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Abstract— This work presents a mixed-signal, reservoir-
computing neural network (RC-NN) for at-home, real-time health
monitoring using intelligent wearable device. The proposed
technique is demonstrated on stress detection from electrocardio-
gram (ECG) signal, and heart diseases detection using a fusion
artificial intelligence (AI) model that combines demographic and
physiological information. The RC-NN uses a static, random
reservoir layer with short-term memory to nonlinearly project
input data to high-dimensional plane, and allow easy separation
using linear AI model at the output layer. The RC-NN is designed
in 65nm CMOS process, and detects stress and heart-diseases
with mean accuracies of 92.8% and 86.8% respectively, while
consuming 10.97nJ/inference and 2.57nJ/inference respectively.

Index Terms— Machine learning, reservoir computing, health
monitoring, cardiac diseases prediction, stress detection, data
fusion and medical wearable.

I. INTRODUCTION

CARDIOVASCULAR diseases (CVD) is the leading cause
of death and disability, as well as healthcare spending,

in the USA. Recent studies estimate that one person dies every
36 seconds in the USA from CVD which accounts for close to
25% of all deaths in the USA annually [1]. There are several
underlying causes of CVDs including high blood pressure,
obesity, long-term stress etc. While a large number of tools are
available for early diagnosis of CVD, such as CT heart scans,
chest X-rays, stress tests, and heart MRI, these tests need to
performed in a clinical setting and are expensive. Hence, the
impact of CVDs is disproportionately felt more on minority
communities who have inadequate insurance coverage, and
lack access to healthcare facilities on a regular basis [2].
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Fig. 1. Energy efficiency of state-of-the-art AI ASICs for different
bio-medical applications.

Recent advances in artificial intelligence (AI) has the potential
to enable equity in healthcare by automating risk prediction
for CVDs from real-time analysis of patient physiological
signals acquired using low-cost wearable device. Integrating
AI circuits on wearables is a viable solution for real-time
continuous monitoring that improves patient data security and
increases device battery life-span by not transmitting raw
patient data over the network.

Energy efficiency of conventional AI computing systems is
limited by communication costs of bringing together many
input activations and neuron weights, and distributing out-
put activations which makes them unsuitable for resource
constrained wearable devices. Prior works have attempted
to reduce energy consumption through low bit precision
and in-memory/near-memory computation, but state-of-the-art
medical ML ICs still consume hundreds of nJ to few μJ
for inference [3]–[7]. Fig. 1 shows energy/inference of recent
state-of-the-art ML ICs for arrhythmia and seizure detection,
and patient monitoring applications.

Instead of optimizing AI computing systems for wearables,
this work presents an on-chip, mixed-signal reservoir
computing neural network (RC-NN) for high energy efficient
CVD detection. An RC-NN nonlinearly projects the input data
to high-dimensional space using a static random, nonlinear
reservoir layer and the output is typically obtained by a
linear combination of the projected states. The reservoir
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Fig. 2. Overview of the proposed health monitoring technique.

layer is untrained, and only the output layer is trained in a
supervised manner. While reservoir computing was invented
almost two decades earlier [8] and has been extensively used
in the machine-learning literature, hardware implementation
of reservoir computing have been mostly on optics/photonics
platform [9]–[12], with few silicon implementations
[7], [13]–[19]. The work in [7] developed a spiking RC-NN
with analog neurons based on differential integrators biased
in subthreshold. The analog neurons require large capacitors
with values around 1pF which results in relatively large energy
consumption in the order of μJ/inference. The work in [13]
utilizes an analog delay chain in the feedback path to create
virtual reservoir neurons. The analog delay elements require
background calibration to maintain equal delay contributions
from each neuron. The work in [14] presents an extreme
learning machine (ELM) which is equivalent to RC-NN with
a memoryless reservoir. The reservoir neurons are realized
using current-controlled ring oscillators (CCOs) which acts as
saturating nonlinearity. However, high sensitivity of CCOs to
environmental conditions will require background calibration.
The work in [15] presents a random-projection neural
network with differential-amplifier for implementing sigmoid
nonlinearity that leverages mismatch and offset introduced
during fabrication to create a diverse pool of hidden neurons
to increase encoding capacity of the network. Reference [16]
presents an ELM with current-mirror based crossbar arrays
for random projection in analog domain, and implements
nonlinear activation and output layers in digital domain,
while consuming 114nJ/classification. References [17]–[19]
presents digital, ensemble ELMs for anomaly detection and
consumes 24-477nJ/classification. The analog reservoir layer
in this work uses a feedforward common-source amplifier
for creating strong nonlinearity, and delayed feedback loop
to impart memory to the reservoir layer. In contrast to prior
silicon RC-NNs, the proposed reservoir neurons do not
require large capacitors to realize biological time-constants,
and have low sensitivity to environmental conditions which
obviates need for background calibration.

