AFib with mean accuracy of 99.6%. The paper is organized
as follows: Section II presents the proposed architecture and
the design techniques, Section III presents the measurement
results on test-chips and Section IV brings up the conclusion.

II. PROPOSED ARCHITECTURE

The system level architecture of the proposed classifier is
shown in Fig. 1 alongwith timing diagram. The ECG samples
are digitized by a 14-bit successive approximation register
(SAR) ADC. The unit capacitor used in the SAR ADC is 2.4fF.
The SAR ADC uses the bi-directional single-sided switching
technique [3] to reduce power consumption. The ADC outputs
are sent to a digital feature extractor which extracts 14
time-domain features from non-overlapping windows of 6000
digitized ECG samples. The extracted features are converted
to analog voltages using an array of 6-bit switched-capacitor
digital-to-analog converters (DACs) with 4fF unit capacitor
and sent to analog 3-layer artificial neural network (ANN)
for classification into normal sinus rhythm, AFib and noisy
data. The DAC resolution is selected based on hyper-parameter
optimization on training data.

A. Feature extraction

The feature extractor performs simple pre-processing steps
and extracts time-domain features. While feature extraction
in the literature is performed in both time and frequency
domains, time-domain feature extraction is selected for this
work. Time-domain features are easy to compute on-chip
at low power compared to frequency-domain features which
require computation of fourier transform of the ECG sig-
nal [4]. The ECG signal is normalized between [0,1] before
feature extraction. Median value of the ECG signal window
is calculated and subtracted from all samples in that window
to remove baseline wander before feature extraction. 14 time-
domain features are extracted from ECG segments with 6000
samples. The extracted features are summarized in Figure 1
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14-bit SAR ADC

Fig. 1: Block diagram of the AFib classifier with associated timing diagram

and are measures of central tendency, dispersion, shape of
distribution of a window, R peaks, N-N intervals, variance
between R peaks and average heart rate. The R peaks are
identified in time-domain through thresholding. The threshold
for peak detection is set to 30% of the difference between
maximum and minimum value for each segment.

B. ANN model training and circuit design

A 3-layer ANN is used as the classifier. The ANN has 20
neurons in the first hidden layer, and 6 neurons in the second
hidden layer. The ANN is designed using switched-capacitor
circuits and amplifiers as shown in Fig. 2. Multiply-and-
accumulate (MAC) operations are performed using switched-
capacitor circuits and custom nonlinear activation functions are
realized using single-stage five-transistor operational transcon-
ductance amplifiers (OTAs). The ANN weights are encoded
as capacitor values in the MAC circuits thus performing
in-memory computation (IMC) for matrix multiplications.
Switched-capacitor IMC is selected in this work since it
has higher linearity compared to current-domain MAC in
widely used SRAM IMC circuits. The trade-off with switched-
capacitor IMC is that the ANN weights are hard-coded and
cannot be re-tuned after fabrication. The ANN weights are
quantized to 4-bit in the hidden layers, and 6-bit in the
output layer. The weight quantization is done during the
training iterations to preserve accuracy during testing. 4fF
unit capacitor, with mismatch standard deviation of 0.4%,
is selected as LSB weight in the MAC circuits to ensure

that classification accuracy remains greater than 99% even in
presence of random mismatch.

The timing diagram for the 3 layers are shown in Fig. 2.
During φ11, the extracted features are sampled on capacitors in
the first-layer, and the top plates of the capacitors are shorted
during φ12. Thus, at the end of φ12, the voltages at the positive
and negative inputs of the differential amplifier in a neuron in
the first layer are given by [V dd−

∑
iXp[i]C[i]/

∑
i C[i]] and

[Vdd −
∑

iXm[i]C[i]/
∑

i C[i]] respectively which are MAC
outputs of the matrix multiplication of input vectors Xp and
Xm and weight vector C applied to that neuron. The MAC
outputs are applied to custom activation function realized
through dynamic OTA as shown in Fig. 2. The OTA is clocked
with φb1 phase and turned off after the completion of φ11
and φ12 phases to conserve power. Output of the first hidden
layer is sampled on the capacitors in neurons in the second
hidden layer during φ21 and output of the second hidden
layer is evaluated during φ22. Finally, output of the second
hidden layer is sampled on the capacitors in the output layer
during φ31 and the classifier output is evaluated during φ32.
As in the first hidden layer, amplifiers in the second hidden
layer and output layer are turned on only during φb2 and φb3
respectively.

