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Abstract
Background.Clinicalmedicine relies heavily on the synthesis of information and data frommultiple
sources.However, often simple feature concatenation is used as a strategy for developing amultimodal
machine learningmodel in the cardiovascular domain, and thus themodels are often limited by pre-
selected features andmoderate accuracy.Method.Weproposed a two-branched joint fusionmodel for
fusing the 12-lead electrocardiogram (ECG) signal datawith clinical variables from the electronic
medical record (EMR) in an end-to-end deep learning architecture. Themodel follows the joint fusion
scheme and learns complementary information fromECG andEMR. Retrospective data from the
MayoClinicHealth Systems across four sites for patients that underwent percutaneous coronary
intervention (PCI)were obtained.Model performance was assessed by area under the receiver-
operating characteristics (AUROC) andDelong’s test.Results.Thefinal cohort included 17,356 unique
patients with amean age of 67.2±12.6 year (mean±std) and 9,163 (52.7%)weremale. The joint
fusionmodel outperformed the ECG time-domainmodel with statisticalmargin. Themodel with
clinical data obtained the highest AUROC for all-causemortality (0.91 at 6months) but the joint
fusionmodel outperformed for cardiovascular outcomes - heart failure hospitalization and ischemic
strokewith a significantmargin (Delong’s p<0.05).Conclusion.To the best of our knowledge, this is
thefirst study that developed a deep learningmodel with joint fusion architecture for the prediction of
post-PCI prognosis and outperformedmachine learningmodels developed using traditional single-
source features (clinical variables or ECG features). Adding ECGdatawith clinical variables did not
improve prediction of all-causemortality asmay be expected, but the improved performance of
related cardiac outcomes shows that the fusion of ECGgenerates additional value.

1. Introduction

Percutaneous coronary intervention (PCI) is one of themost commonly utilized therapeutic procedures for
patients with coronary artery disease (CAD) and acute coronary syndrome (ACS) (Peterson et al 2010, Alkhouli
et al 2020, Tsao et al 2022), pp. 2003–2016]. There has been an increase in overall volume, clinical acuity and
procedural complexity of PCI in the past decade (Inohara et al 2020, Kataruka et al 2020). Determining the post-
PCI outcomes has gained significant research interest, hoping to enhance the decisionmaking process and
mitigate unwanted adverse prognosis. In the past, conventional risk scoremodels have been developed to
estimate short-term and long-termprognosis post-PCI (Chen et al 2010, Peterson et al 2010,McAllister et al
2016).With the advance of artificial intelligence (AI), manyAI-based risk-predictionmodels have been
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developed for the same task, and are reported to outperform conventionalmodels (Peterson et al 2010).While
many of thesemodels achieved good performance,most of themprimarily utilized data from a single category
(Mortazavi et al 2019, Liu et al 2021), e.g., curated electronicmedical records (EMR).

