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Abstract—This paper presents an on-chip analog machine
learning (ML) classifier IC for detecting atrial fibrillation (AFib)
and sepsis from electrocardiogram (ECG) signal. The proposed
technique allows continuous in-situ health surveillance using
wearables with embedded AI for early detection of underlying
health issues. The analog classifier uses custom activation func-
tion and performs in-memory computation (IMC) with switched-
capacitor circuits for reduced data movement. Designed in 65nm,
the test chip achieves average accuracy of 98.2% for AFib
detection, and 90.7% for predicting sepsis 4 hours before onset.
The energy efficiency of the test-chip is 12.9nJ/classification which
is 4× better than state-of-the-art.

Index Terms—Machine learning, atrial fibrillation, sepsis,
mixed-signal classifier and in-memory computation

I. INTRODUCTION

Atrial fibrillation (AFib) results in more than 150,000 un-

derlying cause of deaths in the USA annually. However, most

AFib patients are asymptomatic, leading to reduced awareness

and less chances of managing stroke risks. Sepsis is another

significant cause of death in the USA with close to 40%

mortality rate after onset and with 80% of the patients having

onset outside hospital. Abnormalities in electrocardiogram

(ECG) signal of patients can be used as an early indicator for

both AFib and sepsis onset. Continuous health surveillance

using wearables with built-in artificial intelligence (AI) is a

potential solution for risk management while securing patient

data privacy. However, AI analysis is typically computationally

intensive and it is difficult to embed AI model within resource

constrained wearables. Approaches to reduce energy con-

sumption for AI analysis involve low-precision computation

and in-memory computation (IMC) to reduce data movement.

State-of-the-art mixed-signal AI circuits have typically only

demonstrated on-chip vector matrix multiplication (VMM) or

the first hidden/convolutional layer, with rest of the AI model

implemented in software [1], [2].

This work presents a mixed-signal, multi-task learning

(MTL) classifier for detecting AFib and sepsis from temporal

ECG signal (Fig. 1(a)), with the 3-layer artificial neural

network (ANN) classifier implemented on-chip. The MTL

ANN model gives high accuracy for both AFib and sepsis

prediction tasks, since both tasks are fundamentally identi-

fying abnormalities in ECG signal. The key contributions of

this work are - 1) demonstration of fully integrated analog

MTL ANN with switched-capacitor IMC, 2) custom activation

functions that leverage intrinsic analog nonlinearity, and 3) an

error-aware AI training methodology that trains the ANN with

circuit models to ensure good match between software model

and ANN circuit. Compared to SRAM based IMC, switched-

capacitor IMC has better linearity for VMMs (see Fig. 1(b)).

Linearity of VMM using SRAM cells is fundamentally limited

by nonlinear relationship between discharge current (Ids) and

voltage on BL/BLB, and the VMM results are not linear over

the full dynamic range [1]. In addition, matching capacitors is

easier than matching transistors and Ids across large SRAM

array. The proposed classifier is demonstrated on single lead

ECG data from Physionet 2017 dataset and on data from a

patient cohort admitted to Emory University Hospital (EUH)

between 2014 to 2018.
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Fig. 1: a) Multi-task learning ANN for atrial fibrillation and

sepsis prediction from ECG signal, b) comparison of IMC with

SRAM vs switched-capacitor

II. MULTI-TASK LEARNING ANN TRAINING

A. Description of dataset

The 2017 PhysioNet dataset comprises of ECG recordings

lasting from 9 seconds to over 60 seconds. The ECG record-

ings are sampled at 300Hz, and contain normal sinus rhythm,
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AFib and noisy data of 5971 patients. The sepsis dataset is

obtained from EUH with approval from Emory Institutional

Review Board,. The cohort consisted of 800 patients admitted

to the ICUs at two hospitals within the Emory Healthcare

system from 2014 to 2018. For each patient, there is at least

8 hours of ECG signal recordings, sampled at 300Hz, from

the time of admission in the ICU. 400 patients in the cohort

had sepsis, with onset time assigned using Sepsis-3 criterion.

The goal of this work is to detect sepsis 4 hours before onset

to allow adequate time for the 3-hour recommended sepsis

treatments that have been shown to significantly improve

sepsis outcomes [3].

B. Feature extraction

The input features are calculated on 30 second windows

of the ECG signal, and only time-domain features are used

for low-cost hardware implementation. The time-domain fea-

tures are calculated from first-order statistical measures of

shape, dispersion, location and distribution of R peaks, QRS

complexes, PR intervals, ST intervals, QT intervals, and NN

intervals (see Fig. 1) in the single-lead ECG signal, and

involves calculation of standard deviation, mean, median and

maximum/minimum values. 63 time-domain features are used

for AFib detection, while a subset of 14 features, computed

on NN intervals and R peaks, are used for sepsis prediction.

