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Abstract—This work presents the first on-chip, mixed-signal
echo state network (ESN) for early prediction of heart disease.
The ESN comprises an input layer, a non-linear projection (NP)
layer, and an output layer. Only the output layer of the ESN
requires training. The input layer weights are time-invariant
and drawn from a static binary random distribution. Thus,
the proposed ESN has significantly lower trainable parameters
compared to other non-linear neural networks used for simi-
lar prediction tasks. A 65nm prototype is validated with the
Cleveland Heart Disease (CHD) dataset. The ESN achieves a
mean accuracy of 84.6% over 5 test chips while consuming 7.5nJ
energy/inference.

Index Terms—Machine learning, echo state network, cardiac
diseases prediction, data fusion and medical wearable

I. INTRODUCTION

Each year, one-third of global deaths are caused by heart
diseases. Recent advances in machine learning (ML) can au-
tomate risk prediction for heart diseases and prevent death by
analyzing patient physiological signals in real-time. However,
conventional ML algorithms are computationally intensive
and consume significant energy, thus making their integration
on resource-constrained wearables challenging. Prior works
attempted to reduce energy consumption through low bit
precision and in-memory/near-memory computation, but state-
of-the-art medical ML ICs still consume hundreds of nJ to few
µJ for inference [1]–[5].

Instead of optimizing conventional ML architectures, this
work presents an on-chip, mixed-signal echo state network
(ESN) for reducing energy consumption. An ESN nonlin-
early projects the input data to high-dimensional space using
a nonlinear layer, and the output is typically obtained by
a linear combination of the projected states. While ESNs
have been used extensively in the ML literature, hardware
implementation of ESNs have been mostly on photonics plat-
form [6], [7], and silicon implementation is limited to digital
IC [5]. This work presents the first mixed-signal, on-chip ESN.
Performance of the proposed on-chip ESN is demonstrated
for classification of heart diseases on 297 patient data from
the Cleveland Heart Disease (CHD) dataset, which is widely
used for heart disease research. The CHD dataset contains
demographic information and physiological measurements, as
well as labels identifying if the patient has heart diseases
indicated by narrowing of the epicardial artery. An early fusion
ML model [8] is used, which combines patient demographic

information with physiological data to create a consolidated
input feature vector.

The rest of this paper is organized as follows: Section II
presents the ESN architecture, measurement results are pre-
sented in Section III, and the conclusion is brought up in
Section IV.

II. ESN ARCHITECTURE
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Fig. 1: ESN architecture with data fusion showing linear
separability of data classes after passing through ESN.

Fig. 1 shows the proposed ESN architecture with early
fusion of demographic (gender and age), and physiological
measurements. The input layer weights are restricted to {0/1}
which replaces multipliers by adders and reduces hardware
cost. The simple architecture and reduced training require-
ments make ESN very attractive candidate for low energy
wearables. The ESN accepts an input vector ~X with D
features, which is multiplied with an N × D input weight
matrix ~W , and passed through the non-linear projection (NP)
layer with N neurons. State of the k-th neuron is expressed
mathematically as shown in Fig. 1 where ~Wr is the N × N
inter-connection weight matrix for the NP layer, H(·) is the
non-linearity function, Gi is input scaling factor and Gf

is feedback gain. The inter-connect matrix ~Wr is typically
sparsely filled and provides memory to the NP layer which
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allows the ESN to exhibit properties of high dimensionality
with a small number of neurons [9]. Fig. 2 shows the simulated
prediction accuracy for different configurations of the NP
inter-connect matrix. The ESN model is simulated 100 times
for each ~Wr and the input layer weights are selected randomly
each time. The best average accuracy of 86.4%, with standard
deviation of 0.8%, is obtained if ~Wr is an identity matrix.
As shown in Fig. 2, increasing the number of inter-connects
increases memory in the NP layer and leads to over-fitting of
the model during training, which reduces prediction accuracy.
The inter-connect identity matrix is realized through 1-cycle
delayed feedback to each neuron.
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Fig. 2: ESN classification performance for different inter-
connect architectures in the non-linear projection layer

Fig. 3 shows circuit implementation of the ESN. In order to
save area, the NP layer is time-multiplexed such that only one
physical neuron is used which also eliminates effect of random
mismatch between neurons. Computations in the NP layer are
performed in mixed-signal domain which eliminates memory
access associated with storing intermediate results in a digital
implementation. The input is summed with feedback signal
using an indirect miller-compensated OTA, while a common-
source amplifier with resistive feedforward path implements
the non-linear activation function H(·) in the NP neuron.
Output of the non-linear activation is digitized using a 10-bit
SAR ADC with unit DAC capacitance of 2.4fF. Placing the
ADC inside the feedback loop in the neurons allows accurate
construction of N-cycle delayed feedback. Logistic regression
(LR) is used for the output layer which is implemented off-
chip through digital synthesis. Non-linearity due to static
mismatches in the SAR DAC or feedback DAC are absorbed
into overall non-linearity of the NP neuron and does not need
correction.

