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Abstract—This work presents an SRAM based compute-in-
memory (CIM) macro that uses 1-bit AY. modulators to convert
input and output activations to binary pulse waveform. The
SRAM macro uses switched-capacitors for vector matrix mul-
tiplications and together with binary input activation improves
linearity compared to current-domain SRAM CIM macros and
allows reconfigurable activation resolution. The proposed macro
is fabricated in 65nm and used for human activity recognition
classifier that achieves more than 96 % accuracy while consuming
93-420.5pJ/classification

Index Terms—compute-in-memory, human activity recogni-
tion, static random access memory, artificial neural network,
delta-sigma

I. INTRODUCTION

Automatic recognition of daily human activity provides
important contextual information that can be useful for health
and wellness monitoring. Development of wearable sensing
technology is an enabling factor for acquiring greater insights
from long-term recording of human activity in daily life
settings which might provide important clues to improving
preventive healthcare. A key drawback of existing wearable
devices for human activity recognition (HAR) task is that they
cannot analyze activity patterns on-device and need to transmit
sensor data to cloud server for processing. Radio-frequency
(RF) transmission typically consumes 60-90% of the entire
wireless sensor power consumption [1], [2] and limits battery
life of wearable devices. The need to frequently recharge
device disrupts monitoring and reduces user compliance as
many users forget to put the device back on [3]. On-device
artificial intelligence (AI) algorithms can significantly reduce
transmission volume by analyzing sensor data locally and
only transmitting inference results. A key challenge with
embedding Al algorithms in resource constrained wearable
devices is the energy requirement of complex AI models.
Compute-in-memory (CIM) is an energy efficient technique
to perform Al computations inside memory units storing
the Al model weights. By reducing communication costs of
bringing together many input activations, neuron weights and
distributing output activations, CIM breaks the von-neumann
bottleneck and improves energy-efficiency significantly com-
pared to existing CPU/GPUs. Out of different CIM techniques,
SRAM based CIM is widely used due to its high energy
efficiency and easy integration with CMOS ICs [4], [5]. A
fundamental limitation in SRAM-CIM is nonlinearity of the
access transistors to which the input activation is applied.
Large values of vector matrix multiplication (VMM) products

computed by SRAM array make the currents through the
access transistors change nonlinearly with the VMM products
which in turn makes the VMM product nonlinear [6]. Recent
works have tried to address this nonlinearity issue through -
a) 1-bit activation [7]; b) converting analog input activations
to binary pulse trains [6]; c) charge-domain computation us-
ing switched-capacitors [5]. 1-bit activation requires boosting
with multiple classifiers to achieve good performance which
reduces energy efficiency. Pulsed input activation improves
linearity but cannot fundamentally address nonlinearity due to
current-domain accumulation in SRAM array and introduces
quantization error due to conversion of analog input to pulsed
input. Switched-capacitor based CIM improves linearity, but
current designs are still limited by nonlinearity of access
transistors that apply input activation to the capacitors.

This work presents a switched-capacitor based AY. SRAM
CIM technique that addresses the above challenges with a
combination of 1-bit AY modulators that convert activations
to binary pulse trains with lower in-band quantization error
than in [6] and 9T1C SRAM bitcells that perform computa-
tions in charge-domain with high linearity. The use of AX
modulator also allows variable resolution for input and output
activations. Fabricated in 65nm CMOS, the proposed SRAM
CIM macro consumes 93-420pJ/classification and identifies
5 human activities - sitting, standing, walking, running and
dancing with more than 96% accuracy. The paper is organized
as follows: Section II presents the proposed SRAM CIM
architecture and circuit design techniques, Section III presents
measurement results on the test-chip and Section IV brings up
the conclusion.