The practice of contemporarymedicine relies heavily on the synthesis of information and data frommultiple
sources by clinicians; this includes imaging pixel data, vitalmeasures, structured laboratory data, unstructured
narrative data, and in some cases, audio or observational data. A deep learningmodel with a fusion architecture
can learn simultaneously complementary information fromdifferent data resources and boost overall
performance of themodel. However, only about 10%of publishedwork adopts this approach (Huang et al
2020a). Our group previously reportedmultiple fusionmodels which combinemultimodal data: the EMR-CT
image fusionmodel for the detection of pulmonary embolism (Huang et al 2020b), the EMR and ECG fusion
model for predicting sepsis (Sadasivuni et al 2022), and in every case, the fusionmodel outperformed the EMR-
onlymodel. However, existing fusionmodels in healthcare primarily apply early fusionwhere various features
coming fromdifferentmodalities are simply combined together which results in a very sparse high dimensional
feature representation and thus, often pre-selection of clinical variables becomes necessary for training
feasibility. For example, in the field of cardiovascularmedicine, Hedeweg et al (Heldeweg et al 2016) designed a
simplemultivariable logistic regressionmodel for 30 daymajor adverse cardiovascular event (MACE) prediction
using an early fusion of variables computed from12-lead ECG, vital and demographic data and achieved
moderate accuracy using pre-feature selection. Similar techniques are also adopted by others (RungeChen et al
2017,Mezzatesta et al 2019) for the prediction of various cardiac outcomes. A potential weakness of this
approach is that early fusion assumes that themodalities arewell aligned and describe similar semantics.
Electrocardiograms (ECG) have been used as the first-line diagnostic tool for ACS (Amsterdam et al 2014), and
are known to contain important prognostic information by stratifying acuity and suggesting vessels involved
(Hersi 2003, Stebbins et al 2010). Existingmodels primarily compute a limited set of time/frequency domain
features from the ECGdata to be incorporatedwith EMR,which is also susceptible to noise and variations.
However, to the best of our knowledge, amodel that directly incorporates the full ECG signal data with the EMR
is not established yet for detecting post-PCI prognosis. In this context, we propose an end-to-end deep learning
model with a joint-fusion architecture that incorporates EMR and ECG signal to predict different endpoints in
patients post PCI. Joint fusion is implementedwith neural networks due to their ability to propagate loss from
the predictionmodel directly to the feature extraction layers and optimize the co-learning betweenmodalities.
We hypothesize that the joint fusionmodel which directly reads the 12-lead ECGdata and EMR can outperform
the individualmodels based on a single data source in predicting different post PCI adverse endpoints.

2.Methods

2.1. Patient population
Retrospective data from theMayoHealthClinic Systems across four sites (LaCrosse,WI;Mankato,MN;
Rochester,MN; Scottsdale, AZ) for patients that underwent percutaneous coronary intervention between
January 2006 andDecember 2018were obtained. Patients whowere lost to follow-up after PCIwere excluded.
The studywas approved by theMayo Institutional ReviewBoard (IRB). A total of 21,872 patients that underwent
percutaneous coronary intervention (PCI) between January 2006 andDecember 2018were initially identified.
After excluding the patients without follow-up at our institution, thefinal cohort included 17,356 unique
patients. Themean age of the cohort was 67.2±12.6 year (mean±std) and 9,163 (52.7%)weremale. Table 1
summarizes patient characteristics.

2.2. Clinical variables
A total of 157 baseline demographic features after one-hot encoding of 60 variables are utilized in thismodel and
recorded from the institutional registry (see supplemental table 1).We collected the pastmedical history
(myocardial infarction (MI), coronary artery bypass graft (CABG), chronic kidney disease, number of tumors,
long axis length of largest tumor), clinical procedural information, and inpatient and outpatientmedication
usage. These features were hand-curated by the physicians. Therewas only<5%missing data overall andwe
coded themissing data as−1.We converted the variables into categories and afterward represented them as one-
hot encoding. These records are collected utilizing International Classification ofDisease (ICD9/10) structured
diagnosis code, andCurrent Procedural Terminology (CPT) codes from the standard clinical database. Clinical
endpoints include heart failure hospitalization (HFH), ischemic stroke, and all-causemortality at 6-months
after the index PCI procedure.
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2.3. ECGdata processing
12-lead standard 10 s ECG strips are recorded from the targeted patients in the clinic before the PCI (figure 1(a)).
The ECGdata are collected as standard images with a standard grid and do not contain any personal information
about the patient. A standard 12-lead ECGdisplays signals in 6 rows. The top 3 rows contain the individual lead
signal (I, II, III, aVR, aVF, aVL, andV1-V6), each span 2.5 s. The bottom3 rows are full ‘rhythm strip’ of
arbitrary leads, spanning thewhole 10 s of the ECG(Supplemental table 2).We developed a pythonmodule to
extract the 12-lead ECG signals into a 6-channel array, corresponding to the 6 rows (figure 1(b)) to directly feed

Figure 1. Standard ECGdata processing pipeline. (a) 12 lead ECG strip images; (b) reconstructed 6 channel signal data.

Table 1.Distribution of patient cohort included in this study and breakdown into train and test sets.