Fig. 2 shows the driving vision of this work. The proposed
RC-NN will be part of physiological sensor that will monitor

patient vitals in real time. The RC-NN output will be directly
used as classification result and displayed on a mobile device,
or combined with electronic medical record (EMR) data
through cloud-based fusion AI model for precise and personal-
ized healthcare outcome. To that end, performance of the pro-
posed RC-NN is demonstrated on two dataset - WESAD [20]
and Cleveland Heart Disease (CHD) [21] dataset. ECG chest
sensor data from the WESAD dataset is directly applied to
the proposed RC-NN without feature extraction for predicting
stress. We perform fusion of demographic and physiolog-
ical vitals from the CHD dataset to identify if a patient
has heart diseases indicated by narrowing of the epicardial
artery. The proposed RC-NN prototype achieves similar or
better performance than ideal software models reported in
literature for both dataset. Section II presents the proposed
RC-NN architecture, circuit design, and measurement results
on WESAD dataset, while Section III presents fusion model
and measurement results on CHD dataset. The conclusion is
brought up in Section V.

II. STRESS DETECTION FROM ECG SIGNAL

The WESAD dataset [20] contains multi-modal, physiolog-
ical sensor data of 15 patients collected from wrist and chest
at 700Hz sampling rate. The sensor data for each patient is
recorded for approximately 2 hours out of which the patient
was in a baseline condition for 20 minutes and under stress
for roughly 10 minutes. The sensor data is annotated as
baseline, stress, amusement or meditation conditions. For this
work, we used ECG signal from the chest and performed
binary stress versus baseline classification. We used 5 seconds
window segments of ECG signal, and collected 20,000 ECG
segments having roughly equal proportions of stress and
baseline events.

A. RC-NN Architecture

Fig. 3 shows the proposed RC-NN architecture with
3 layers – input, reservoir and output. Weights in the input and
reservoir layer are typically drawn from random distributions,
and only the output layer is trained. The simple architecture
and reduced training requirements make RC-NN very attrac-
tive candidate for low energy wearables. The RC accepts an
input vector �X with D features, multiplies it with an N × D
input weight matrix �W , and passes the result to the reservoir
which performs non-linear projection with N neurons. State
of the k-th neuron is expressed mathematically as shown in
Fig. 3 where �Wr is the N × N inter-connection weight matrix
for the reservoir layer, H (·) is the non-linearity function,
Gi is input scaling factor and G f is feedback gain. The inter-
connect matrix �Wr is typically sparsely filled and provides
memory to the reservoir layer which allows the RC-NN to
exhibit properties of high dimensionality with a small number
of neurons [22]. The reservoir layer outputs are read-out by
a memoryless output layer which typically performs linear,
weighted combination of the NP layer outputs to provide
classification/prediction result. To further reduce energy con-
sumption, elements in the input and reservoir weight matrices
are restricted to {0/1} which replaces multipliers by adders
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Fig. 3. RC-NN architecture showing linear separability of data classes after
passing through reservoir.

and reduces hardware cost. D is set to 350 for the WESAD
dataset which corresponds to 350 samples of ECG data in each
inference window.