II. PROPOSED ARCHITECTURE

Fig. 1 shows architecture of the proposed AY SRAM array
and the 9T1C bitcell schematic. 1-b AY modulators convert
analog inputs into binary pulse train activation and apply
to the SRAM bitcells through the RWL lines. The SRAM
cells use switched-capacitor circuits to perform charge-domain
multiplication of input activation and model weights stored in
the SRAM cells. Accumulation is performed in charge-domain
on the RBL bitlines and sent to output 1-b AY. modulators
and digitally decimated. Quantization noise-shaping in the AY
modulators ensure lower in-band quantization error than the
analog-to-binary pulse conversion technique using counters
in [6]. Accumulation in charge-domain through charge re-
distribution in the proposed architecture results in higher
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Fig. 1: a) Proposed AY based pulsed activation CIM macro b) schematic of 9TIC SRAM bitcell and layout

linearity than current-domain accumulation in conventional
SRAM-CIM macros. Use of binary input activation and
CMOS switch to sample input activation on the capacitor
as shown in Fig. 1b) improves linearity compared to [5] by
removing dependency of sampled voltage on input activation.
The CMOS switch also allows the SRAM bit-cell to operate
from low supply voltage and improves energy efficiency. The
layout of a single SRAM bitcell is shown in Fig. 1b). A MOM
capacitor is used to realize SRAM capacitor Cj,.qy, Which is
placed on top of the SRAM cell.

Fig. 2 shows the schematic of a single slice of the proposed
macro using 4-bit signed weights. Compensation capacitors
are used to ensure all RBL lines see the same capacitive
load during computations. The capacitors and RBL lines are
discharged during ¢,. During ¢2, the SRAM cells compute
the VMM products on each RBL line which are charge-
shared with the binary weighted compute capacitor bank.
The compute capacitors are disconnected from the SRAM
cells during ¢3 and charge-shared with additional balancing
capacitors to ensure correct binary weighted MAC result with
sign bit operation. At the end of ¢3, the sign-bit output V,,,
and the remaining 3-bit output V;, are given by
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Fig. 2: Circuit schematic of a single slice of the CIM macro
and associated timing diagram

where V;,, is the input activation and W is the neural network
weight array. Vi, and V;, are applied differentially to the
output A modulator as shown in Fig. 2 that provides a binary
pulse train as output.

Fig. 3a) shows schematic of the input 1-bit AY modulator.
The output AY modulator has the same architecture with the
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exception of differential inputs. The AY modulator is fully
dynamic to reduce power consumption. A first-order loop filter
is used in this work since the SRAM macro does not need a
very high precision. The amplifier needs only a moderate gain
since the 1-bit quantizer only uses the sign information of its
inputs rather than amplitude to make decisions. The trade-off
with moderate gain of the amplifier is weak in-band high-pass
quantization noise shaping performance. This is reflected in
the transfer function of the A modulator given by

W+ (1+42/G-(141/G)271)Q
1+2/G-21/G

where V. is input to the AY, @) is quantization error and
G is gain of the amplifier. The in-band quantization error
is attenuated by 1/(G + 1) which corresponds to -34dB
for G = 50. A single-stage dynamic amplifier shown in
Fig. 3a) is used due to the moderate gain requirements. The
amplifier uses a capacitor as tail current source [8]. The
capacitor is discharged during the AY sampling phase (¢5) and
provides bias current to the amplifier during the amplification
phase (¢,). During the amplification phase, voltage across
the capacitor rises which reduces gate-to-source voltage of
the input transistors and increases the open-loop voltage gain
until the transistors enter sub-threshold where the amplifier
gain is maximum. Fig. 3b) shows the frequency response
of the AY modulator. The AYX modulator has an SNDR of
28.1dB at over-sampling ratio (OSR) of 8. Fig. 3c) shows
the classification accuracy on the HAR dataset as a function
of amplifier gain G' at OSR of 8. The classification accuracy
increases by only 0.4% as G is varied from 10 to 10000 thus
demonstrating low dependency of accuracy on amplifier gain
thanks to the 1-bit AY architecture. G is set to 50 in this
work.