Characteristics Subtypes Total cohort Train set Test set

Age 67.2±12.6 Years 68.1±12.3 Years 66.2±12.8 Years
Gender Male 9163 (70.13%) 4832 (70.32%) 4331 (69.93%)

Female 3901 (29.86%) 2039 (29.67%) 1862 (30.06%)
Smoker 2529 (19.35%) 1164 (16.94%) 1365 (22.04%)
Family history of CAD 2654 (20.31%) 1313 (19.11%) 1341 (21.65%)
Comorbidities Diabetes 3717 (28.45%) 1942 (28.26%) 1775 (26.66%)

Hypertension 10039 (76.84%) 5278 (76.81%) 4761 (76.88%)
Chronic KidneyDisease

Mild 2135 (16.34%) 1160 (16.88%) 975 (15.74%)
Moderate 916 (7.01%) 515 (7.49%) 401 (6.47%)
Severe 793 (6.07%) 395 (5.75%) 398 (6.43%)

Any cancer 1672 (12.8%) 972 (14.15%) 700 (11.30%)
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into the deep learningmodels.Wemanually evaluated 100 random samples to validate the data loss which
is<1%.

2.4. Joint fusionmodelling using 12 leads ECGand clinical data
Weproposed a two-branched deep learningmodel for fusing the 12 lead standard 10 s ECG strips with the
clinical variables (seefigure 1). Themodel follows the joint fusion scheme and learns an end-to-end
representation of fusion. In other words, the proposed joint fusion (or intermediate fusion)model joins learned
feature representations from intermediate layers of neural networks with features fromothermodalities as input
to afinalmodel and thus, optimizing themultimodal learning. Supplemental table 2 shows the correspondence
between the 12 ECG leads and the 6 channels.

We designed a joint fusion architecture where both the ECGdata aswell as the EMRdata can be parsed
simultaneously. For processing, two separate branches were created i.e. one branch focusing on extracting
features frommultiple channel ECGdata and the other, on the EMRdata (see figure 2 for the architecture). The
ECGwas fed in the formof six separate channels of time-series data to fetch themaximum information. For
extraction of relevant features from these six leads, 5 stacked convolutional blocks were used, each block placed
consecutively. Each of these blocks contained a convolutional 1D layer, followed by a batch normalization layer
and aRectified LinearUnit (ReLU) activation layer respectively. After passing the initial ECGdata through these
layers, the results were then downsampled using aMaxpooling1D layer. This downsampled informationwas
then connected to a dense layer containing 256 neurons followed by a dropout layer having a dropout ratio of
0.25 and a batch-normalization layer, which normalized results coming from the 256 neurons. Finally, before
merging the ECGbranch, with the branch focusing on EMRdata, the results coming from the previous layer
were passed through a dense layer containing 16 neurons, followed by a dropout layer having a dropout ratio of
0.25. The result coming from thefinal dense layer was then stackedwith the results coming from the branch

Figure 2.Block diagramof the proposed ECG and EMR joint fusionmodels. 1D convolutional blocks are used to process the ECG
data and stacked layerswith non-linear activation are used to process the EMR.

Table 2.Comparative performance of two baseline and fusionmodels.Bold represents optimal performance.

Outcome Model Precision Recall f1-score

Mortality 6months ECGonly (time domain) 0.90 [0.89–0.90] 0.60 [0.59–0.60] 0.70 [0.70–0.71]
EMRonly 0.92 [0.91–0.94] 0.80[0.79–0.80] 0.84 [0.84–0.85]
Fusionmodel 0.94 [0.93–0.94] 0.83[0.82–0.83] 0.87 [0.86–0.87]

Stroke 6months ECGonly (time domain) 0.99 [0.99–0.99] 0.41[0.40–0.41] 0.58 [0.57–0.58]
EMRonly 0.99[0.98–0.99] 0.83[0.83–0.84] 0.90 [0.90–0.91]
Fusionmodel 0.99 [0.99–0.99] 0.84[0.83–0.84] 0.91 [0.90–0.91]

Heart failure 6months ECGonly (time domain) 0.99 [0.98–0.99] 0.52 [0.51–0.52] 0.68 [0.67–0.68]
EMRonly 0.96 [0.95–0.96] 0.67[0.66–0.67] 0.78 [0.77–0.77]
Fusionmodel 0.96 [0.96–0.97] 0.77[0.76–0.77] 0.85 [0.84–0.85]
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containing information on the ECGdata. After these two branches weremerged, it passed through a dense layer
having 256 neurons and a dropout layer respectively. The number of neurons and layers in the fusionmodel are
selected empirically by observing the validation loss. The results from the dropout layer were connected to a
single neuronwhichwas responsible for giving a binary output.