The hidden layers use custom tanh activation and the
output layer uses custom softmax activation. Custom tanh
activation is realized through a fully-differential OTA while
custom softmax activation is realized through a differential
OTA with single-ended output as shown in Fig. 2. Current-
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Fig. 2: Circuit schematic of the 3-layer ANN with timing diagram

domain common-mode feedback (CMFB) loop is used to
ensure constant output common mode voltage for the fully
differential OTA. Current-domain CMFB also reduces area
of the fully differential OTA compared to resistive CMFB
which requires large feedback resistors, and reduces area of
neurons by more than 4× compared to that in [5]. The custom
analog activation functions resemble their ideal, mathematical
counterparts, but are not exactly the same. To ensure good
matching between software ANN model and IC measurements,
we use a hardware-software co-design methodology in which
amplifier transfer curves, and their derivatives, are used to train
the ANN model iteratively [6]. Stochastic gradient descent
is used to optimize the ANN model by minimizing the loss
function at each epoch. Offset in the amplifiers is calibrated in
the foreground by adjusting the classifier decision thresholds
on the training set.

III. MEASUREMENT RESULTS

Fig. 3a) shows the micro-photograph of test-chip fabricated
in 65nm. The feature extractor is digitally synthesized while
the rest of the blocks are custom designed. The core area of
the classifier is 3.84mm2. The ECG samples are applied to the
test-chip at 90kHz using National Instrument Data Acquisition
Box to accelerate the measurements. The analog classifier
output is captured with oscilloscope and sent to computer for
analysis. The ADC and feature extractor operates at 90kHz
while the DAC and the ANN operates at 15Hz. The power
breakdown of the test-chip is shown in Fig. 3b). The feature
extractor consumes the most power at 460µW followed by
the DAC at 280µW and together these two blocks consume
84.5% of the total chip power. The 14-bit ADC consumes
22µW and the ANN consumes 9µW while the remaining
power is consumed by buffers and clock generator. With a
total power consumption of 874µW, the classifier consumes
58.3µJ/inference.

(a)

(b)

Fig. 3: a) Die micro-photograph and b) power breakdown

The test-chip is evaluated on retrospective patient ECG data
from Physionet. The dataset has ECG of 8528 patients with
5050 patients with normal sinus rhythm, 738 patients with
AFib and 2740 noisy ECG signals. The dataset is randomly
partitioned into 70% split for training and 30% split for testing.
The classifier decision thresholds are set by maximizing the
accuracy of training set on each chip. Fig. 4 shows the
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distribution of scores for each of the 3 class with decision
thresholds and measured confusion matrix on the test set for
3 chips. The 3 chips have a mean accuracy of 99.6% with
standard deviation of 0.35%.
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Fig. 4: Measured decision thresholds and confusion matrix for
chips 1-3 with normal sinus rhythm as class 1, AFib as class
2 and noise as class 3

Table I compares this work with state-of-the-art ECG pro-
cessors for cardiac arrythmia detection task. The proposed
classifier achieves state-of-the-art accuracy, and lower en-
ergy/inference for the on-chip ANN classifier compared to
state-of-the-art digital ANN classifiers. The spiking neural
network (SNN) classifier has lower energy/inference at the
cost of lower accuracy.

IV. CONCLUSION

This work has presented a fully integrated classifier for AFib
detection that achieves 99.6% accuracy. Power consumption of
the classifier is limited by the feature extractor and the DAC.
Since the feature extractor in this work derives time-domain

TABLE I: Comparison with state-of-the-art ECG processors
for arrythmia detection task

This TCAS–II TBioCAS TBioCAS TBioCAS
work 2021 [7] 2019 [8] 2019 [9] 2022 [10]

Process (nm) 65 180 180 − 28
Area (mm2) 3.84 0.75 0.92 − 0.54
Classifier ANN ANN ANN ANN SNN
Feature on-chip off-chip
Computation mixed-signal digital
Accuracy 99.6% 98% 99.3% 99.4% 93.7%
Class # 3 5
Power (µW) 9 (ANN) 1.31 13.31 134001 −

874 (system)
Energy/ 0.6 (ANN) 1.81 3.21 − 0.31

inference(µJ) 58.3 (system)
1only for classifier

features from R peaks, power of the feature can be improved
by leveraging sparsity of ECG signal to downsample inputs to
the feature extractor. The DAC power can be further reduced
by adopting dynamic bias for the amplifiers used in the DAC.
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