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In-Sensor Artificial Intelligence and Fusion With
Electronic Medical Records for At-Home Monitoring
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Abstract—This work presents an artificial intelligence (AI)
framework for real-time, personalized sepsis prediction four hours
before onset through fusion of electrocardiogram (ECG) and pa-
tient electronic medical record. An on-chip classifier combines
analog reservoir-computer and artificial neural network to perform
prediction without front-end data converter or feature extraction
which reduces energy by 13× compared to digital baseline at
normalized power efficiency of 528 TOPS/W, and reduces energy by
159× compared to RF transmission of all digitized ECG samples.
The proposed AI framework predicts sepsis onset with 89.9% and
92.9% accuracy on patient data from Emory University Hospital
and MIMIC–III respectively. The proposed framework is non-
invasive and does not require lab tests which makes it suitable for
at-home monitoring.

Index Terms—Sepsis, artificial intelligence, in-memory
computing, data fusion, artificial neural network, reservoir-
computer.

I. INTRODUCTION

S EPSIS is a life-threatening medical condition that arises
when the body initiates an extreme response to an in-

fection in the bloodstream. Real-time, at-home monitoring of
at-risk patients using smart wearable is a potential solution
for predicting sepsis onset and timely intervention. This work
presents an artificial intelligence (AI) framework that combines
patient electronic medical record (EMR) and electrocardiogram
(ECG) data to automate risk prediction of sepsis onset without
requiring a clinical expert in the loop. ECG is selected as the
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Fig. 1. Overview of the proposed AI framework for fusion of sensor and EMR
data for sepsis onset prediction.

physiological modality in this work since studies [1], [2], [3],
[4] have shown that sepsis patients show prolonged duration and
reduced amplitude for QRS segments which can be picked up by
AI models. A recent work [5] has also shown that deep-learning
models can reliably perform sepsis screening using only patient
ECG signal. The proposed framework is shown in Fig. 1, and
comprises three components – a) in-sensor processing AI circuit
for analyzing ECG signal and predicting risk of sepsis onset; b)
a classifier that predicts risk of sepsis onset from EMR – patient
demographics (age, gender, race and ethnicity) and co-morbidity
data; and c) a meta-learner that combines prediction results
from ECG and EMR to predict risk of sepsis onset with high
accuracy. Wireless transmission of continuous sensor data is
energy inefficient since information rate of ECG signal is much
lower than its sampling rate. While there are several techniques
to compress RF transmission [6], [7], [8], [9], [10], [11], [12],
the compression ratio is typically limited to< 20×. In this work,
we propose a AI-driven technique that uses local, in-sensor AI to
classify ECG segments and transmit prediction score instead of
raw data that can compress transmission data by a much higher
factor than existing compression techniques and significantly
reduce sensor energy. However, integrating computationally
intensive AI classifier into a resource constrained sensor is
challenging. The majority of attempts [13], [14], [15], [16],
[17], [18], [19], [20] to reduce energy consumption of AI circuits
use a) in-memory/near-memory computing b) reduced precision
computations. To address this energy bottleneck in wireless
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bio-medical sensors, we propose an analog signal processing
neural network that directly processes analog ECG samples.