Optimizing an RC-NN typically requires balancing several
parameters – reservoir size, sparsity of input connections and
reservoir, and ranges for input scaling factor and feedback
gain. As in [23], we set the following restrictions on the
RC-NN design to simplify the parameter optimization space –
1) same input scaling factor, Gi , for all inputs, 2) same
feedback gain G f for all reservoir neurons, and 3) a single
weight value for all reservoir connections. The sparsity of
input connections is not optimized, and elements in the input
weight matrix �W are randomly set to {0/1}. This leaves
4 parameters for optimization – reservoir sparsity, Gi , G f

and N . To optimize sparsity of reservoir layer, we select
3 simple inter-connection matrices, �Wr , as shown in Fig. 4
based on templates provided in [23] and simulate the RC-NN
on the WESAD dataset. The dataset is randomly partitioned
into 80% training and 20% test data. The RC-NN model is
simulated 100 times for each �Wr , and the input layer weights
are selected randomly each time. Fig. 4 shows the mean and
standard deviation of classification accuracy on the test set for
the 3 inter-connection weight matrices. The best accuracy is
obtained for the identity inter-connect matrix which is realized
through 1-cycle delayed feedback to each neuron.

Our architecture also allows easy change of reservoir spar-
sity through tapping the output at different locations in the
feedback delay chain. As an example, if the reservoir requires
connection between adjacent neurons, i.e, if Wr [i ][ j + 1] = 1,
feedback from the output of N − 1-th elements of the
delay chain to the input will satisfy the sparsity requirement.
Similarly, if the reservoir requires both self-connections and
connection between adjacent neurons, i.e., Wr [i ][ j ] = 1 and

Fig. 4. Simulated classification performance for different inter-connection
architectures in the reservoir layer.

Wr [i ][ j +1] = 1, then the feedback connection has to be made
from output of N-th and N −1-th elements of the delay chain,
and the architecture will need 2 DACs. The reservoir sparsity
can be set arbitrarily by drawing the appropriate feedback
connections, but this comes at the cost of increased area and
energy due to increase in number of DACs.

Fig. 5a) shows the mean and standard deviation of simulated
classification accuracy as a function of reservoir neurons with
the same simulation setup as for reservoir inter-connection
matrix optimization. For this design, 10 reservoir neurons
are used. Fig. 5b) shows the mean and standard deviation of
simulated classification accuracy as a function of (Gi , G f )
for N = 10. The highest mean accuracy is obtained for
0.2 < Gi < 0.7 and G f = 0.1. For this design, (Gi , G f ) =
(0.6, 0.1) is used. Small value of G f indicates that the reser-
voir layer requires short-term memory for predictions. Fig. 5c)
shows the mean and standard deviation of simulated accuracy
as (Gi , G f ) are varied independently from 0% to 20%.
The mean accuracy remains ∼ 93% for perturbation ≤10%.
Gi and G f are defined as ratios of resistors in the design, and
are not expected to vary significantly.

B. Stability of RC-NN

The RC-NN needs to be stable for the predictions to be
repeatable. The strong nonlinearity of H (·) makes it difficult
to analyze stability of the closed-loop system using standard
techniques based on location of poles. The RC-NN needs
to be linearized around an operating point before stability
analysis. The worst-case scenario from stability perspective
occurs when the RC-NN loop has the highest gain, corre-
sponding to the highest gain of the nonlinearity function
H (·) that occurs for the smallest input seen by the non-
linearity circuit. We simulated the RC-NN on the entire
WESAD dataset, repeated the simulation 100 times for differ-
ent random values of input weight matrix, �W , and extracted
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Fig. 5. Simulated accuracy (a) as a function of number of reservoir neurons;
(b) (Gi , G f ); (c) with perturbations in G f and Gi .

