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Abstract—This paper presents a digital machine learning
circuit for classifying stress condition from chest ECG signal
from a wearable sensor. To minimize hardware cost, we use
only 5 time-domain features that have much lower area and
power consumption than frequency domain or combination of
time and frequency domain features as is used conventionally.
We test the time-domain features on several machine learning
algorithms. Random Forest classifier shows the best classification
accuracy of 0.96 with the time-domain features at an estimated
power consumption of only 1.16mW at 65nm CMOS process
which demonstrates feasibility of embedding a machine learning
classifier in a wearable ECG sensor for real-time, continuous
stress detection.

I. INTRODUCTION

Long-term stress in humans can lead to a plethora of
diseases ranging from musculoskeletal illness to digestive
problems to cardiovascular disease. The severe side-effects
of stress calls for continuous stress detection to increase
awareness of high stress levels which may otherwise go
undetected. Since stress is primarily a physiological response
to a stimulus triggered by the sympathetic nervous system [1],
stress can be detected from physiological signals captured
using wearable sensors. Automated stress detection using
wearable devices can provide real-time continuous monitoring
of stress levels while being minimally intrusive. While several
technologies have been developed to detect stress from wear-
able devices [1]–[4], these techniques rely on processing the
captured physiological signals on a separate computing device
and cannot provide real-time stress detection.

We propose a digital machine learning classifier (DMLC)
for real-time stress detection that can fit on a wearable electro-
cardiograph (ECG) sensor. The DMLC needs to have small
area and power consumption to fit within the constrained
budget of a wearable device. To reduce power and area
consumption, we propose to use only time-domain features
extracted from ECG signal instead of both time and frequency
domain features that are conventionally used [1], [3], [4].
As will be shown later, a key contribution of this work is
the adoption of time-domain only features that results in
significant area and power savings compared to frequency
domain features without sacrificing classification accuracy.
The rest of this paper is organized as follows: the dataset
used in this work is briefly described in Section II, feature
extraction and comparison of time and frequency domain
features are discussed in Section III, the classifier architecture

and comparison with other works on stress detection are
presented in Section IV, while the conclusion is brought up
in Section V.

II. STRESS DATASET

We use the WESAD dataset [1] for training and validation
of our stress detection model. The WESAD dataset contains
multi-modal sensor data for different physiological signals,
such as blood volume pulse (BVP), ECG, electrodermal ac-
tivity (EDA), electromyography (EMG), respiration rate and
temperature, collected from wrist and chest using different
wearable sensors. The sensor data was recorded from 15
participants and annotated as baseline, stress, amusement or
meditation conditions. For this work, we use ECG signal from
the chest and perform binary stress versus non-stress classifi-
cation. Fig. 1 shows an example ECG plot from the WESAD
dataset for patient 2 for stress and no-stress conditions.
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Fig. 1: Example ECG plots for stress and no-stress conditions

The sensor data for each patient is recorded for approxi-
mately 2 hours out of which the patient was under stress for
roughly 10 minutes. To unskew the training data, we created
overlapping segments of the sensor data such that number of
segments with stress are roughly equal to number segments
without stress. Out of 1020 segments, 525 segments are from
‘stress’ class, while the remaining 495 segments are from ‘no-
stress’ class.

III. FEATURE EXTRACTION AND COMPARISON

A. Time-domain features
The time-domain features used in this work are derived

following statistical measures of heart-rate variability (HRV)
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presented in [5]. The time-domain features are based on
first order statistics (mean, standard deviation) calculated on
normal-to-normal (NN) intervals which are intervals between
adjacent QRS complexes (see Fig. 1) in the ECG signal.
QRS complex represents depolarization of ventricles and wide
QRS complexes indicate slow depolarization which may be
due to dysfunction of ventricles. QRS complexes in the raw
ECG signal are detected using peak detection algorithm [1].
The time-domain features used in this work are summarized
in Table I and are calculated from segments of ECG signal
which allows comparison of HRV during stress and non-stress
conditions.