The key contributions of this work are - a) on-chip analog
classifier comprising of a reservoir-computer (RC) followed by
a 3-layer artificial neural network (ANN) that process analog
ECG segments while reducing energy consumption by 13×
compared to digital baseline (front-end ADC followed by digital
ANN) and reduces overall sensor energy by 159× compared
to direct transmission of digitized ECG segments; b) a fusion
model that combines patient single-modality physiological sig-
nal and demographics to predict sepsis onset with high accuracy
without requiring multiple modality sensor data and laboratory
test results as in current state-of-the-art sepsis onset prediction
works. The proposed contributions are demonstrated on sepsis
dataset obtained from Emory University Hospital (EUH) and
MIMIC–III dataset. The AI models are trained on EUH dataset
and tested on both EUH and MIMIC–III dataset. With the ap-
proval of Emory Institutional Review Board (IRB), de-identified
sepsis dataset is obtained from EUH. The cohort consisted of
800 patients admitted to the ICUs at two hospitals within the
Emory Healthcare system in Atlanta, Georgia from 2014 to
2018. The dataset has 53.3% sepsis patients and 46.7% non-
sepsis patients, with male/female split for sepsis and non-sepsis
patients of 54.7%/45.3% and 47.4%/52.6% respectively. The
EUH dataset is randomly partitioned into 720 training samples
and 80 test samples. The AI models trained on EUH dataset is
tested on publicly available MIMIC–III dataset which comprises
of de-identified, comprehensive clinical data of patients admitted
to the Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts. The MIMIC–III dataset has 4559 patients with 40.2%
sepsis patients and 59.8% non-sepsis patients, male/female
split for sepsis and non-sepsis patients of 53.8%/46.2% and
55.8%/44.2% respectively. In a prior work [21], we have demon-
strated that fusion of prediction scores from ECG using in-sensor
ANN and EMR achieves state-of-the-art prediction accuracy for
detection of sepsis onset. The key differences of this work with
our prior work [21] are – 1) this work presents an analog-to-
information conversion technique that directly analyzes analog
ECG samples without digitizing and feature extraction; 2) the
results in [21] are based on circuit simulation of ANN whereas
this work presents measurement results on test-chips fabricated
in 65 nm CMOS; 3) the proposed in-sensor RC+ANN and fusion
techniques are validated on two datasets. The AI models for ana-
lyzing EMR data and fusion of prediction scores from in-sensor
RC+ANN and EMR model are implemented in software.

The rest of this paper is organized as follows: Section II
presents the details of the in-sensor AI architecture and circuit
design, and the EMR model, Section III presents measurements
results with 65 nm prototypes on the EUH and MIMIC–III
datasets and comparison with state-of-the-art, and Section IV
brings up the conclusion.

II. ON-CHIP AI CLASSIFIER

A. Challenges With Prior Works and Motivation

RF transmission is the largest contributor of wireless sen-
sor power, and hence, local in-sensor signal processing is

Fig. 2. t-SNE plot showing the distribution of ECG samples before passing
through the reservoir and after passing through the reservoir layer.

preferred to continuous RF transmission [11]. As an example, a
low-power MedRadio transmitter consumes 67μW power [22]
which is significantly higher than on-chip feature extraction [11],
[23]. While RF transmission has benefited from techniques
that reduce transmission data rate, such as sparsity-based data
compression algorithms [6], [7], [8], derivative-based adaptive
sampling [9], level-crossing sampling [10], and adaptive res-
olution digitization [11], [12]. The aforementioned techniques
have reported compression of transmission data by 2 ∼ 16×.
In contrast to the prior techniques, we propose to embed AI
in the sensor itself to analyze each ECG segment and transmit
only prediction score instead of ECG data or extracted features
which results in significant reduction in transmission volume and
reduce sensor energy by 159×. The transmitted prediction score
is fused with prediction scores from patient EMR to produce
personalized prediction for each patient.

Fig. 3(a) shows the block diagram of the in-sensor AI for
analyzing ECG signals. Continuous-time ECG signal, X(t), is
sampled by the input layer and multiplied with input weight
matrix to produce an output �V . �V is then sent to the reservoir-
layer of the RC, and outputs of the reservoir layer, �Rk, is sent to
an ANN for generating prediction score for the ECG segment
under analysis.

B. Reservoir-Computer Design

RC is a well-known computing paradigm that uses static
nonlinearity to project the input signal to high-dimensional
space, thus allowing easier separation of different input classes.
No training is performed in the input or reservoir layers, and
the weights are drawn from random distribution. Fig. 2 shows
an example of the separability of classes due to RC. Since
the data is high-dimensional, t-distributed stochastic neighbor
embedding (t-SNE) plot is used for visualization. t-SNE plot
of the input ECG samples show that the sepsis and normal
classes are clustered together. After processing of the ECG
signals through RC, the two classes show good separation. While
reservoir computing was invented almost two decades earlier and
has been extensively used in the machine-learning literature,
hardware implementation of reservoir computing have been
mostly on optics/photonics platform with few analog silicon
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implementations [24], [25], [26]. In contrast to prior silicon RC,
the proposed RC is based on the architecture in [27] and does
not require large capacitors to realize biological time-constants
which is energy-inefficient, and does not require background
calibration for analog delay elements or nonlinearity element.