Fig. 6. Linearized mathematical model of the RC-NN.

the input and output swings of the nonlinearity circuit,
and gain of the nonlinearity circuit. The mean (±standard
deviation) of voltage swing at the input and output of the
nonlinearity circuit are 56mV(±0.49mV) – 560mV(±0.5mV),
and 460mV(±0.28mV) – 681mV(±0.5mV) respectively. The
gain of the nonlinearity circuit varies from 8.3(±0.067) –
1.22(±0.001). The linearized discrete-time RC-NN model for
stability analysis is shown in Fig. 6. The summer and the
buffer uses the same OTA and has unity-gain bandwidth of
ω1 and feedback factor of the closed-loop summer is β.

Fig. 7. (a) Maximum nonlinearity gain as a function of G f for stable
RC-NN (b) stability contours as a function of G f and bandwidths of OTA
and nonlinearity circuit.

The nonlinearity circuit is replaced by a linear amplifier with
dc gain of Gh and 3-dB bandwidth of ω2. Stability of the
RC-NN is analyzed by finding the roots of (1)

1 + z−3
(
1 − k1z−1

) (
1 − k1z−1

) (
1 − k1z−1

) = 0 (1)

To analyze stability of the RC-NN, we first find the maxi-
mum value of Gh that results in a stable RC-NN for different
values of feedback scaling factor G f , and the result is plotted
in Fig. 7(a). The maximum allowed value of Gh reduces
as G f increases. Fig. 7(b) plots the stability contour of the
RC-NN as a function of the OTA unity-gain bandwidth and
3-dB bandwidth of the nonlinearity circuit for different values
of G f . The RC-NN is stable in the region to the right of the
contour plots. For each value of G f , Gh is set to the maximum
allowed value from Fig. 7(a). RC-NN is stable for a wider
range of (ω1, ω2) for lower values of G f which is intuitive.
G f is set to 0.1 from the classification accuracy requirement in
Fig. 5(b), and ω1 and ω2 are both set to 2π ×0.9Fs (where Fs

is the sampling frequency) to ensure the RC-NN has sufficient
stability margin. In the circuit implementation of the RC-NN,
the reservoir layer is time-multiplexed, and ω1 and ω2 are
scaled up by the number of reservoir neurons, N , since the
reservoir runs at N Fs .

C. RC-NN Circuit Design

Fig. 8(a) shows circuit implementation of the RC-NN.
In order to save area, the reservoir layer is time-multiplexed
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Fig. 8. (a) Time-multiplexed RC-NN circuit (b) single slice of input layer.

such that only one physical neuron is used. Computations
in the reservoir layer are performed in mixed-signal domain
which eliminates memory access associated with storing
intermediate results in a digital implementation. The input
is summed with feedback signal using an indirect miller-
compensated OTA, while a common-source amplifier with
resistive feedforward path implements the non-linear activation
function H (·) in the NP neuron. The non-linear activation
function is based on Mackay-Glass nonlinearity as used
in [24]. Output of the non-linear activation is digitized using a
successive approximation register (SAR) ADC with unit DAC
capacitance of 2.4fF. Placing the ADC inside the feedback
loop in the neurons allows accurate construction of N-cycle
delayed feedback. Logistic regression (LR) is used for the
output layer which is implemented off-chip through digital
synthesis. Vector matrix-multiplication in the input layer is
performed off-chip to allow demonstration of multiple dataset
with different number of features using the same RC-NN. Non-
linearity due to static mismatches in the SAR DAC or feedback
DAC are absorbed into overall non-linearity of the reservoir
neuron and does not need correction.

Fig. 9. Simulated accuracy as a function of ADC resolution.

Fig. 10. Simulated accuracy versus noise.

Fig. 8(b) shows the j -th slice of the input layer with N slices
with associated timing diagram. The same input signal is
applied to all the slices. A switched-capacitor integrator is used
for accumulating partial sums of �W j × X over D-cycles which
is stored on the integrating capacitor, Cintg . The amplifier
in the integrator can be low gain and low bandwidth since
nonlinearity due to incomplete settling and gain error is
absorbed into the reservoir nonlinearity. The input layer is
off-chip in this work to allow using the same reservoir layer
with different dataset having different number of features.

