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Abstract—This work presents a machine learning approach to
identify integrated circuits based on intrinsic nonlinearity arising
out of random variations introduced during device fabrication.
The random variations ensure that each integrated circuit has
a distinct nonlinearity signature which can be analyzed by a
machine learning model to distinguish between chips fabricated
from the same mask. We have analyzed multiple samples of two
analog-to-digital converters (ADCs) - a continuous-time ∆Σ over-
sampled ADC and a discrete-time nyquist ADC. The two ADCs
have different dominant nonlinearity contributors - inter-symbol
interference for the oversampled ADC and static mismatch for
the nyquist ADC. A 3-layer artificial neural network can identify
the different sample chips for each ADC with a worst-case mean
accuracy of 95.97%.

I. INTRODUCTION

Physical Unclonable Functions (PUFs) have become popu-
lar over the last decade as low power solutions for hardware
authentication and secret key generation. Entropy source for
Si PUF is random variations introduced during fabrication of
integrated circuits. When interrogated with same challenge
vector, different PUFs fabricated from the same mask produce
orthogonal responses which are ideally unpredictable. Popu-
lar PUFs leverage mismatches in delays between nominally
identical paths [1], [2], or differences in threshold voltages
between transistors [3], [4] to generate a unique “fingerprint”.
Similar to PUFs, integrated circuits, such as data converters,
experience random variations introduced during fabrication.
Hence, in theory, random variations in an integrated circuit
can be extracted to form a unique identifier without requiring a
dedicated PUF circuit. The work in [5] advanced this premise
by digitizing mismatch between unit elements of digital-to-
analog converter (DAC) in a ∆Σ modulator. The digitized
mismatch data is used to derive a weak PUF with high
uniqueness. However, limitation of the technique in [5] is
that it requires a high resolution auxiliary mismatch estimation
circuit which adds to the design overhead.

We propose a machine learning based approach in which
artificial neural networks (ANNs) are used to extract a unique
identifier from integral nonlinearity (INL) data of an analog-
to-digital converter (ADC). The proposed approach does not
require any additional circuit for calculating INL, and thus,
has no overhead. We have validated our proposed approach
on two different data converters - 1) a 12-bit continuous-time
(CT) ring oscillator based ∆Σ ADC [6], and 2) an 11-bit
discrete-time (DT) successive approximation register (SAR)

ADC [7]. Both ADCs are fabricated in 65nm CMOS process.
For the VCO ADC, the dominant source of nonlinearity is
inter-symbol interference (ISI) error, whereas in SAR the
dominant source of nonlinearity is static mismatch in the
capacitive DAC. For the two classes of ADCs, we have
INL data for multiple chips measured under different voltage
and temperature conditions. For each class of ADC, machine
learning models can distinguish between the different chips
with a mean accuracy >95%. Section II describes how the
data set is created for applying the machine learning models,
while Section III presents the validation results from different
machine learning models. Finally, the conclusion is brought
up in Section IV.

II. PROPOSED MACHINE LEARNING BASED
IDENTIFICATION TECHNIQUE

A. Overview of ADCs Used

As mentioned in Section I, we have selected an over-
sampled, CT ADC and a nyquist, DT ADC with different
dominant nonlinearity sources to validate our claims. Static
element mismatch in the VCO ADC is high-pass shaped by
intrinsic data weighted averaging (DWA) and ISI error, arising
primarily due to unequal rise and fall times in the DAC,
is the dominant source of nonlinearity. While the mismatch
estimation technique of [5] can be applied to extract mismatch
in the SAR ADC and derive a weak PUF, the estimation
technique cannot be easily applied to the VCO ADC to
estimate ISI errors. However, machine learning models can
be applied directly to INL data from both the ADCs without
requiring any additional signal processing steps.