The feature extractor (FE) removes baseline wander from ECG

signal by subtracting the median value from each segment.

C. ANN model training and circuit design

A three-layer MTL ANN is trained for detecting AFib and

predicting sepsis onset. The first two hidden layers have 20

and 6 neurons respectively, and use a custom tanh activa-

tion function, while the output layer uses custom softmax

activation. The result of softmax activation at the output

neuron is compared with threshold voltages for classification

into ‘normal/AFib/noisy’ and ‘sepsis/non-sepsis’ categories

as shown in Fig. 1. The threshold voltages for the two

prediction tasks are calculated during the ANN training phase

to optimize loss function for each task. Fig. 2 shows cir-

cuit schematic of neurons in the hidden and output layers.

Switched-capacitor circuits are used to perform in-memory,

charge-domain multiply-and-accumulate (MAC) operations.

Bottom-plate sampling technique is used to suppress charge

injection.

The custom activation functions are realized using common-

source differential amplifiers as shown in Fig. 2. The custom

tanh activation circuit uses fully differential common-source

amplifier with output offset cancellation as shown in Fig. 2(a).

During sampling phase, φs, the differential inputs of the

amplifier are shorted together, and the offset is stored in the

capacitor, Coff , which is subtracted from the amplifier output

during evaluation phase. The custom softmax activation circuit

uses a common-source differential amplifier with single ended

output as shown in Fig. 2(b).

To ensure that software training results with custom activa-

tion functions match IC measurements, we apply a hardware-

φs

Coff

Coff

-1 0 1

Vin (V)

-1

-0.5

0

0.5

1

f(
V

in
) 

(V
)

output offset

cancellation

custom tanh

Vom
Vop

MAC

Vo

C[1] C[2] C[n]

C[1] C[2] C[n]

Xm[1] Xm[2]

ϕs ϕsb

Xm[n]

ϕs ϕsb

Vcm

Vcm

ϕs ϕsb

Xp[1] Xp[2]

ϕs ϕsb

Xp[n]

ϕs ϕsb

Vcm

Vcm

ϕs ϕsb

ϕse

ϕse

C[1] C[2] C[n]

C[1] C[2] C[n]

Xm[1] Xm[2]

ϕs ϕsb

Xm[n]

ϕs ϕsb

Vcm

Vcm

ϕs ϕsb

Xp[1] Xp[2]

ϕs ϕsb

Xp[n]

ϕs ϕsb

Vcm

Vcm

ϕs ϕsb

custom softmax

(a)

(b)

ϕse

ϕse

Fig. 2: Circuit schematic of a) hidden neuron with custom tanh

activation b) output neuron with custom softmax neuron

software co-design methodology [4]. The amplifier transfer

curve and its derivative are imported into the ANN training in

Matlab which starts with random weights. Stochastic gradient

descent function is used to optimize the ANN weights at each

epoch by minimizing the loss function. Once the ANN is fully

trained, the weights are encoded as capacitor values in the

MAC circuits. The ANN weights are quantized to 4-bit in

the hidden layers, and 6-bit in the output layer. The weight

quantization is done during the training iterations to preserve

accuracy during testing. 4fF unit capacitor, with mismatch

standard deviation of 0.4%, is selected as LSB weight in the

MAC circuits to ensure that classification accuracy remains

close to 99% even in presence of random mismatch.

III. MEASUREMENT RESULTS

Fig. 1(a) shows the microphotograph of the test-chip with

core area of 1.67mm2. The FE, and DACs to convert digital

features into analog signals, are implemented off-chip. The

on-chip ANN consumes 7.1µW for each inference while

operating from 1.1V power supply at 1kHz, resulting in

an energy consumption of 7.1nJ/inference. The DACs and

digitally synthesized FE are estimated to consume 3.8nJ and

2nJ respectively for each inference. Thus, the test-chip has an

estimated energy consumption of 12.9nJ/inference. The energy

consumption will increase to 13.6nJ/inference if analog front-

end amplifier and 14-bit ADC for digitizing ECG signal is

integrated on-chip.

A. AFib detection results

The AFIb dataset is randomly split into 4767 training

samples and 1204 test samples. Fig. 3(a) shows the measured

confusion matrix on the test set. The test-chip detects AFib
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with 98.8% accuracy, specificity of 1 and sensitivity of 0.89.