Fig. 9 shows simulated classification accuracy as a function
of ADC resolution. A 10-bit ADC resolution is selected for
this design for high classification accuracy. Fig. 10 shows the
simulated classification accuracy as a function of reservoir
noise referred to the ADC input. For each value of noise
standard deviation, the ESN is simulated 100 times, and
Fig. 10 shows mean and standard deviation of classification
accuracies. The R-DAC, OTA-summer, unity gain buffer,
and non-linearity contribute 0.34mV,rms noise at referred to
ADC input, while the ADC has an input referred noise of
0.54mV,rms, which results in a total noise of 0.64mV,rms.
Based on the noise simulation result shown in Fig. 10, the
RC-NN is expected to have a mean classification accuracy
of 93.5% with standard deviation of 0.43%. Fig. 11(a) shows
the simulated accuracy as a function of temperature in the
range of −40◦C – 125◦C. The mean accuracy changes by
2.5% over the temperature range. The accuracy starts dropping
beyond 70◦C. The reason for this drop is due to shift in the
nonlinearity transfer function H (·) as shown in Fig. 11(b).
At low input voltages, the output of H (·) is set by resistor
ratios and does not vary with temperature. At input voltages
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Fig. 11. Simulated (a) accuracy versus temperature (b) reservoir nonlinearity
versus temperature.

beyond 0.4V, H (·) is set by transconductance of the amplifier,
and starts changing with temperature. At high temperatures,
H (·) output drops which reduces differences between the
classes and reduces classification accuracy. While the RC-NN
shows strong sensitivity to temperature, the target application
is at-home monitoring of patients by embedding the RC-NN
into wearable sensor, and temperature is not expected to vary
significantly and the classification accuracy is not expected
to degrade over narrow range of temperature as shown in
Fig. 11(a). The nonlinear activation function H (·) is also
susceptible to shifts due to offset in the amplifiers and in the
ADC. However, static offset can be corrected using one-point
calibration. During calibration, the digital output layer is
re-trained with a small subset of known dataset. The weights
of the output layer are re-tuned to maximize accuracy on
the training set during calibration which corrects for static
shifts in H (·). This one-time calibration is not computationally
expensive since this is performed once and the output layer is
a simple, one-layer, logistic regression model.

D. Measurement Results

Fig. 12(a) shows die microphotograph of the on-chip
RC-NN. The RC-NN has a core area of 0.24mm2. The output
layer is synthesized off-chip. The test chip operates from
1.2V power supply at a speed of Fs = 40kHz, while the
time-multiplexed reservoir layer runs at N Fs = 400kHz.

Fig. 12. (a) RC-NN chip micro-photograph (b) measurement setup (c) energy
breakdown.

Fig. 12(b) shows the laboratory measurement setup used to
characterize the test chips. The input data is loaded into the test
chip through National Instruments Data Acquisition module,
and the test-chip outputs are captured using logic analyzer.
Data input to test-chip and output acquisition is synchronized
through Matlab interface running on a desktop computer.
Fig. 12(c) shows the breakdown in energy consumed/inference
by the different circuit components. The input layer is esti-
mated to consume 8.6nJ/inference with the switched-capacitor
integrator having unity gain bandwidth of 80kHz. The R-DAC
is the next highest consumer with 940pJ, while the ADC
consumes 80pJ. The synthesized output layer has an estimated
energy consumption of 375pJ.

Fig. 13 shows the measured confusion matrix. The
classification accuracy is calculated on the test set. The
test-chip has accuracy of 93.9%, sensitivity of 0.95 and
specificity of 0.93. Fig. 14(a) shows measured accuracies of
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Fig. 13. Measured confusion matrix.

Fig. 14. Measured accuracy for (a) multiple chips (b) versus power supply
voltage.