Fig. 1 shows the VCO ADC die photograph and summarizes
the ADC performance. The ADC has an SNDR of 70.2dB and
SFDR of 81dB, and the SNDR is not limited by distortion
tones due to ISI error. Fig. 2 shows SAR ADC die photograph
and summarizes its performance. The SAR ADC has an
SNDR of 63.5dB and SFDR of 70dB. Similar to VCO ADC,
distortion tones arising out of capacitor mismatch do not limit
the SNDR. INL data from the VCO ADC is recorded from 5
chips over voltage and temperature corners ranging from 0.9-
1.1V and 0-50C respectively, while INL data from the SAR
ADC is recorded from 6 chips over voltage and temperature
corners of 0.9-1.2V and 0-50C respectively. While the INL
data is available for all the VCO chips for all voltage and
temperature corners, chips 4 and 5 for SAR ADC did not
have measurement data available for all the corners.
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Supply(V) 1
Power(mW) 0.1
Area(mm2) 0.06
Fs(MHz) 52
BW(MHz) 2.3
SNDR(dB) 70.2
SFDR(dB) 81
FoMw(fJ/step) 8.6

Fig. 1: VCO ADC die photo and performance summary [6]
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Supply(V) 1
Power(µW) 9
Area(mm2) 0.12
Fs(MHz) 1.28
BW(MHz) 0.64
SNDR(dB) 63.5
SFDR(dB) 70
FoMw(fJ/step) 5.6

Fig. 2: SAR ADC die photo and performance summary [7]

Fig. 3(a) and (b) show INL data for chip 2 and chip
3 of VCO ADC respectively. The INL data under nominal
condition (1V, 30C) is highlighted in thick, black line for both
the chips. Fig. 4(a) and (b) show INL data for chip 1 and chip
3 of SAR ADC respectively. INL data under nominal condition
(1V, 30C) is highlighted in thick, black line for both chips.
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Fig. 3: Measured INL for 2 VCO ADC chips across VT

B. Dataset Generation

The motivation of this work is to classify the different ADC
chips from their nonlinearity signature. We first calculated
Lee-distance [8] between the different chips by quantizing the
INL and DNL values to 12-bit numbers. Lee-distance is similar
to hamming distance but is calculated on a q−ary alphabet
(q ≥ 2) instead of binary alphabet. Fig. 5(a) and (b) show
the normalized inter and intra Lee-distances for the VCO and
SAR ADCs respectively, with inter distances being calculated
between INL/DNL values from different chips of the same
ADC and intra distances being calculated between INL/DNL
values from the same ADC chips measured at different VT
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Fig. 4: Measured INL for 2 SAR ADC chips across VT

conditions. The inter and intra Lee-distances overlap for both
SAR and VCO ADCs, thus making classification based on
Lee-distance alone impossible. Hence, we decided to employ
machine learning models which non-linearly project the INL
data to higher dimension and allows classification of different
chips as will be shown in the following sections.
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Fig. 5: Normalized inter and intra Lee-distances between INL
and DNL for a) VCO b) SAR chips

We have 45 INL curves for the 5 VCO ADC chips and 69
INL curves for the 6 SAR ADC chips. While these data points
are usually enough for ADC testing and characterization,
the data set is still small for training a machine learning
model. To increase the number of data points, we synthesized
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additional INL curves for each chip by adding a small error
with standard deviation of 0.01 to 200 randomly selected
points on the original INL curve. The standard deviation is
selected to ensure that synthesis of data does not corrupt
the class boundaries, and is verified by performing 2-sample
Kolmogorov-Smirnov (KS) test [9]. The 2-sample KS test is
used to check the null hypothesis that the two sequences under
test are from the same distribution. The result of KS test is ‘1’
if it rejects the null hypothesis at 5% significance level, i.e, if
the two sequences under test are from different distributions,
and ‘0’ otherwise. For all the synthesized INL data, KS test
returns ‘0’ when compared against INL data from the same
class of chip, and returns ‘1’ when compared against INL
data from the other chip classes. After adding synthesized
data, there are 135 INL curves corresponding to 5 chip classes
for the VCO ADC, and 207 INL curves corresponding to 6
chip classes for the SAR ADC. The number of synthesized
data points is selected to ensure that the machine learning
model does not over-fit during training. We tried increasing
the synthesized data further, but it results in over fitting of the
model. To avoid this, we selected 135 INL curves for 5 chips
of VCO ADC and 207 INL curves for 6 chips of SAR ADC.