Output of the RC with N reservoir neurons can be mathemat-
ically expressed as

�Rk[n] = H
(
Gi

�W × �XT +Gf
�Wr × �Rk[n− 1]

)
(1)

where �X = [X1X2 · · ·XD] is analog ECG input with D sam-
ples, �W is N ×D input weight matrix, �W (D >> N ), �Wr is
N ×N inter-connection weight matrix for the reservoir layer,
H(·) is nonlinear activation for RC,Gi is input scaling factor and
Gf is feedback gain. As in [27], identity matrix is used for �Wr

which simplifies the hardware implementation since �Wr can be
realized using a single-cycle delayed feedback. The restriction
on �Wr is consistent with [28] which has shown through sys-
tematic investigation that a simple reservoir architecture with
sparsely inter-connected reservoir provides comparable accu-
racy as more complicated reservoir architectures.Gi andGf and
N are set to 0.6, 0.1 and 63 respectively to optimize prediction
accuracy and ensure stability of the reservoir, D = 6000 cor-
responding to 20 s ECG segments. The design parameters are
selected based on hyperparameter optimization using 10-fold
cross validation on training data.

Fig. 3(b) shows the circuit schematics of a single channel
(j-th channel out of N channels) of the input and reservoir
layers and the corresponding timing diagram. The input layer
performs vector matrix multiplication of �W and D samples of
the ECG signal over a time-period of Ts/2 (where Ts is the
sampling period) which is split into D cycles of complementary
clock phases φ1 and φ2 [29]. For the j-th channel, the input
layer performs element-wise multiplication of entries in the j-th
row of the input weight matrix �W with the corresponding ECG
samples over D cycles, where the j-th row of �W is denoted
as Wj . The input layer is realized using a switched-capacitor
integrator which is reset every sampling period (Ts). The ECG
signal is sampled at a speed of DFs (where Fs = 1/Ts). During
each φ1 phase, the ECG signal is multiplied with an element
in Wj and the result is sampled on the input capacitor Cin as
shown in Fig. 3(b). Since elements of Wj are set to ‘0/1,’ the
multiplication of ECG signal and elements ofWj is implemented
using 2 switches controlled by Wj and complement of Wj as
shown in Fig. 3(b). Thus, for the J-th channel and k-th φ1

phase (k ∈ [1, D]), and using a notation of W [j, k] to denote the
corresponding element of �W , if W [j, k] = 1, the ECG signal is
sampled on Cin and if W [j, k] = 0, Cin is discharged. During
the next φ2 phase, the charge on Cin is transferred to the
integration capacitor Cint. Thus, after D-cycles of φ1 and φ2,
the integration capacitor holds the product of Wj × �XT scaled
by Cin/Cintg which is the input scaling factor Gi. The voltage
on the integration capacitor is sampled at φ3 as Vj which is the
input to the j-th reservoir neuron. The integration capacitor is
then discharged after D cycles of φ1 and D cycles of φ2. An
operational-transconductance amplifier (OTA) is used to sum

input to the reservoir layer with delayed feedback from the
reservoir neuron. Output of the OTA represents the term within
parenthesis in (1) and is passed through the nonlinearity H(·)
which is implemented using a feed-forward common-source
amplifier as shown in Fig. 3(b). The non-linear activation func-
tion H(·) is based on Mackay-Glass nonlinearity. Output of the
nonlinearity circuit is buffered and drives a 10-bit successive
approximation register (SAR) ADC, and its delayed output is
fedback to the input OTA through a resistive digital-to-analog
converter (R-DAC). The reservoir layer is time-multiplexed to
save on-chip area such that one physical neuron is used to
realize N virtual neurons by operating the reservoir layer at
NFs where Fs = 1/Ts is the frequency of operation of the
RC+ANN and ECG input is sampled at DFs. The ADC is used
in the reservoir loop for accurate generation of N -cycle delay in
the time-multiplexed feedback path since generation of precise
analog delay is difficult in practice. The RC input layer is off-chip
for this design to allow testing with different �W .