Dout = (3)

III. MEASUREMENT RESULTS

The test-chip is fabricated in 65nm process and the die
photograph is shown in Fig. 4. The core circuits occupy an area
of 0.Imm? with the 64x64 SRAM array occupying an area
of 0.03mm?. The test-chip operates from a supply voltage of
0.5V-1.2V for the SRAM array and 1.2V for the other circuits.
The operating speed of the entire macro is 325kHz which is
limited by buffers driving the sampling capacitor in the output
AY. The AY modulators and clock generator consume 1.84W
from 1.2V supply while the SRAM array consumes 0.6.W-
3.6uW from 0.5V-1.2V supply. Offset in the input and output
A3} modulators are calibrated once in the foreground before
characterization of the complete macro. Performance of the
macro is summarized in the table in Fig. 4 and benchmarked
on the HAR dataset using a 2-layer artificial neural network
(ANN) in which the input layer has 60 neurons, the hidden
layer has 50 neurons and the output layer has 5 neurons.
The hidden layer uses tanh activation and the output layer
uses softmax activation. The proposed macro achieves 96.6%
accuracy at 0.5V SRAM supply voltage and OSR of 4 and
97.8% accuracy at 1.2V SRAM supply voltage and OSR of
8. The macro consumes 16.2f] at 1.2V supply. The energy
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Fig. 3: a) Schematic of 1-bit AY modulator b) FFT plot of
A3 modulator with sinusoidal input ¢) accuracy vs amplifier
gain at OSR of 8.

consumption for each classification is 420.5pJ at 1.2V supply
that does not include energy consumption of tanh/sigmoid
activation functions and decimation filter.

Fig. 5a) plots the measured root-mean-squared-error
(RMSE) of dot-product that varies between 1.16mV at 0.5V
SRAM power supply to 1.49mV at 1.2V SRAM power supply.
Linearity of the dot product is measured by the ratio of
maximum RBL swing to worst-case RMSE (A RBL/RMSE)
which varies from 40.5 at 0.5V to 68.8 at 1.2V SRAM
power supply. The RBL swing is obtained by spatial averaging
of bitcells in a column and and the output AY bitstreams
IM times. Nonlinearity in the RBL transfer curve is due
to static random mismatch between individual bitcells and
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Performance Summary
Process 65nm
0.5V-1.2V(SRAM)/

Supply 1.2V(others)

SRAM type 9T1C

Bitcell size 2.5um x 2.5um

MAC type Charge-domain
e —— Read-out circuit 1-bit delta-sigma modulator
|/p DSM Macro size 64x64

Activati
array o 46b(@0SR=8)

Weight'

a
96.6(@0.5V, OSR=4)
Accuracy (%) 97.8(@1.2V, OSR=8)
Macro speed

e 25

Energy/MAC (fJ)
Energylinference

Clock Gen
0.94pW

7.16@0.5VI6.17@1.2V
93.0(@0.5V, OSR=4)
4205(@1.2V, OSR=8)

Fig. 4: Die micro-photograph, power breakdown and perfor-
mance summary

capacitors, as well as charge-injection error in the switched-
capacitor circuits. In comparison to this work, A RBL/RMSE
varies from 12.6 [9] to 44 [5] for state-of-the-art SRAM CIM
macros which demonstrate better linearity of the proposed
architecture.

The HAR dataset has 24075 observations of five activities
and 60 features extracted from acceleration data measured by
smartphone accelerometer sensors. The dataset is randomly
partitioned into 90% split for training and 10% split for testing.
The measured accuracy changes from 96.6% at 0.5V and
OSR of 4 to 97.8% at 1.2V and OSR of 8 compared to
software baseline accuracy of 98.2% as shown in Fig. 5b).
Fig. 5 c) shows the measured confusion matrices on the
test chip at SRAM supply voltages of 0.5V and 1.2V and
OSR of 4 and 8 with classes 1 through 5 corresponding to
sitting, standing, walking, running and dancing respectively.
Table I compares this work with state-of-the-art software
HAR classifiers. The proposed 2-layer ANN classifier achieves
competitive accuracy as state-of-the-art.

TABLE I: Comparison with state-of-the-art HAR works

This work [10] [11] [12] [13] | [14]
Model ANN Ada-boost Bayesian CNN
Accuracy | 96.6-97.8% 98% 89.2% | 91.4% |89.2% |95.7%
Class # 5 5 5 9 17 6

IV. CONCLUSION
This work has presented a AY based SRAM CIM macro
that uses switched-capacitor circuits for charge-domain matrix
multiplications with high linearity. The proposed macro is
used for HAR task and achieves state-of-the-art accuracy while
consuming only 420.5pJ/classification.
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