III. CHIP IDENTIFICATION RESULTS

We used three different machine learning models - K-
Nearest Neighbor (k-NN), 2-layer artificial neural network
(ANN) and 3-layer artificial neural network (ANN) to classify
the different chips for the two ADCs. K-NN is an unsupervised
machine learning model and used as our baseline model, while
the ANNs are supervised machine learning models. For the k-
NN, we used 10-NN classifier with euclidean distance and
squared inverse distance weight metrics. For the ANNs, we
used tanh activation function for hidden layers and softmax
activation function for output layer. The 2-layer ANN has
100 neurons in the first hidden layer and 50 neurons in the
second hidden layer, while the 3-layer ANN has 100 neurons
in the first hidden layer, 50 neurons in the second hidden
layer and 25 neurons in the third hidden layer. For the ANN
models, we used 70% of the data for training, 30% of the data
for testing. The testing of the model was performed on data
by excluding all synthesized data used as validation dataset.
All the 3 models are trained and validated separately for the
SAR and VCO ADC chips. The number of neurons in the
different layers for the ANN are chosen to maximize accuracy
of classifying various chips. As an example, Table I shows
the average classification accuracy and f-1 score for different
3 layer ANN architectures for both SAR and ADC chips. For
both SAR and VCO ADCs, 100-50-25 architecture has the
highest average accuracy and f-1 score.

Table II compares classification performance of the ANNs
and k-NN on the validation dataset from VCO and SAR ADC
classes. The ANN models were simulated 50 times, with new
training, test and validation sets selected randomly each time.
For each chip, Table II shows mean accuracy and f-1 score for
ANN models as well as the standard deviations. The 3-layer
ANN has the best average accuracy and f-1 score for both
VCO and SAR ADCs, and has 6% more average accuracy
than the baseline k-NN (k=10) model.

TABLE I: Classification results for different 3-layer ANNs

VCO
Acc f-1

100-90-80 0.95 0.89
100-75-50 0.96 0.90
100-50-25 0.98 0.91

300-200-100 0.95 0.88
800-200-50 0.97 0.92

800-300-100 0.96 0.91

SAR
Acc f-1

100-50-25 0.99 0.97
300-200-100 0.97 0.90

100-90-80 0.96 0.91
100-75-50 0.98 0.94

400-200-100 0.97 0.91
500-300-150 0.97 0.91

Table III shows the worst-case confusion matrix out of the
50 trials for VCO ADC classification using 3-layer ANN, as
well as f-1 score for each class. The true positives are shaded
in gray and occur along diagonal of the confusion matrix.
Chip 1 has the lowest f-1 score for the worst-case classifier
performance, and has 7 false negatives, i.e, the classifier
predicts 3 instances of chip 1 as chip 2 and 4 instances of
chip 1 as chip 3. While both false positives and false negatives
reduce classifier performance, from security point of view false
negative is better than false positive. Table IV shows the worst
case confusion matrix for SAR ADC class. Chip 4 has the
lowest f-1 score and has 5 false positives. However, the high
number of false positives is due to the reason that for the worst-
case confusion matrix shown in Table IV, the training set did
not have enough samples of chip 4 to perform classification
with high accuracy on the validation set, since the chips 4 and
5 have less VT data points than the other SAR chips.

The feature selection technique is important to develop any
reliable machine learning model since it improves performance
to classify data and reduces run time to validate the model.
To get insight into the machine learning algorithms used for
classifying the ADC chips, we computed feature importance
scores for the INL features for the SAR ADC. The feature
importance scores are computed using neighborhood compo-
nent analysis (NCA) which measures the average leave-one-
out classification error, and shown in Fig. 6. The high feature
importance scores correspond to INL values due to mismatch
in the LSB capacitors in the SAR DAC. Mismatch in the n-
th capacitor leads to a jump in the INL value when the n-
th bit in the SAR output makes a transition. Since different
chips have different mismatch, their INL signatures will be
different and are used by the machine learning model for
classification even though the mismatch value is not large
enough to degrade SNDR of the ADC. Higher mismatch in
LSB capacitors compared to MSB capacitors is due to the
fact that the MSB capacitors are placed in a common-centroid
fashion, but the LSB capacitors are grouped together at one
end of the DAC [10].