In contrast to conventional analog design, the circuits com-
ponents in the RC can be nonlinear since all nonlinearity is
absorbed into the reservoir dynamics. Relaxed linearity require-
ments allow amplifiers in the input layer and RC as well as the
ADC to be low bandwidth, which results in increased nonlin-
earity due to slewing and incomplete settling, but reduces both
noise and power. Fig. 4 shows the simulated accuracy from ECG
analysis as a function of settling time in the switched-capacitor
input layer, and time-constant of the amplifier (τ ) is set to
Ts/8/D. Size of the sampling capacitor in the input layer is
set by noise and accuracy requirements. Input-referred noise in
the input layer can be shown to be

V 2
n,in =

kT

Cin

1

1− β
+

1

β

kT

Ceq

(
4

3

)(
Cintg

Cin

)2

(2)

where β is the feedback factor and Ceq = CL + (1− β)Cintg ,
CL is the load capacitor. Keeping the feedback capacitor Cintg

fixed to 400fF and load capacitor of 100fF, the sampling capac-
itor Cin is swept and the RC+ANN accuracy and energy of the
input layer are plotted in Fig. 5. Based on the simulation results,
Cin is set to 10fF.

The lower bound on bandwidth of amplifiers in the reservoir
layer is set by stability requirements. Since the reservoir is
strongly nonlinear, the RC loop has to be linearized around its
operating point to theoretically analyze stability. The worst-case
scenario from stability perspective occurs when the RC loop
has the highest gain, corresponding to the highest gain of the
nonlinearity functionH(·) that occurs for the smallest input seen
by the nonlinearity circuit. The highest possible gain for H(·)
is found through simulations for different values of feedback
gain, Gf . Fig. 6(a) shows the discrete-time, linearized model of
the RC with Gh denoting gain of H(·). The summing amplifier
and the unity-gain buffer in Fig. 3(b) uses the same OTA with
unity-gain bandwidth of ω1 and feedback factor of the summing
amplifier is β, and 3-dB bandwidth of the nonlinearity circuit is
ω2. Stability of the RC is analyzed by finding the roots of (3)

1 +
z−3

(1− k1z−1) (1− k1z−1) (1− k1z−1)
= 0 (3)
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Fig. 3. a) Architecture of reservoir-computer for analyzing ECG signals b) circuit schematic of the input and reservoir layers.

Fig. 6(b) plots stability contours versus normalized values of
ω1 and ω2 as a function of β. The stable region shrinks as Gf

increases, and ω1, ω2 reduce. ω1 and ω2 are set to 2π × 0.9Fs

(2π × 0.9NFs after time-multiplexing) for Gf = 0.1 to ensure
a wide stability margin.

C. ANN Model Training and Circuit Design

The ANN has 20 neurons in the first hidden layer, and 6
neurons in the second hidden layer. The hidden layers use custom
tanh activation function, while the output layer uses a custom
softmax activation function. The voltage output of the softmax

function is compared with a threshold voltage (Vth) to generate
the ANN decision, i.e., non-sepsis/sepsis. The activation circuits
are designed using single-stage, common-source differential
amplifiers as shown in Fig. 7. Multiply-and-add (MAC) op-
erations in the hidden and output layers are performed using
switched-capacitor circuits in which the ANN model weights are
encoded as capacitance values. The switched-capacitor circuits
operate in 2 non-overlapping and complementary phases - sam-
pling (φs) and evaluation (φsb). During φs all the capacitors are
discharged by connecting both terminals to the common-mode
voltage Vcm. During the evaluation phase, the input activations,
Xp and Xm, are applied to the top-plate of the capacitors.
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Fig. 4. Simulated accuracy vs input layer bandwidth .

Fig. 5. Simulated a) accuracy and noise; and b) energy of input layer versus
sampling capacitor.

