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Abstract—Cardiovascular diseases (CVDs) are a leading cause
of death in USA and globally, but many people suffering from
CVDs are asymptomatic in the early stages leading to reduced
awareness, and less chances of managing the disease. This work
presents a potential solution for at-home monitoring by leverag-
ing predictive power of artificial intelligence (AI) for developing
a fusion framework that combines patient electrocardiogram
(ECG) and electronic medical record (EMR) for predicting
risk of CVDs at an early stage. To improve energy-efficiency
of wearable ECG sensor, in-sensor analog reservoir-computing
is proposed that precludes need for front-end digitization and
transmission of raw sensor data. The fusion framework predicts
ischemic heart disease (I20-I25 ICD codes) with area under the
receiver operating characteristic (AUROC) of 0.91, and other
heart diseases (130-I52 ICD codes) with AUROC of 0.95 which
is better than state-of-the-art while not requiring laboratory test
results.

Index Terms—cardiovascular disease, artificial intelligence,
in-memory computing, data fusion, artificial neural network,
reservoir-computer

I. INTRODUCTION

Ambulatory monitoring is becoming increasingly important
for medical specialties, and particularly cardiovascular care,
but continuous monitoring is difficult at patient home since
current CVD risk prediction models generally require labo-
ratory test results. Automating CVD risk prediction at patient
home reduces burden on healthcare system and can potentially
improve patient outcomes. We propose an AI framework
that uses only ECG and EMR data, and can be used by
clinically untrained users to self-monitor risk of CVDs. As
shown in Fig. 1, the proposed framework has the following
components – a. wearable sensor for collecting patient ECG
data continuously over long periods of time b. AI models that
predict CVD risk from ECG and EMR c. a meta-classifier
that performs fusion of prediction scores from ECG and EMR
models to provide accurate, personalized inference for each
user. The proposed framework is simple, non-invasive and
requires only a wearable sensor and a smart-phone for data
collection and natively running AI models while ensuring
security of patient data.

To improve energy efficiency of wearable sensor, we pro-
pose in-sensor AI model for analyzing ECG signal (ECG
model) that significantly reduces transmission volume by
transmitting only prediction scores for each segment than raw
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Fig. 1: Overview of the proposed AI framework for fusion of
sensor and EMR data for CVD risk prediction

data. Reducing transmission energy is critical for wearables
with small energy budget since wireless transmission is typi-
cally the largest consumer of energy. However, integrating AI
classifier into a resource constrained wearable is challenging
since AI algorithms can be computationally intensive. The
majority of attempts [1]–[5] to reduce energy consumption
of AI circuits use a) in-memory/near-memory computing
b) reduced precision computations to reduce communication
costs of movement of input activations (IAs)/output activa-
tions (OAs)/weights between memory and compute units.
With reduced transmission energy and optimized AI com-
putations, front-end analog-to-digital conversion (ADC) and
digital feature extraction becomes a major energy bottleneck
for bio-medical sensors. Digitization of ECG signals before
AI computations is particularly energy-inefficient since ECG
signal is sparse and only carries meaningful information in
small portions of the entire segment - the QRS complex, and
P and T waves (see Fig. 1). To address energy bottleneck
due to front-end digitization, we propose an analog signal
processing reservoir-computing neural network (RC-NN) that
directly processes analog ECG samples. For 6 second ECG
segments sampled at 1kHz, the proposed technique can reduce
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TABLE I: Demographic distribution of the cohort used

energy consumption by 155× compared to naively transmit-
ting all digitized ECG samples. The energy consumption of
the proposed RC-NN is based on prior prototypes fabricated
by our group [6], [7]. The rest of this paper is organized as
follows: Section II introduces the dataset and the AI models
used for CVD prediction, Section III presents the CVD risk
prediction results with the proposed fusion AI framework, and
Section IV brings up the conclusion.

II. FUSION AI FRAMEWORK

A. Dataset

Dataset of de-identified CVDs was obtained from Emory
University Hospital (EUH) with the approval from Emory
Institutional Review Board (IRB) for our informatics study.
The cohort consists of 1527 patients admitted to the Intensive
Care Units (ICUs) within the Emory Healthcare system in
Atlanta, Georgia from 2001 to 2019, and consists of patients
with ischemic heart diseases (I20-I25 ICD codes), patients
with other heart diseases (I30-I52 ICD codes) and the rest
without CVDs. Table I presents the overall patient demograph-
ics used in this work. The cohort is partitioned into 1222
training samples and 305 test samples randomly. The proposed
AI framework analyzes 6s ECG segments and predicts CVD
at 6 months, 1 year and 2 years before event.

B. Reservoir-computing neural network

Fig. 2: Schematic of the reservoir-computing neural network
used for prediction from ECG

Fig. 2 shows schematic of the RC-NN used for in-sensor
analysis of ECG signal. Reservoir-computing (RC) is a well-
known computing paradigm that uses static nonlinearity to
project the input signal to high-dimensional space, thus al-
lowing easier separation of different input classes. No train-
ing is performed in the input or reservoir layers, and the
weights are drawn from random distribution. While reservoir

computing was invented almost two decades earlier [8] and
has been extensively used in the machine-learning literature,
hardware implementation of reservoir computing have been
mostly on optics/photonics platform [9], [10], with few analog
implementations [11]–[14]. In contrast to prior analog RC,
the RC-NN in this work is based on the architecture in our
prior work [6] and does not require large capacitors to realize
biological time-constants which is energy-inefficient, and does
not require background calibration for analog delay elements
or nonlinearity element. A 3-layer artificial neural network
(ANN) is used as read-out layer for the RC-NN and performs
classification on the states of neurons in the reservoir layer.