TABLE I: Summary of time-domain features

SDNN The standard deviation of all NN intervals
RMSSD The square root of the mean squared dierences of successive

NN intervals
NN50 The number of interval differences of successive NN intervals

greater than 50 ms
PNN50 The proportion derived by dividing NN50 by the total number

of NN intervals
SDSD The standard deviation of differences between adjacent NN

intervals

B. Frequency-domain features

12 frequency-domain features are used in this work as
shown in Table II and are based on the work in [1], [5]. Power
spectral density analysis of ECG signal provides an estimate of
power distribution across frequency bands and is linked with
modulations of heart period. The frequency spectrum of ECG
signal is computed and features are calculated on 4 frequency
bands: ultra-low (ULF: 0.01-0.04Hz), low (LF: 0.04-0.15Hz),
high (HF: 0.15-0.4Hz) and ultra-high (UHF: 0.4-1Hz) [1].

TABLE II: Summary of frequency-domain features

Band Energy Energy in the 4 bands
Σ(Band power) all Summation of power in the 4 bands
%power Ratio of power in each band to the total power
LF Norm Normalized LF power
HF Norm Normalized HF power
LF/HF ratio Ratio of LF power and HF power

C. Comparison of feature extraction techniques

We compare the time-domain and frequency-domain feature
extraction in terms of hardware requirement as well as classi-
fication accuracy with different machine learning algorithms.
The feature extraction circuits are synthesized in 65nm CMOS
process, and uses a 700Hz clock which is the frequency
used for sampling the ECG signals in the WESAD dataset.
All the feature extraction circuits operate from 1V power
supply. The time-domain features are calculated on 5 minutes
segments of ECG signals. The frequency-domain features are
extracted from 218-point FFT of ECG signal. Fig. 2 shows the
synthesized circuit for SDNN feature-extraction circuit which
consumes the highest power among the time-domain feature-
extraction circuits.

The synthesized feature-extraction circuits are compared in
Table III. The time-domain feature extraction circuit consumes

Fig. 2: Synthesized circuit for SDNN calculation

62µW power and 0.098mm2 area which are 5× and 910×
less than that of frequency-domain feature extraction circuit
respectively. The area and power consumption for frequency-
domain feature extraction is dominated by the FFT computa-
tion circuit [6]. The combined feature-extraction circuit using
both time and frequency domain features consume 393µW
power and 82.02mm2 area.

TABLE III: Comparison of feature extraction techniques

Feature Area (mm2) Power (µW)
Time 0.098 62
Frequency 81.92 331
Combined 82.02 393

To compare classification accuracy with the 3 feature ex-
traction techniques (time, frequency and time+frequency com-
bined), we use 5 machine learning algorithms and calculate
classification accuracy for each algorithm for the different
feature extraction techniques. The machine learning algorithms
used are linear discriminant analysis (LDA), random forest
(RF), support vector machine (SVM), and artificial neural
network (ANN) with 2 and 3 hidden layers. We used Matlab
for implementing the machine learning algorithms. We used
100 base estimators for the RF classifier. We used gaussian
kernel for the SVM classifier. For the ANNs, we used tanh
activation function for hidden layers and softmax activation
function for output layer. The 2 hidden-layer ANN has 4
neurons in the first hidden layer and 3 neurons in the second
hidden layer, while the 3 hidden-layer ANN has 5 neurons in
the first hidden layer, 5 neurons in the second hidden layer
and 3 neurons in the third hidden layer. We used 80% of the
data for training the machine learning models, and 20% of
the data for testing. To calculate classification accuracy, the
dataset was randomly split into training and test sets and this
process was repeated 20 times.

Fig. 3 graphically summarizes comparison between differ-
ent machine learning algorithms and feature extraction tech-
niques using box-plot. The time-domain, frequency-domain,
and combined feature extraction techniques are denoted by the
labels ‘T’, ‘F’ and ‘TF’. The median accuracy is shown with
horizontal line inside the box-plots, while the mean accuracy
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is represented by a circle inside the box-plots. Whiskers in
the box-plot denote maximum and minimum observations,
while ‘+’ denotes outliers in the observations. As seen in
Fig. 3, classification accuracy of time-domain features is
comparable to accuracy obtained using frequency-domain or
combined features. The RF classifier has the highest mean and
median accuracy among all the machine learning algorithms
considered in this work. Mean accuracy of RF classifier using
time-domain, frequency-domain and time-frequency combined
features are 0.94, 0.96 and 0.98 respectively. While mean
classification accuracy using time-domain features is 0.02 less
than that with frequency-domain features, time-domain feature
extractor circuit consumes 910× lower area and 5× lower
power than frequency-domain feature extractor circuit. Hence,
we have used time-domain features for developing our stress
classifier that can be integrated with wearable ECG sensor.
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Fig. 3: Classification accuracy of different machine learning
models for different feature extractors

D. Feature importance

Table IV shows the feature importance values for the time
and frequency domain features computed using neighborhood
component analysis (NCA) which calculates the average leave-
one-out classification error. The time-domain features SDNN
and NN50 are the most important features which also verifies
the premise that only time-domain features are adequate for
stress detection. To verify the feature importance scores,
we repeated classification task with the RF classifier and 3
time domain features: SDNN, NN50 and PNN50. The mean
classification accuracy is 0.92.