2.5. Training strategy
One of the biggest challenges in the target taskwas the imbalanced dataset. Thus instead of the commonbinary
cross-entropy loss function, the focal loss was usedwhich applies amodulating term to the cross-entropy loss in
order to focus learning on hardmisclassified examples. In otherwords, it is a dynamically scaled cross-entropy
loss, where the scaling factor decays to zero as confidence in the correct class increases. This strategywas applied
to ensure that themodel didn’t get biased toward the negative samples whichwere present in huge proportions
concerning the positive samples. The optimizer was chosen to be theAdamoptimizer, having a learning rate of
1e-4, whichwas set after tuning the hyperparameter. Trainingwas done by randomly splitting the training data
into 60:20:20, train: validation: test split, and the performancewasmeasured using a threshold agnosticmetric,
the ROC-AUC score. Validation loss wasmonitored throughout thewhole training process and the early
stopping criteria were designed to track validation loss; if no significant change in validation loss was observed
for the 10 consecutive epochs, trainingwas stopped.

2.5.1. Baseline 1. A predictivemodel using time-domain analysis of 12 leads ECG
Thefirst baseline thatwe evaluatedwas themodel developed using ECG time-domain features which is a
popular way of extracting information from the ECGwaveformswith low computational complexity
(Chouvarda et al 2019). The ECG signal is normalized between [−1,1] before feature extraction and to remove
baselinewander, we calculated themedian value of the ECG signal window and subtracted it from all the
samples in thatwindow. For feature extraction, we consider only time-domain features based onfirst-order
statistics of R-R peaks.We extract 14 time-domain features on ECG segments usingMatlab and the extracted
features aremeasures of central tendency, dispersion, the shape of the distribution of awindow, R-R peaks, R-R
intervals, the variance betweenRpeaks, and average heart rate. The R peaks are identified in the time domain
through thresholding. The threshold for peak detection is set to 30%of the difference between themaximum
andminimumvalues for each segment. The extracted 14 time-domain features are used to train AImodels for
the prediction of various conditions. Considering computational efficiency, the 12-lead signals were combined
into 6 channels, as summarized in Supplemental table 2. AImodels are trained on each ECG channel and the
prediction scores from eachAImodel are combined using ameta-classifier that gives the final prediction result
through late fusion as shown in figure 3. A 2-layer ANNwith 10 hidden neurons, tanh activation in the hidden
layer, and softmax activation in the output layer is trained on each ECG channel and also used as themeta-
classifier. Table 2 summarizes the precision, recall, and F1 score with a 95% confidence interval for the
prediction of all-causemortality, ischemic stroke, and heart failure at 6months before the event.

Figure 3. Late fusionmodel for prediction fromECG signal using time-domain features. Time-domain features are extracted from
each ECGchannel, and 6ANNs are used for prediction using features from each ECGchannel. The prediction scores from each of the
6ANNs are sent to another ANNmeta-classifier for fusion and final prediction.
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2.5.2. Baseline 2. a predictivemodel using EMRbranch deep learningmodel
To generate a strong baseline for clinical variables, we drop the ECGbranch from the joint fusionmodel and use
it only on the EMRbranch. The EMRmodel was trained using only stacked dense layers since the variables are
already coded into categorical space. The features were passed into a dense layer containing 157 neurons and a
dropout layer having a dropout ratio of 0.25 simultaneously. The dense blockwas again repeated before passing
the results coming from this layer to afinal dense layer having 128 neuronswhichwere then connected to a
dropout layer.We used the same sigmoid activation and focal loss with early stopping to train themodel.