Fig. 4a) shows the mean and standard deviation of simulated
accuracy as a function of number of NP neurons and (Gi, Gf ).
The highest mean accuracy is obtained for 30 neurons and
(Gi, Gf ) = (0.6, 0.1), which are used as design parameters

Wi

Fig. 3: Time-multiplexed ESN circuit

for the proposed ESN. Small value of Gf indicates that the
NP layer requires short-term memory for predictions, which
can be intuitively explained by the fact that static features are
used as inputs to the ESN rather than continuous-time signals.
Fig. 4b) shows the mean and standard deviation of simulated
accuracy as (Gi, Gf ) are varied independently from 1% to
19%. The mean accuracy remains > 85% for perturbation
< 10%. Fig. 5 shows simulated accuracy as a function of ADC
resolution. A 10-bit ADC resolution is selected for this design
for high classification accuracy. Fig. 6 shows the simulated
classification accuracy as a function of ESN noise referred to
the ADC input. For each value of noise standard deviation,
the ESN is simulated 100 times, and Fig. 6 shows mean and
standard deviation of classification accuracies. The R-DAC,
OTA-summer, unity gain buffer, and non-linearity contribute
0.34mV,rms noise at referred to ADC input, while the ADC
has an input referred noise of 0.54mV,rms, which results in
simulated accuracy of 85.6% with 0.6% standard deviation.
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Fig. 4: Simulated accuracy a) as a function of number of
neurons and (Gi, Gf ); b) with perturbations in Gf and Gi
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Fig. 5: Simulated accuracy as a function of ADC resolution
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Fig. 6: Simulated accuracy versus noise

III. MEASUREMENT RESULTS

Fig. 7(a) shows die microphotograph of on-chip ESN com-
ponents. The output layer is synthesized off-chip. The test chip
operates from 1.2V power supply at a speed of Fs = 40kHz,
while the time-multiplexed NP layer runs at NFs = 1.2MHz.
Fig. 7(b) shows the breakdown in energy consumed/inference
by the different circuit components. The R-DAC consumes the
highest energy of 2.8nJ out of the total energy consumption
of 7.5nJ, while the synthesized output layer has an estimated
energy consumption of 1.5nJ.

Fig. 8 shows the measured confusion matrix. The classifica-
tion accuracy is calculated through 5-fold cross-validation on
the CHD dataset and collating the predictions on test data from
each cross-validation fold. The measured accuracy is 80% if
only physiological data is used as input to the ESN. Once
demographics information is combined with physiological
data, the accuracy improves to 84% for early fusion model.

Fig. 9(a) shows measured accuracies of 5 test-chips. The
average accuracy is 84.6% if the output LR layer is trained for
each chip. The average accuracy drops slightly to 83.9% if the
LR weights from chip 1 is re-used for the other chips. Fig. 9(b)
shows the measured accuracy for chip 1 with variation in
supply voltage. Classification accuracy reduces with supply
voltage. Fig. 10 shows the measured histogram of classification
for 1000 evaluations with chip 1 to capture the effect of
thermal noise. The mean classification accuracy is 83.74%
with a low standard deviation of 0.62% which has good
agreement with simulation result (Fig. 6) and shows that the
ESN is relatively robust against thermal noise

Table I compares the proposed ESN with state-of-the-
art software AI models demonstrated on CHD dataset. The
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Fig. 7: a) Die micro-photograph of ESN b) energy breakdown
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Fig. 8: Measured confusion matrix without and with demo-
graphics

proposed ESN achieves state-of-the-art accuracy. To the best
of our knowledge, no custom ASIC has been reported in the
literature that performs heart disease detection using CHD
dataset. To compare performance of the proposed mixed-signal
ESN with digital ICs, we synthesized the NP layer digitally in
the same 65nm process. The synthesized NP layer consumes
272.2nJ which is 45× higher than the energy consumption of
our mixed-signal NP layer.

IV. CONCLUSION

This work has presented a time-multiplexed, mixed-signal
ESN prototype for prediction of coronary heart diseases by
performing fusion of patient demographic and physiological
data. The energy consumption of the proposed ESN can be
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Fig. 10: Measured histogram for repeated evaluations
TABLE I: Comparison with state-of-the-art

[10] [11] [12] [13] This work
Accuracy 81% 75-84% 84% 78% 84.6%1

Model k-NN2 Ensemble SVM+MLP3 SVM ESN
1average of 4 chips, 2k nearest neighbor; 3stacking of support vector
machine (SVM) and multi-layer perceptron (MLP)

reduced further by using a single-stage, low gain dynamic
amplifier for OTA summer as well as for the unity-gain buffer.
The amplifiers will be allowed to slew to further reduce power
consumption since amplifier nonlinearity will be absorbed in
the nonlinearity of the NP layer and does not affect prediction
performance as the ESN training happens in the digital output
layer. The proposed ESN is also expected to benefit from

technology scaling, and further improve energy efficiency,
since the analog components in the ESN do not need high
precision, linearity or gain.
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