Fig. 4 shows the worst case confusion matrix with the 3
time-domain features. The worst-case accuracy and sensitivity
for stress classification are both 0.87.

IV. CLASSIFIER DESIGN

RF classifier is selected as the machine learning model
for stress classification based on the accuracy comparison in
Fig. 3. RF classifier is an ensemble classifier which decides
class of predictors by aggregating results of different decision
trees or estimators. Fig. 5 shows classification accuracy versus
number of estimators. Classification accuracy is calculated on
test set by randomly splitting the entire dataset into training
and test sets, and repeating this procedure 20 times. It can be

TABLE IV: Feature importance values

Feature Importance
SDNN 4.38

RMSSD 0.03
NN50 3.86

Time

PNN50 1.01
SDSD 0.02

Energy:ULF 3.75
Energy:LF 0.00
Energy:HF 0.00

Frequency

Energy:UHF 0.01
Total power 1.30

% Power:ULF 3.41
% Power:LF 0.29
% Power:HF 1.67

% Power:UHF 2.76
LF Norm 0.30
HF Norm 2.1

LF/HF 0.00
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Fig. 4: Worst case confusion matrix with 3 time-domain
features

seen from Fig. 5 that the median/mean classification accuracy
does not change significantly as the number of estimators is
varied from 5 to 60. To reduce power and area of the classifier,
20 estimators are used for stress detection using RF since it
has the highest mean accuracy and smallest spread.
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Fig. 5: Classification accuracy of RF classifier versus number
of estimators

Fig. 6 shows classification accuracy versus segment size
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with all 5 time-domain features. Classification accuracy is
calculated on test set by randomly splitting the entire dataset
into training and test sets, and repeating this procedure 20
times as for Fig. 5. The mean classification accuracy is the
highest at 0.96 for segment size of 3 minutes. Reducing
the segment size also proportionally reduces power and area
consumption for time-domain feature extractors. Fig. 7 shows
the worst-case confusion matrix for the RF classifier with the
5 time-domain features. The worst-case stress classification
accuracy is 0.92 while the worst-case sensitivity and specificity
are 0.94 and 0.90 respectively. Sensitivity is a measure of
the classifier’s ability to correctly detect stress in patients,
while specificity refers to the ability to correctly reject healthy
patients without stress. The high sensitivity and specificity
values for our classifier shows that it is effective in detecting
stress.
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Fig. 6: Classification accuracy of RF classifier with time-
domain features versus segment size
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Fig. 7: Worst case confusion matrix for RF classifier

Table V summarizes the performance of our stress-detection
classifier. Power of the RF classifier is estimated from [7].
Table VI compares this work with other stress-detection works
that use different modalities to detect stress. Our classifier has
the highest binary classification accuracy with time-domain
features extracted from ECG sensor signal.

V. CONCLUSION

This work has presented a digital machine learning classifier
that can be integrated with a wearable ECG sensor for real-

TABLE V: Stress-detector performance summary

Process (nm) 65
# of classes 2
Mean accuracy 0.96

Feature extraction: 0.06Power (mW)
Classifier: 1.1

TABLE VI: Comparison with other works

Signal Classifier Feature Acc(%)
type

[2] skin-conductance (SC) k-NN T 87
motion, cell-phone

[1] ECG LDA T+F 85
[8] Speech SVM T+F 72
[9] EEG SVM T+F 89
[4] ECG, EMG, SC least square T+F 80

respiration classifier
[3] multiple SVM T+F 78

modalities
This ECG RF T 96
work

T: time-domain; F: frequency-domain

time, continuous stress detection using only 5 time-domain
features as opposed to frequency domain features which are
computationally expensive. The time-domain feature extrac-
tor consumes 5× lower power and 910× smaller area than
frequency-domain feature extractor when synthesized in 65nm
CMOS process. The proposed classifier system can be used for
stress detection which can help in early screening of several
preventable diseases.
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