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Abstract—This work presents a fusion artificial intelligence
(AI) framework that combines patient electronic medical record
(EMR) and physiological sensor data to accurately predict early
risk of sepsis 4 hours before onset. The fusion AI model has two
components - an on-chip AI model that continuously analyzes
patient electrocardiogram (ECG) data and a cloud AI model that
combines EMR and prediction scores from on-chip AI model
to predict fusion sepsis onset score. The on-chip AI model is
designed using analog circuits for high energy efficiency that
allows integration with resource constrained wearable device.
The on-chip AI reduces by 4.5× compared to digital baseline,
and by 4× compared to state-of-the-art bio-medical AI ICs.
Combination of EMR and sensor physiological data improves
prediction performance compared to EMR or physiological data
alone, and the late fusion model has an accuracy of 92.2% in
predicting sepsis 4 hours before onset. The key differentiation
of this work over existing sepsis prediction literature is the use
of single modality patient vital (ECG) and simple demographic
information, instead of comprehensive laboratory test results and
multiple vital signs.

keywords- Sepsis prediction, on-chip analog classifier, machine
learning, late fusion, electrocardiogram

I. INTRODUCTION

Sepsis is a leading cause of death worldwide, and 80% of
patients have sepsis onset outside hospital settings. Real-time,
at-home health monitoring for at-risk patients is a potential
solution for predicting sepsis onset and providing timely
intervention. There are several challenges and limitations as-
sociated with the current technologies for at-home monitoring
– 1. existing wearable devices lack the ability to integrate
electronic medical record (EMR) with sensor data in real-time;
2. most wearable devices do not have automated inference
capability and depend on telemetry and medical experts for
actionable inference; 3. transmission of patient data over the
network increases risk of breaches [1], [2]. The proposed
work addresses these challenges through a two-step fusion
AI framework - an AI circuit that can be integrated with
wearable device for performing in-situ analysis of continuous
sensor data, and a cloud AI model that performs fusion of
demographic data and scores from embedded AI circuit for
real-time risk prediction of sepsis onset. Raw patient data
collected through wearable device is not transmitted to the
cloud; rather only prediction scores of the embedded AI circuit

is sent to the cloud for fusion which improves robustness of
patient data.

The proposed fusion AI framework has 3 components
1) analog on-chip machine-learning classifier that analyzes
continuous ECG signal and predicts risk of sepsis; 2) random
forest classifier based EMR model that predicts sepsis risk
from demographics (age, gender, race and ethnicity) and co-
morbidity data; (3) a meta-classifier that combines prediction
scores from on-chip classifier and EMR model for prediction
of sepsis onset (see Fig. 1a)). We have developed a mobile
application that allows users to input their demographic and
co-morbidity information, and predicts risk of sepsis onset.
The on-chip classifier can be embedded into a wearable sensor
and comprises of a fully integrated, 3-layer artificial neural
network (ANN) for predicting sepsis from ECG sensor signal
as shown in Fig. 1b). The ANN uses switched-capacitor
(SC) compute-in-memory (CIM) followed by analog activation
circuits. Compared to SRAM-CIM, SC-CIM computes vector
matrix multiplications with higher linearity at the cost of re-
configurability of on-chip AI model weights. The proposed
fusion framework is demonstrated on patient data collected
from Emory University Hospital over 2014-2018.

II. ANN DESIGN FOR SEPSIS PREDICTION FROM ECG
A. Dataset

With the approval of Emory Institutional Review Board
(IRB), de-identified sepsis dataset is obtained from Emory
University Hospital (EUH). Since we used only de-identified
data and no patient communication has been made during the
study, need of informed consent is waived by Emory IRB.
The cohort consists of 965 patients admitted to ICUs at two
hospitals within the Emory Healthcare system in Atlanta from
2014 to 2018. For each patient, there is at least 8 hours of
ECG signal recordings from the time of admission in ICU,
with the ECG signals sampled at 300Hz. Table I presents the
demographics for both sepsis positive and negative patients.
Our cohort mostly consist of patients older than 56 years.

The Third International Consensus Definition of Sepsis
(Sepsis-3) [3], criterion was used to assign sepsis onset time
(tsepsis-3) when two conditions were simultaneously satisfied:
1) there was a clinical suspicion of infection and; 2) there
was a 2-point increase in SOFA score (tSOFA). According
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Fig. 1: a) Overview of proposed real-time sepsis detection
using fusion AI model that combines physiological and EMR
data b) 3-layer ANN for prediction of sepsis from ECG signal

TABLE I: Patient characteristics table

Characteristics Summary
Sepsis Non-sepsis

Data 514 (53.26%) 451 (46.73%)

Gender
Male 281 (29.12%) 214 (22.17%)
Female 233 (24.14%) 237 (24.56%)