3. Results

3.1.Model performance
Figure 4 shows quantitative performance of themodels in terms of the area under the receiver operating
characteristic curves (AUROC). EachROC represents a unique outcome assessed on the same test set. In order
to interpret the importance of different data sources, we evaluated two baselines:ECGonly- thismodel only
considers time domain ECG features and EMRonly - thismodel only considers categorical EMR features. Time-
domain ECGmodel (ECGonly) obtained lowAUROC for all-causemortality and heart failure at 6months (0.6
and 0.62, respectively). However, the ECGmodel obtainedmoderate AUROC for stroke prediction for 6
months (0.72). The EMR-onlymodel obtained the highest AUROC for all-causemortality 0.91 for 6months.
However, the joint fusionmodel outperformed the EMR-onlymodel for heart failure and stroke by a significant
margin (Delong’s p<0.05) -+0.1 improvement in heart failure and+0.11 improvement in stroke for 6
months prediction.

Operating points were individually selected from the ROCs based on the optimal tradeoff between true
positive (high) and false positive (low) rate and corresponding precision, recall, and f1-score are reported in
table 2. Confidence intervals (95%)were calculated based on 100 bootstrapping on the hold-out test set. It can be
observed that adding ECGdata in the fusionmodel consistently improves (>0.1) the recall for both stroke and
heart failure predictions, and provides amodel with a higher true positive ratewhilemaintaining similar low
false-positive rates. For deployment in clinical use, it is crucial tomaintain a higher trade-off between true
positive and false-positive rates for the targeted prediction task.

3.2. Ablation study
Given the fact that the EMR-onlymodel provides similar performance in terms of precision, we performed a
detailed ablation study to understand the importance of EMR features andmulti-channel ECG for each targeted
end-points, and hownoisy data from each branchmay impact the performance of the fusionmodel.We
designed two parallel ablation studies and compared the performance:

(i) Randomized the top clinical variable identified by the Local interpretable model-agnostic explanations (Lime).
In Lime, surrogatemodels are trained to approximate the predictions of the underlying black-boxmodel to
provide an explanation. Lime identified prior stroke as themost important feature for the EMR-onlymodel
prediction (figure 5(a)).We randomized the feature between (0,1) and used the trained fusionmodel to
predict on the same test set with randomized data.

(ii)Randomized a single channel of the ECG data where we selected a channel of the ECG and randomly
manipulated the valueswithin a certain range. Themanipulated signals are shown infigures 5(b) and (c).We
used the trained fusionmodel to predict on the same test set with randomized ECGdata.

Figure 6 presents the outcome of the ablation study in terms of AUROC for all the 6 targeted outcomes.
Interestingly, even though the EMR-onlymodel produced a comparable performancewith the fusionmodel,
the performance drop of the fusionmodel was not the highest when randomizing the top EMR feature - prior
stroke. The highest performance dropwas observedwhen the channel 4were ablatedwith randomvalues—
particularly for stroke and heart failure.

4.Discussion of results

In this retrospective study, we developed a joint fusion network architecture that directly reads the ECG signal
and EMRdata and learns an optimized feature space. Themodel outperformed the existingmodels in predicting
clinical endpoints at 6months in post-PCI patients. The core contributions of this work are – (1) designing an
end-to-end joint fusion architecture for integrating 12 lead ECGwaveformwith high dimensional clinical data;
(2) demonstrating the importance of ECGwaveformover EMR for predicting cardiac outcomes. To the best of
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our knowledge, this is the first study that developed a deep learningmodel with fusion architecture for the
prediction of post-PCI prognosis.We observed that different data sources contain different weights of
information for themodel to predict prognosis. For all-causemortality, the EMR-onlymodel had the best
performance compared to the ECG-only and the fusionmodel. It is reasonable that the EMRdata containsmore
relevant information for different causes ofmortality, while the ECG information could bemore cardiac-
specific. Additionally, through the ablation study, we demonstrated that our fusionmodel is capable of
compensating for noise or information loss in bothmodalities.While prior stroke is known to be themore
important variable for all-causemortality and heart failure, altering the input of prior stroke did not lead to a
significant drop in the overallmodel performance.