The voltages at the bottom-plate of the capacitors at the end
of evaluation phase are given by (

∑
Xp[k]C[k])/

∑
C[k] and

(
∑

Xm[k]C[k])/
∑

C[k] respectively where k ∈ [1, n] and n
is the number input activations for the ANN layer. Thus, at
the end of the evaluation phase, the differential input voltage
to the amplifiers is the result of the MAC operations with
input activations and network weights. The MAC result is then
passed through the nonlinear activation function realized by

Fig. 6. a) Linearized model of the RC b) stability contours.

Fig. 7. Circuit schematic of custom hidden and output neurons.

the differential amplifier to produce the output activation. The
fully differential amplifiers in the hidden layers use output offset
cancellation technique to reduce amplifier offset. As shown in
Fig. 7, the inputs to the differential amplifiers are shorted to
Vcm during φs and the output offset is stored in the capacitors
Coff . During the evaluation phase, the offset storage capacitors
are in series with the amplifier outputs and remove the offset
from the output activation. Offset in the output layer is removed
through foreground calibration as described later. The custom
analog activation functions resemble their ideal, mathematical
counterparts, but are not exactly the same. To ensure good
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matching between software ANN model and IC measurements,
we use a hardware-software co-design methodology in which
amplifier transfer curves, and their derivatives, are used to train
the ANN model iteratively [30]. Stochastic gradient descent is
used to optimize the ANN model by minimizing the loss function
at each epoch. Once the ANN is fully trained, the model weights
are encoded as capacitor values as shown in Fig. 7. The ANN
weights are quantized to 4-b in the hidden layers, and 6-b in the
output layer. The weight quantization is done during the training
iterations to minimize effect of quantization error. A 4fF unit
capacitor is used to realize an LSB weight without degrading
ANN accuracy due to capacitor mismatch.

D. EMR Model

In addition to ECG data, we incorporated patient demograph-
ics and co-morbidities for prediction of sepsis onset using an
EMR model. We performed a series of pre-processing steps on
the EMR data prior to analysis and model development. As the
first data pre-processing step, we applied standard data cleaning
steps, including removing empty cells, special characters. Label
encoding technique is used to convert categorical demographic
features to numerical quantities. The co-morbidity data is in the
form of ICD-10 codes and is converted to vector format using
Term Frequency- Inverse Document Frequency (TF-IDF) algo-
rithm [31] that computes a score for each word in proportion to
its significance in the corpus. The ICD-10 codes does not include
any diagnosis codes and only captures prior co-morbidities of
the patient, such as presence of diabetes, chest pain, abdominal
pain, shortness of breath, seizures, chronic kidney disease, el-
evated blood pressure etc. A word t in the j-th ICD10 code is
represented in the following vector format

V(t,j) = TF(t,j) × IDF(t) (4)

where TF(t,j) is the normalized term frequency and is given by

TF(t,j) =
Number of times term t appears in j

Total number of terms in j
(5)

and IDF(t) is the inverse document frequency that is given by

IDF(t) = log

(
N

DF(t)

)
(6)

where DF(t) is the number of documents containing t. The
TF-IDF tokenizer is trained on the training dataset for the vec-
torization. Finally the numeric representation of the categorical
features and TF-IDF representation of the co-morbidities are
combined using linear concatenation, and normalized by remov-
ing the mean and scaling to unit variance. Given the static nature
of EMR, a single-point prediction model is used and optimal
value of the hyper-parameters is tuned through 10-fold cross
validation on the training data. Accuracy of different models
- linear support vector machine, random forest and logistic
regression - on the test set are 49%, 76% and 53% respectively.

E. Fusion Model

Fig. 8 shows the fusion model that performs decision level
late fusion by aggregating predictions from the RC+ANN and

Fig. 8. Block diagram showing the fusion model that aggregates prediction
scores from RC+ANN and EMR models.