Threshold voltages for the class boundaries are calculated

during foreground calibration step that applies the training

samples to the test-chip and calculates the threshold voltages

to maximize classification accuracy on the training samples.

Fig. 3(b) shows measured histogram of accuracy and sensitiv-

ity for 1000 repeated evaluations on the test set. Small standard

deviation in accuracy and sensitivity for repeated evaluations

demonstrate robustness against noise.
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Fig. 3: a) Measured confusion matrix for AFib dataset, b)

accuracy and sensitivity for 1000 evaluations

Fig. 4(a) shows the measured accuracy and sensitivity

as the power supply voltage is swept from 1.2V to 0.8V.

Classification accuracy reduces with supply voltage. Fig. 4(b)

shows the measured accuracy and sensitivity for 4 test chips.

The class boundaries are calculated for each test-chip through

foreground calibration using training samples. The average

accuracy and sensitivity across 4 test-chips are 98.2% and 0.89

respectively. Table I compares our prototype with state-of-the-

art ASICs demonstrated on AFib detection tasks. The proposed

ANN consumes the lowest energy thanks to analog ANN.
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TABLE I: Comparison with state-of-the-art ASICs

JSSC TBioCas JSSC ISSCC This

2019 [5] 2019 [6] 2020 [7] 2021 [8] work

Process 65nm 180nm 40nm 65nm 65nm

Area (mm2) 5.9 0.92 0.24 1.74 1.67

Accuracy − 99.3% 96% 99.3% 98.2%1

Type digital AMS2

Energy 0.33µJ 3.21µJ 51.6nJ 2.25µJ 12.9nJ

Model ANN ANN TDDL3 ANN ANN

Class # 2 5 2 2 3

1average of 4 chips, 2AMS: analog/mixed-signal, 3 TDDL: task-
driven dictionary learning

B. Sepsis prediction results

The sepsis dataset is split randomly into 620 training

samples and 180 test samples. Fig. 5 shows the measured

accuracy and sensitivity of sepsis prediction as a function

of time before onset. As expected, the prediction accuracy

and sensitivity improves closer to onset. This work predicts

sepsis 4 hours before onset to allow sufficient time for sepsis

treatment [3].
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Fig. 5: Measured accuracy and sensitivity of sepsis prediction

before onset

Fig. 6(a) shows the measured confusion matrix on the test

set. The test-chip predicts sepsis with 91.1% accuracy, speci-

ficity of 0.94 and sensitivity of 0.88. Similar to AFib dataset,

threshold voltage for the class boundaries are calculated on

the training samples to maximize prediction accuracy on the

train set. Fig. 6(b) shows measured histogram of accuracy and

sensitivity for 1000 repeated evaluations on the test set. Small

standard deviation in accuracy and sensitivity for repeated

evaluations demonstrate robustness against noise.
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Fig. 7(a) shows the measured accuracy and sensitivity as the

power supply voltage is swept from 1.2V to 0.8V. Prediction

accuracy reduces with supply voltage. Fig. 7(b) shows the

measured accuracy and sensitivity for 4 test chips. The average

accuracy and sensitivity across 4 test-chips are 90.7% and 0.84

respectively. Table II compares our sepsis prediction work with
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Fig. 7: Measured accuracy and sensitivity for a) as a function

of supply voltage, b) multiple chips

state-of-the-art. Our work has the highest prediction accuracy

4 hours before sepsis onset. To the best of our knowledge,

there are no custom ASICs in the literature that perform sepsis

prediction. Fig. 8 compares our work with digital baseline

synthesized in 65nm, and with state-of-the-art AI ASICs for

different bio-medical applications.

TABLE II: Comparison with state-of-the-art

CinC CCM JAMIA Nature This

2019 [9] 2019 [10] 2020 [11] 2021 [12] work

Accuracy 84.5% 67% − − 90.7%1

Sensitivity 0.66 0.85 0.84 0.86 0.841

tonset
2 4 hours

Model LSTM3 SM4 RNN5 RF6 ANN

1average of 4 chips, 2hours before sepsis onset; 3LSTM: long-short
term memory; 4SM: survival model; 5RNN: recurrent neural network;
6RF: random forest

IV. CONCLUSION

This work has presented an analog machine learning classi-

fier IC for AFib detection, and sepsis prediction from patient

ECG signal. The combination of switched-capacitor IMC and

custom analog activation circuits results in 4× improvement

in energy efficiency without sacrificing prediction accuracy.
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