Race

African American 191 (19.79%) 190 (19.69%)
Caucasian/White 278 (28.8%) 215 (22.28%)
Asian 8 (0.8%) 7 (0.7%)
Hispanic 1 (0.1%) 0 (0%)
Multiple 1 (0.1%) 2 (0.2%)
American Indian/
Alaskan Native

0 (0%) 2 (0.2%)

Unknown 35 (3%) 35 (3%)

Ethnicity
Hispanic/Latino 9 (0.9%) 7 (0.7%)
Non-Hispanic/Latino 413 (42.78%) 357 (36.99%)
Unknown 92 (9.53%) 87 (9.01%)

Age
16-35 years 52 (5.39%) 42 (4.35%)
36-55 years 162 (16.79%) 149 (15.44%)
56 and above years 300 (31.08%) 260 (26.94%)

to Sepsis-3 definition, 514 patients met the Sepsis-3 criterion.

The dataset is randomly partitioned into 885 training samples
and 80 test samples.

B. Feature extraction

The digital feature extractor (FE) in Fig. 1b) computes
features on 30 second windows of the ECG signal. Only time-
domain features are used in this work for low-cost implemen-
tation. 14 time-domain features are calculated from first-order
statistical measures of location and distribution of R peaks,
QRS complexes, PR intervals, ST intervals, QT intervals, and
NN intervals (see Fig. 1). The FE removes baseline wander
by subtracting median value from each segment. The digital
features are converted into analog voltages using 4-bit SC
DACs which drive the analog ANN.

C. ANN model training and circuit design

The ANN has 20 neurons in the first hidden layer, and 6
neurons in the second hidden layer (Fig. 1(b)). The hidden
layers use custom tanh activation function, while the output
layer uses a custom softmax activation function. The voltage
output of the softmax function is compared with a thresh-
old voltage (Vth) to generate the ANN decision, i.e., non-
sepsis/sepsis. The activation circuits are designed using single-
stage, common-source differential amplifiers as shown in
Fig. 2. The fully differential amplifiers in the hidden layers use
output offset cancellation technique to reduce amplifier offset.
Offset in the output layer is removed through foreground
calibration as described later.
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Fig. 2: Circuit schematic of a) hidden neuron with custom tanh
activation b) output neuron with custom softmax neuron

The custom analog activation functions resemble their ideal,
mathematical counterparts, but are not exactly the same. To
ensure good matching between software ANN model and IC
measurements, we use a hardware-software co-design method-
ology in which amplifier transfer curves, and their derivatives,
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are used to train the ANN model iteratively [4]. Stochastic
gradient descent is used to optimize the ANN model by
minimizing the loss function at each epoch. Once the ANN
is fully trained, the model weights are encoded as capacitor
values in the SC-CIM. The ANN weights are quantized to 4-
b in the hidden layers, and 6-b in the output layer. Weight
quantization is done during the training iterations to minimize
effect of quantization error. A 4fF unit capacitor is used to
realize an LSB weight in the SC-CIM. The unit capacitor value
is selected to ensure capacitance mismatch does not degrade
ANN accuracy.

III. EMR MODEL

In addition to ECG signal data, we also incorporated the
patient demographics and basic co-morbidities. For demo-
graphics, we considered four data elements - age, race, gender
and ethnicity. Prior co-morbidities of the patients are coded as
International Statistical Classification of Diseases and Related
Health Problems (ICD) 10th revision. In order to maintain
standardization, we created mapping between disease names
and the nearest ICD-10 codes. The EMR data underwent a
series of pre-processing steps prior to formal analysis and
model development. Given the wide range of ICD-10 codes
(70,000 codes), we leverage the ICD-10 disease description as
string to obtained the embeddings of multiple comorbidities.
The EMR data elements were both categorical (gender, age
bins) and textual (ICD-10 code descriptions) datatype. As
the first data pre-processing step, we applied standard data
cleaning steps, including removing empty cells and special
characters. For conversion of categorical features to numerical
quantities, we use the label encoding technique that converts
each value in a column to a specific number.

The vectorization of ICD-10 code descriptions was per-
formed using term frequency- inverse document frequency
(Tf-idf) algorithm. Typically, the Tf-idf weight is composed
of two terms: the first term computes the normalized term
Frequency (TF) which is given by TF(n) = (number of times
term n appears in a document) / (total number of terms in
the document). The second term in the TF-idf weight is the
inverse document frequency (IDF) which is computed as the
logarithm of the number of documents in the corpus divided
by the number of documents where the specific term appears.
We trained the Tf-idf tokenizer using our training dataset and
obtained 965×20 dimensional vector representation of the co-
morbidities. Finally the numeric representation of the categori-
cal features and Tf-idf representation of the co-morbidities are
combined using linear concatenation. We standardized features
by removing the mean and scaling to unit variance. Centering
and scaling happen independently on each feature by comput-
ing the relevant statistics on the samples in the training set. The
mean and standard deviation values are then used on later data
(i.e, holdout test) using the same transformation function. In
order to perform a comprehensive analysis, we experimented
with multiple parametric (logistic regression, ANN) and non-
parametric machine learning models (linear support vector
machine - SVM, Random Forest). Given the static nature of

this data, temporal sepsis onset prediction is not relevant with
EMR and we only design a single-point prediction model for
distinguishing sepsis versus non-sepsis data points using only
EMR data. The optimal value of the hyper-parameters is tuned
through 10-fold cross validation on the training data. Table II
shows the accuracy of the different EMR models on the test
set. Random forest achieves the highest accuracy and is used
for fusion with predictions from sensor data.