EMR models. Linear support vector machine (SVM) is used as
the meta-learner. Similar to the EMR model, hyperparameters
of the meta-learner is tuned through 10-fold cross-validation on
the training data. The linear SVM meta-learner is trained with
square hinge loss function with L2 penalty and regularization
parameter (λ) of 1. Mathematically, this can be described as
solving the following optimization problem

arg min
1

2
λ‖w‖2 + 1

n

n∑
i=1

�
(
yiw

Tx
)

(7)

where xi and yi, (i ∈ [1, n]) are predictor and response variables
of instances in the training dataset,w is the linear SVM classifier,
and � is the loss function defined by �(α) = max{0, (1− α)2}.

III. MEASUREMENT RESULTS

Fig. 9 shows the measurement setup and energy breakdown.
The RC and ANN chips are fabricated separately in 65 nm
CMOS process, and integrated on printed circuit board level for
lab measurement. National Instrument data acquisition (DAQ)
module is used to load input data from a computer, and output of
the ANN is captured using an oscilloscope and sent to the com-
puter. A Matlab interface is used for communication between the
computer, test chips and the NI DAQ. The ANN has a core area of
1.67 mm 2 and the RC has a core area of 0.24 mm2. The on-chip
reservoir layer consumes 2nJ/inference and the ANN consumes
7nJ/inference while the off-chip reservoir input matrix multiplier
consumes 8.4nJ/inference [29] at 1.2 V supply and operating at
Fs = 1 kHz. The energy for communication between the test
chips is not included since this will be amortized once the two
chips are integrated on the same die.
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Fig. 9. a) Lab measurement setup with die microphotograph of the RC and
ANN chips (b) energy breakdown.

A. Prediction Results With Emory and MIMIC–III Dataset

Fig. 10 shows the measured accuracy of the RC + ANN on
the EUH test data. Offset in amplifier in the output layer of
the ANN is calibrated by applying the training samples to the
test-chip and setting the decision threshold voltage to maximize
prediction accuracy on training samples. Fig. 10a) shows the
measured accuracy on the hold-out test data for on-chip AI
circuit with all chips calibrated and with chips 2-4 using the
offset from chip 1. The proposed RC + ANN combine detects
sepsis with mean accuracy of 78.9% and standard deviation of
0.5% from ECG signal 4 hours before onset if all chips are
calibrated, while the mean accuracy drops slightly to 78.5% if
only chip 1 is calibrated. The measurement results show small
chip-to-chip variation and indicates robustness of the proposed
RC+ANN test-chip. The mean accuracy improves to 89.9% after
fusion with demographics and co-morbidity data. Linear SVM is
used as meta-classifier for fusion. Sepsis onset prediction is more
accurate closer to onset as shown in Fig. 10b). Table I shows the
performance metrics (accuracy, specificity and sensitivity) for 4
test-chips as a function of time-to-onset after calibration, while
Table II shows the performance metrics for the test-chips after
fusion. Sensitivity is the measure of the AI model’s ability to
correctly diagnose patients with sepsis while specificity is the
measure of the AI model’s ability to correctly diagnose patients

Fig. 10. a) Measured accuracy at 4 hours before onset with all chips calibrated,
and with only chip 1 calibrated and all chips using the calibrated offset setting
from chip 1 b) accuracy after fusion as a function of time before onset.

TABLE I
PERFORMANCE METRICS OF RC+ANN TEST-CHIPS

TABLE II
PERFORMANCE METRICS OF FUSION MODEL
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TABLE III
COMPARISON WITH STATE-OF-THE-ART SOFTWARE AI MODELS FOR SEPSIS PREDICTION

Fig. 11. Performance of 4 test chips before and after fusion.

that are normal. A highly sensitive AI model has low false
negative results while a highly specific AI model has low false
positive results. Mathematically, sensitivity is defined as the ratio
of true positives to the sum of true positives and false negatives,
while specificity is defined as the ratio of true negatives to the
sum of true negatives and false positives. It is desirable to have
both high sensitivity and high specificity.

All 4559 patient EMR and ECG data from MIMIC–III dataset
is applied to the RC+ANN test-chips and the fusion AI models
without re-training for predicting sepsis 4 hours before onset,
and the results are summarized in Fig. 11. The test-chips achieve
mean accuracy of 80.6% with ECG data and 92.9% after fusion.
Standard deviation of accuracy of the 4 test-chips with ECG
data is only 0.36% which indicates robustness of the proposed
RC+ANN test-chips.