To verify the feature importance scores, we used 253
features with the highest feature importance scores to test
performance of the 3-layer ANN on the validation dataset.
The average accuracy and f-1 score with only the important
features are 96.17% and 0.93 respectively, compared to 98.7%
and 0.96 when all features are considered, which verifies that
the important features alone are enough to classify the ADC
chips with high accuracy.
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TABLE II: Comparison of performance of different machine learning models for ADC classification

VCO ADC
2-layer ANN 3-layer ANN k-NN

accuracy(%) f1-score accuracy(%) f1-score accuracy(%) f1-score
Chip 1 97.09 ± 4.00 0.9021 ± 0.09 95.97 ± 4.00 0.9052 ± 0.05 90.28 0.7132
Chip 2 97.10 ± 2.96 0.9011 ± 0.32 97.56 ± 4.20 0.9398 ± 0.05 90.12 0.7618
Chip 3 97.23 ± 2.90 0.9144 ± 0.08 97.59 ± 4.00 0.9308 ± 0.08 89.12 0.8612
Chip 4 98.05 ± 2.88 0.9274 ± 0.07 98.78 ± 3.04 0.9457 ± 0.07 94.30 0.8131
Chip 5 96.90 ± 4.17 0.9309 ± 0.07 98.81 ± 2.90 0.9450 ± 0.07 94.58 0.8572
Average 97.27 ± 1.60 0.9152 ± 0.08 97.80 ± 2.45 0.9347 ± 0.06 91.28 0.8013

SAR ADC
Chip 1 98.13 ± 1.94 0.9427 ± 0.06 97.97 ± 3.28 0.9336 ± 0.08 88.28 0.7412
Chip 2 98.25 ± 1.94 0.9521 ± 0.05 98.23 ± 1.94 0.9400 ± 0.07 91.20 0.8124
Chip 3 97.19 ± 2.63 0.9200 ± 0.08 98.80 ± 1.76 0.9679 ± 0.05 88.60 0.8615
Chip 4 99.31 ± 1.49 0.9624 ± 0.08 99.40 ± 1.35 0.9667 ± 0.08 99.8 0.8762
Chip 5 99.52 ± 1.52 0.9667 ± 0.11 99.90 ± 3.1 0.9933 ± 0.02 92.13 0.8912
Chip 6 99.40 ± 1.35 0.9920 ± 0.02 97.83 ± 2.04 0.9703 ± 0.03 92.50 0.8912
Average 98.63 ± 0.90 0.9560 ± 0.03 98.70 ± 1.21 0.9620 ± 0.04 92.01 0.8456

TABLE III: Worst case confusion matrix for VCO

Actual
chip 1 2 3 4 5 f1-score

Pr
ed

ic
te

d 1 10 0 0 0 0 0.7407
2 3 9 0 3 0 0.7500
3 4 0 13 0 0 0.8667
4 0 0 0 9 0 0.8571
5 0 0 0 0 16 1.0000

TABLE IV: Worst case confusion matrix for SAR

Actual
chip 1 2 3 4 5 6 f1-score

Pr
ed

ic
te

d

1 18 0 0 0 0 1 0.9730
2 0 16 0 0 0 3 0.9143
3 0 0 16 0 0 0 0.8889
4 0 0 5 7 0 0 0.7778
5 0 0 0 0 7 0 1.0000
6 0 0 0 0 0 32 0.9412
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Fig. 6: Feature importance scores for SAR ADC

IV. CONCLUSION

This work has presented a machine learning approach
which can use intrinsic non-linearity of ADCs to identify
different samples with high accuracy. The proposed approach
is validated by performing classifications on two different
ADC types -1) CT over-sampled ADC with ISI error as
dominant non-linearity source, and 2) DT Nyquist ADC with
static element mismatch as dominant non-linearity source. We
have shown that a 3-layer ANN can identify different samples

within each ADC class with mean accuracy >95% without
increasing design overhead. The proposed technique can be
an alternative to weak PUFs for chip authentication and opens
up a new research direction for chip verification using machine
learning.
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