TABLE II: Sepsis prediction results with EMR models

Linear Logistic Random ANN
SVM regression forest

Accuracy (%) 49 53 76 51

IV. MEASUREMENT RESULTS

The ANN is fabricated in 65nm CMOS process, and has
a core area of 1.67mm22 (Fig. 1(b)). The FE and DACs are
implemented off-chip. Fig. 3(a)-(b) show the measured confu-
sion matrices with on-chip ANN and after fusion respectively,
on the test-set. Offset in the amplifier in the output layer of
the ANN is calibrated by applying the training samples to the
test-chip and setting the threshold voltage, Vth, to maximize
prediction accuracy on training samples. The on-chip ANN
detects sepsis with 85% accuracy from only ECG signal
4 hours before onset, while the accuracy improves to 91%
after fusion with demographics and co-morbidity data. Linear
support vector machine (SVM) is used as meta-classifier for
fusion. Fig. 3c) shows measured accuracy versus time before
sepsis onset (tonset). Accuracy of sepsis prediction from ECG
signal increases closer to actual onset. The on-chip ANN
consumes 7.1µW/inference at 1kHz operating frequency from
1.1V supply, while the DAC consumes 3.8µW (Fig. 3d)). The
FE is digitally synthesized and consumes 2.1µW. Thus, the
complete on-chip AI circuit has an estimated energy consump-
tion of 12.9nJ/inference. The power consumption will increase
to 13.6µW if analog front-end amplifier and 14-bit ADC for
digitizing ECG signal is integrated on-chip. Fig. 4a) plots the
measured accuracy as a function of supply voltage. The ANN
accuracy reduces from 90% to 83.8% as the supply voltage
is scaled from 1.2V to 0.8V, while the accuracy after fusion
reduces from 92.5% to 88.8%. Fig. 4b) plots the measured
accuracy for 5 test-chips. The mean accuracies of the on-chip
ANN and fusion model are 86.5% and 92.2% respectively.
Each test-chip is calibrated to suppress offset in the output
layer. Fig. 4c)-d) plot the measured histogram of accuracy of
the ANN and fusion model for 500 repeated evaluations. The
low standard deviation in accuracy demonstrates relative ro-
bustness against noise. Figure 6 compares this work with state-
of-the-art works. The proposed fusion framework achieves
the highest accuracy while using single modality sensor data
source and no laboratory test results, which demonstrates the
feasibility of the proposed technique for at-home monitoring
and is a key differentiation from state-of-the-art as shown
in Table III. To the best of our knowledge, no works have
demonstrated on-chip solution for sepsis prediction. Compared
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to a fully digital baseline model synthesized in 65nm, the
proposed implementation achieves similar accuracy and almost
4.5× lower energy. The proposed classifier achieves 4x lower
energy than state-of-the-art machine learning ASICs for dif-
ferent biomedical applications as shown in Fig. 5 thanks to
analog implementation of the ANN.
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V. CONCLUSION
This work has presented a fusion AI framework for sepsis

prediction 4 hours before onset. In our future work, we will
collect multi-institutional data since data collected from a sin-
gle hospital may have bias towards training population which

TABLE III: Comparison with state-of-the-art software AI models

Model Performance Metrics Data Source
tonset (hrs) Accuracy Sensitivity Vitals Lab1 Dem.2

[5] LSTM 4 84.5% − 8 26 6
[6] Ensemble 3 82.7% 0.81 9 0 0
[7] Random forest 6 74.6% − 8 26 6
[8] Regression 6 86.4% 0.30 8 26 6
[9] Survival model 4 67% 0.85 16 30 19
[10] RNN 4 − 0.84 9 39 36
[11] Random forest 4 − 0.87 5 6 4
[12] GRU 6 99.8% 0.94 8 26 0
[13] Regression 4 61% 0.55 8 0 7
[14] LSTM 3 93% 0.94 8 0 1
[15] LSTM+CNN 3 91.5% 0.97 6 37 35

This On-chip model 4 86.5%3 0.803 1 0 4
work Fusion model 4 92.2%3 0.924 1 0 5
1includes laboratory test results and culture results; 2includes demo-
graphics and co-morbidities; 3average of 5 test-chips

Fig. 5: Comparison with state-of-the-art ML ASICs and digital
baseline

is dominated by elderly and african-american population for
this dataset. We will also perform a race, gender, ethnicity and
age based disparity analysis to understand the effect of bias
on various sub-groups.
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