B. Comparison With State-of-The-Art and Discussion

Table III compares the proposed fusion model with state-of-
the-art software AI models for different dataset. The proposed
technique compares favorably with state-of-the-art using single
modality sensor data source and no laboratory test results, which
demonstrates feasibility of the proposed technique for at-home
monitoring and is a key differentiation from state-of-the-art
which requires multiple modality sensor data and/or laboratory
test results. Table IV compares efficiency (TOPS/W) of the
RC+ANN with state-of-the-art in-memory computing AI ac-
celerator macros. The proposed RC+ANN achieves competitive
power efficiency as state-of-the-art AI accelerators and matrix

multiplier macros even after including energy for data movement
and output activations. Table IV also compares area efficiency of
the AI accelerator macros in terms of area of a bitcell normalized
to the CMOS technology in which the bitcell is designed. For this
work, area of unit switched-capacitor circuit in the ANN (see
Fig. 7) is considered which is equivalent of a bitcell in SRAM
designs. The unit switched-capacitor in this design has larger
area than capacitor-less SRAM bitcells, but has comparable
area efficiency as bitcell designs that embed capacitor inside
the bitcell. The trade-off with switched-capacitor based MAC
operation is higher linearity than current-domain MAC [43] at
the cost of area. It should be pointed out that a limitation of our
implementation of RC+ANN is that the weights of the trained
ANN cannot be changed after chip fabrication unlike SRAM
based accelerators in which the neural network weights can be
easily re-programmed. Fig. 12 compares the proposed RC+ANN
with conventional technique of digitizing ECG segments and
transmitting the digitized data, and digital baseline which per-
forms feature extraction on digitized ECG segment followed by
digital ANN before transmission of prediction scores. Trans-
mission energy is assumed to be state-of-the-art 38 pJ/bit [44],
and the ADC for digitizing ECG segment is assumed to con-
sume 5fJ/conversion-step at 1 kHz and 12-bit resolution [45].
RC+ANN reduces energy/inference by 13× compared to digital
baseline at 3% loss in accuracy, and by 159× compared to
conventional technique. Fig. 12(b) plots energy/inference of
recent state-of-the-art AI ICs for different bio-medical appli-
cations [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60], [61], [62]. The proposed RC+ANN
technique consumes the lowest energy/inference which is 4×
lower than state-of-the-art.

In this work, cleaned ECG signal from two dataset has been
used to demonstrate the proposed techniques of in-sensor AI
and fusion with EMR. However, in practical at-home monitor-
ing applications, the acquired ECG signal is likely to contain
artifacts and will required analog front-end (AFE) with band-
pass filtering before the ECG signal is sent to the RC+ANN
combination. The AFE will consume additional power that will
reduce the energy advantage of the proposed technique over
the conventional method of transmitting all the sensor data.
As an example, state-of-the-art AFEs for ECG sensor typically
consume 1− 8× power of ADC [9], [11], [23], [63], and a
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TABLE IV
COMPARISON WITH AI HARDWARE ACCELERATOR

Fig. 12. Comparison with (a) conventional technique and baseline and
(b) state-of-the-art AI ASICs for different bio-medical applications.

similar AFE in front of our RC+ANN will result in 3.8− 21×
reduction in energy compared to naive transmission. Hence,
the in-sensor AI technique shifts the design burden for high
energy efficiency from transmitter to the AFE. The AFE energy
efficiency can be potentially improved through inverter based
amplifier design and inverter stacking [64], [65] to reduce overall
energy consumption of the sensor.

IV. CONCLUSION

This work has presented a fusion AI framework for sepsis
prediction before onset, and in-sensor AI technique that can
significantly reduce sensor energy by transmitting prediction
scores instead of ECG samples. The energy consumption of
the proposed in-sensor AI circuits can be reduced further by
using dynamic amplifiers. Energy efficiency of the proposed AI
circuits is expected to improve with technology scaling since the
analog components do not need high linearity or gain.
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