Table 3 summarizes themodeling strategy and performance of our fusionmodel with state-of-the-art AI
models that aim to predict different CVD endpoints.Multiple works use a combination of vitals, EHR, and lab

Figure 4.ReceiverOperating characteristic curves (ROC) - legends show the area under the ROC. Panel (a) showed the prediction
results using the time domain ECG, and Panel (b) showed the prediction results using the EMRmodel. Panel (c) showed the prediction
results using the fusionmodel. Brown line: all-causemortality, green line: heart failure hospitalization, black line: ischemic stroke.
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test results for the prediction of different cardiovascular endpoints. Previouswork (Heldeweg et al 2016)
predicted thirty-dayMACE as the primary endpoint withAUROCof 0.78 and uses 10 clinical variables - age,
gender, heart rate, 3 heart-rate variability parameters (average R-R interval, triangular interpolation ofN-N
intervals, and high-frequency power) and four 12-lead ECGvariables (ST elevation, ST depression, Qwave, and
QTprolongation). Other prior work (Siontis et al 2021) used only a 12-lead ECG and fusionCNNmodel to
develop a point-of-care application for the prediction of at least one ECG showingAFibwithin 31 days after the
sinus-rhythmECG is classified as positive for AFibwith anAUROCof 0.87. Another study (RungeChen et al
2017)predicted the risk of coronary heart disease in patients with hypertensionwithin 3 years after the first
follow-up using EHRand ECGas clinical variables in a logistic regressionmodel. Others (An et al 2021) have
utilized a novel attention-based RNNmodel to predict the onset of cardiovascular diseases fromhigh-
dimensional EHRdatawith anAUROCof 0.77. Additionally, the risk of ischemic heart disease in patients on
dialysis has been predicted over a time frame of 2.5 years using an SVMmodel with EHRpredictors that result in
anAUROCof 0.74 (Mezzatesta et al 2019). Compared to these previousmodels, ourwork achieves the highest
performancemetrics for predicting challenging long-termCVDoutcomes (AUROC/precision/recall) using the
fusion of EHR and ECGdata. To the best of our knowledge, this is the first study to directly integrate the raw
ECGwaveform andEMRdata in a single end-to-end deep learningmodel. Such a fusionmodelmay have

Figure 5.Visual explanation of the ablation study: (a) shows the local interpretablemodel-agnostic explanations (LIME) explanation
of the electronicmedical records (EMR) onlymodel; (b) and (c) shows the ablation of the ECGdata.
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significant clinical impact, as itmay identify patients at higher risk of adverse clinical events post PCI, whomay
benefit from closer clinical surveillance and potentiallymore aggressivemedical therapies to help improve their
prognosis.

Limitations

All-causemortality was used as the endpoint instead of cardiovascularmortality, as part of ourmortality data
was based on the social security death index. Furthermore, the cardiovascularmortality endpoint has been
considered less reliable in retrospective studies (Lauer et al 1999). Coronary artery anatomical information
(SYNTAX score)was not incorporated in thismodel, which is known to have an effect on procedural
complications and clinical outcomes. Given the complexmultimodal andmultidimensional (1D temporal data

Figure 6.Ablation study results in terms of AUROC. Themodel performance: heart failure hospitalization,mortality, and Stroke at 6
months.
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and tabular data)nature of the study, none of the standardXAI approaches (such as LIME, SHAP) can be used
formodel interpretation. Thus, to evaluate the importance of themultimodal design, we performed a standard
ablation studywhich targets to understand the contribution of the data components by ablating its value and
recording themodel performance. Our primary objective for this analysis was to show that even if the EMR-only
model provides comparative performance to the fusionmodel, thefinal fusionmodel is able to retain the
performance by consolidatingmultimodal datawithout considering the topweighted EMR features.

Ethical statement

Retrospective data from theMayoHealthClinic Systems across four sites (LaCrosse,WI;Mankato,MN;
Rochester,MN; Scottsdale, AZ) for patients that underwent percutaneous coronary intervention between
January 2006 andDecember 2018were obtained. The studywas approved by theMayo Institutional Review
Board (IRB). Allmethodswere carried out in accordance with relevant guidelines and regulations (Declaration
ofHelsinki). The study is exempt frompatient consent, the IRB approval number is 19-004469.
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