5 test-chips. The output layer is trained for each test-chip.
The average accuracy, sensitivity and specificity are 92.8%,
0.94 and 0.92 respectively. Fig. 14(b) shows the measured
accuracy for chip 1 with variation in supply voltage. The
accuracy remains unchanged from 1.2V down to 1V and drops
slightly at 0.9V supply voltage.

Fig. 15 shows the measured histogram of classification for
500 evaluations with chip 1 to capture the effect of thermal
noise. The mean classification accuracy is 93.8% with a low
standard deviation of 0.9% which has good agreement with
simulation result (Fig. 10) and shows that the RC-NN is
relatively robust against thermal noise.

Fig. 15. Measured histogram for repeated evaluations.

TABLE I

COMPARISON WITH STRESS DETECTION WORKS

Table I compares this work with state-of-the-art stress
detection works. To the best of our knowledge, no custom
ASIC has been reported in the literature that performs stress
detection using WESAD dataset. To compare performance of
the proposed mixed-signal RC-NN with digital ICs, we syn-
thesized the reservoir layer digitally in the same 65nm process.
The synthesized reservoir layer consumes 68nJ which is 39×
higher than the energy consumption of our mixed-signal
reservoir layer.

III. HEART DISEASE DETECTION FROM CHD DATASET

A. Fusion Model

The CHD dataset has 13 attributes of 297 patients. The
13 attributes are summarized in Table II. The physiological
attributes are derived from patient vital signs, and can be
recorded at-home with wearable sensors, while the laboratory
result attributes requires the patient to be in a clinical setting
for recording. For this work, we have used only the demo-
graphics and physiological attributes so that our design can be
used for at-home monitoring of patients. D is set to 8 for this
dataset corresponding to the 8 physiological attributes.

We designed a late fusion prediction model to compre-
hensively integrate patient demographics and physiological
information as shown in Fig. 16. The fusion model combines
prediction scores from two separate classifiers operating only
on demographics and physiological data, and uses a meta-
classifier to provide the final prediction. The proposed RC-NN
is used as the classifier for physiological data, while a logistic
regression model is used for predicting heart disease from
demographics data. In an application scenario, the prediction
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TABLE II

ATTRIBUTES IN CHD DATASET

Fig. 16. Late fusion model used for heart disease prediction.

scores from the RC-NN will be sent to a mobile device
which will also allow the user to upload their demographics
information, and the mobile device will use cloud computing
resources for implementing the meta-classifier.

B. Measurement Results

We used the same RC-NN classifier as used for detecting
stress, and measured 5 test-chips. Table III summarizes the
measurement performance. The classification with only the
demographic attributes is 52.9%, while the RC-NN classi-
fier, with physiological attributes as inputs, has classification
accuracies of 76.9%–78.3% across 5 test-chips. We used
3 different meta-classifiers – logistic regression, linear support
vector machine (SVM) and neural network for performing
fusion of prediction scores from the RC-NN and logistic
regression models on physiological and demographic data
respectively. The neural network meta-classifier is a two-layer
neural network with 20 neurons in the hidden layer, and
tanh activation function. The best accuracy, sensitivity and
specificity for each classifier and for each chip are highlighted
in Table III.

Fig. 17 shows the breakdown in energy consumption/
inference for CHD dataset. The input layer is estimated
to consume 200pJ out of total energy consumption of
2.57nJ/inference. Fig. 18 shows the measured accuracy
of RC-NN and late fusion model for chip 1 as a function
of supply voltage. The RC-NN accuracy reduces by 0.7%
going from 1.2V supply voltage to 0.9V. SVM meta-classifier

TABLE III

ATTRIBUTES IN CHD DATASET

Fig. 17. Energy breakdown of RCNN for CHD dataset.

has the highest accuracy at 1.2V supply voltage while the
logistic regression meta-classifier has the highest accuracy at
0.9V supply voltage. Fig. 19 shows the measured histogram
of classification accuracies with RC-NN and fusion model for
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Fig. 18. Measured accuracy of RC-NN and late fusion model versus supply
voltage.