Output of the RC with N reservoir neurons can be mathe-
matically expressed as

~Rk[n] = h
(
Gi

~W × ~X[n] +Gf
~Wr × ~Rk[n− 1]

)
(1)

where ~X is analog ECG input with D samples, ~W is N ×D
input weight matrix, ~W (D >> N ), ~Wr is N × N inter-
connection weight matrix for the reservoir layer, H(·) is
nonlinear activation for RC, Gi is input scaling factor and
Gf is feedback gain. As in [6], identity matrix is used for ~Wr

which simplifies the hardware implementation. The restriction
on ~Wr is consistent with [15] which has shown through sys-
tematic investigation that a simple reservoir architecture with
sparse interconnections provides comparable accuracy as more
complicated reservoir architectures. The RC-NN architecture
is optimized on the prediction of ischemic heart diseases 6
months before the event through 10-fold cross-validation on
the training data. Table II shows mean and standard deviation
of F1 score on the diseases class for different values of Gi,
Gf and N . Gi = 0.7, Gf = 0.1 and N = 40 are selected
corresponding to the highest mean F1 score. Fig. 4 shows
the results of optimization of the 3-layer ANN architecture
by plotting the mean F1 score as a function of [number of
neurons in the first hidden layer, number of neurons in the
second hidden layer]. Based on the optimization results, the
number of neurons in the first and second hidden layers are
set to 20 and 6 respectively.

TABLE II: Parameter optimization for reservoir layer
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Fig. 3: Optimization of the ANN architecture
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Fig. 4: AUROC plots for (a) 6 months (b) 1 year (c) 2
years before ischemic heart diseases (I20-I25) event; and (d)
6 months (e) 1 year (f) 2 years before other heart diseases
(I30-I52) event

TABLE III: CVD prediction results with EMR models

TABLE IV: CVD prediction performance

C. EMR model

The EMR model uses 4 categorical (gender, age, race,
ethnicity) and 3 textual data-types (reason for admission, diag-
nosis, admit order) for CVD risk prediction. As the first data
pre-processing step, we applied standard data cleaning steps
including removing empty cells and special characters. For
conversion of categorical data to numerical features, we used
label encoding technique. The vectorization of textual data was
performed using term frequency-inverse document frequency
(Tf-idf) algorithm. Typically, the Tf-idf weight is composed
of two terms: the first term computes the normalized term
Frequency (TF) which is given by TF(n) = (number of times
term n appears in a document) / (total number of terms in the
document). The second term in the TF-idf weight is the inverse
document frequency which is computed as the logarithm of the
number of documents in the corpus divided by the number of
documents where the specific term appears. We trained the Tf-
idf tokenizer using our training dataset. Finally, the numeric
representation of the categorical data and Tf-idf representation
of textual data are combined using linear concatenation. We
standardized features by removing the mean and scaling to unit
variance. Centering and scaling are performed independently
on each feature by computing the relevant statistics on samples
in the training set. The mean and standard deviation values are
then used on holdout test data using the same transformation
function. Given the static nature of EMR, we designed a
single-point prediction model for distinguishing CVD versus
non-CVD cases, and tried parametric (logistic regression) and
non-parametric machine learning models (linear support vector
machine - SVM, Random Forest). Hyper-parameter tuning is
done through 10-fold cross validation on the training data.
Table III shows the accuracy of different EMR models on the
test set. Linear SVM achieves the highest accuracy and is used
for fusion with predictions from sensor data.
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TABLE V: Comparison with state-of-the-art CVD prediction works

Data source Model Time-to-event F1 score AUC Vitals Lab tests Demographics
[16] New Zealand primary care cohort Cox 2 years − 0.73 2 4 3
[17] Fuwai hospital Random forest 3 years 0.56 0.79 2 9 1
[18] Korean national health sample cohort DNN 2 years 0.12 0.78 7 16 2
[19] Shenzhen medical data Logistic regression 3 years − 0.84 2 6 3
[20] ADVANCE cohort Cox 4 years − 0.7 5 18 4
[21] Cardiff diabetes database Cox 4 years − 0.67 2 3 1

This work Emory University hospital Fusion 2 years 0.93 0.91/0.95 1 0 7

III. CVD PREDICTION RESULTS

A 2-layer ANN with 7 hidden neurons is used as the
meta learner that combines prediction scores from the ECG
and EMR model for the final CVD risk prediction. Table IV
summarizes performance of the ECG, EMR and fusion mod-
els. Fusion of ECG and EMR improves F1, specificity and
sensitivity compared to ECG and EMR models by themselves.
Fig. 4 shows the AUROC plots for prediction of CVD events at
different time-points. Table V compares this work with state-
of-the-art CVD prediction works. The proposed technique
achieves the highest F1 score and AUC without requiring
laboratory tests and using a single physiological signal which
is a prime enabler of the proposed solution for at-home
monitoring and is the key differentiation from existing works.

IV. CONCLUSION

This work has demonstrated a late fusion AI framework for
continuously monitoring user health at-home and predicting
CVD risk at least two years before CVD event. The proposed
work can potentially transform management of patients with
CVDs and improve outcomes.
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