Fig. 19. Histogram of accuracy of RC-NN and fusion model.

TABLE IV

COMPARISON WITH HEART DISEASES DETECTION WORKS

500 repeated evaluations with chip 1. The standard deviation
of accuracy with RC-NN model is 2.8% which reduces to
0.9% after fusion with demographic attributes. The measured
histogram shows the RC-NN has relatively low sensitivity to
thermal noise.

Table IV compares the proposed fusion model with state-
of-the-art software AI models demonstrated on CHD dataset.
The proposed model achieves state-of-the-art accuracy. To the
best of our knowledge, no custom ASIC has been reported in
the literature that performs heart disease detection using CHD
dataset.

We have demonstrated fusion model on the CHD dataset.
Since the CHD dataset has only 2 demographic attributes,
an early fusion model could have been used which would
have combined both demographic and physiological attributes,
and applied to an on-chip classifier without loss in classi-
fication performance. However the goal of this work is to

Fig. 20. Simulated accuracy vs input resolution for (a) WESAD and (b)
CHD dataset.

demonstrate feasibility of a more comprehensive technique
that will combine other demographic attributes such as race,
and co-morbidities (such as hypertension, obesity etc.) of
patients with patient vitals to predict heart diseases with high
accuracy and also provide personalized predictions based on
demographic, co-morbidity and physiological information.

IV. DISCUSSION

While the proposed RC-NN prototype achieves high energy-
efficiency/inference compared to state-of-the-art bio-medical
AI ASICs (see Fig. 1), it is difficult to compare energy
efficiency of AI ASICs demonstrated on different applications
and dataset. The AI ASICs can be compared at a lower level
by looking at their energy efficiency for matrix multiplications
which is a common computation shared across AI algorithms.
Table V compares the energy-efficiency of the proposed
RC-NN with state-of-the-art matrix-multiplier macros based
on in-memory computing using SRAM arrays in terms of
TOPS/W. ADC, DAC and nonlinearity circuit are all con-
sidered as 1 operation each for calculating energy-efficiency
of the proposed RC-NN. The output layer is not included in
this calculation. The energy-efficiency of our RC-NN is much
lower than state-of-the-art SRAM macros. There are several
reasons for this - 1) our energy-efficiency calculation includes
energy consumption for data movement and activation func-
tion, while the SRAM macros report energy-efficiency only
for matrix multiplication 2) the SRAM macros are designed
for high throughput, and their energy-efficiency is likely to
be limited by leakage at lower frequencies for bio-medical
applications. Compared to the WESAD dataset, the energy
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TABLE V

COMPARISON WITH STATE-OF-THE-ART AI ACCELERATOR MACROS

efficiency is lower for CHD dataset since the RC-NN is not
optimized for the CHD dataset. Input resolution for the pro-
posed RC-NN for the WESAD and CHD dataset are estimated
by quantizing the input signal with different resolutions and
observing the simulated classification accuracy. The simulation
results are plotted in Fig. 20. The WESAD dataset requires
7-bit input resolution while the CHD dataset requires 12-bit
input resolution for no degradation in classification accuracy
compared to analog input.

V. CONCLUSION

This work has presented a time-multiplexed, mixed-signal
RC-NN prototype for stress detection from ECG signal, and
prediction of coronary heart diseases by performing fusion
of patient demographic and physiological data. The energy
consumption of the proposed RC-NN can be reduced further
by using a single-stage, low gain dynamic amplifier for OTA
summer as well as for the unity-gain buffer. The amplifiers will
be allowed to slew to further reduce power consumption since
amplifier nonlinearity will be absorbed in the nonlinearity of
the reservoir layer and does not affect prediction performance
as the training happens entirely in the digital output layer. The
proposed RC-NN is also expected to benefit from technology
scaling, and further improve energy efficiency, since the analog
components do not need high precision, linearity or gain.
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