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Abstract—Physically Unclonable Functions (PUFs) are exten-
sively used in hardware security blocks as key-generators and
light-weight authentication. With recent advances in machine
learning (ML), most existing PUFs are shown to be vulnerable
to modeling attacks based on ML algorithms. We present a
novel silicon strong PUF architecture that cascades three strong
PUFs to implement a single strong PUF that is resistant to ML
based modeling attacks. Designed in 65nm CMOS technology,
the proposed PUF with 260 challenge response pairs consume
0.43pJ/bit energy consumption from a power supply of 0.8V.
The simulated inter-HD and intra-HD of the PUF are 0.5065
and 0.0696 respectively. When subjected to ML based modeling
attacks, the prediction accuracy is 60% for logistic regression,
artificial neural networking and support vector machine with
nonlinear RBF kernel.

I. INTRODUCTION

The dependence on electronic devices has proliferated in
almost everyday activities making them easy targets and threat-
ening the security and privacy of an individual or a group.
The traditional practice of using a secret binary key stored in
non-volatile memory (NVM) for authentication is less secure
against hardware or software based attacks. In contrast to
NVMs, a physical unclonable function (PUF) does not store
a physical key but rather derives its unique signature from
random variations. A silicon PUF exploits random variations
introduced during IC fabrication process to generate a unique
key, akin to fingerprint for the silicon PUF which can be
used to uniquely identify it. The random variation introduced
into each PUF is hard to predict and unknown even to
the manufacturer, thus making it a useful tool in hardware
security. PUFs implement unique complex functions that are
very difficult to model mathematically. When interrogated with
a challenge, a PUF generates a response which is unique
to that PUF. These challenge response pairs (CRP) can be
used to classify a PUF into 3 groups: strong PUF, weak PUF
and controlled PUF [1]. Strong PUFs have CRPs which grow
exponentially with the number of challenges while weak PUFs
have CRPs which increase linearly with number of challenges.
Controlled PUFs are strong PUFs whose CRPs are protected
through a control logic block. Strong PUFs are mostly used for
authentication purposes due to large number of CRPs, making
it more complex to analyze as the attacker has access to only
limited CRPs over a short amount of time [2].

The promise of using PUF for authentication due to its
unique properties of unclonability and unpredictability is de-
batable in recent times due to various modeling attacks based
on machine learning (ML) algorithms. While ML algorithms

are not new, the recent advances in computing power has
enabled mounting of complicated ML attacks on PUF cells.
For a given number of CRPs the attack is successful when
the PUF’s complex functions are digitally cloned, providing
high accurate predictions for the response developed through
ML algorithms from unknown challenges. [2] shows that use
of support-vector machine (SVM) attack on the well-known
arbiter PUF [3] can predict PUF response with an accuracy
>90% and the prediction accuracy improves as the attacker has
access to more CRPs. [1] shows successful modeling attacks
(prediction accuracy of 99%) on various PUF architectures
using logistic regression (LR) algorithm. [4] shows arbiter
PUF and 2-XOR arbiter PUF are broken through SVM model
with accuracy >95% and >80% respectively. [5], [6] show
an accuracy of >95% and >97% for prediction when ML
modeling attacks based on evolution strategies (ES) were
made against current-based PUFs and arbiter-PUFs respec-
tively. [7], [8] employs artificial neural network (ANN) based
ML modeling attack on feed forward PUFs and 64bit/128bit
XOR PUFs resulting in prediction accuracy of >84% and
>98% respectively. These cases show that PUFs can be broken
through modeling attacks using ML algorithms.

In this work, we propose a strong PUF that can resist ML
attacks. As shown later in the paper, when attacked with LR,
ANN and SVM with nonlinear RBF kernel, the prediction
accuracy of PUF response does not increase with increase
in number of CRPs that are available to the attacker. The
proposed strong PUF is based on a voltage divider array
comprising of MOSFETs that operate in subthreshold region
to exploit large random variation in threshold voltage. Three
nominally identical voltage divider arrays are then cascaded to
ensure the required amount of entropy in CRP, which makes
the whole circuit immune to ML attacks. The rest of the paper
is organized as follows: in Section II, the architecture of the
proposed strong PUF circuit is presented. Section III presents
simulation results which validate the proposed architecture.
Finally, the conclusion is made in Section IV.

II. PROPOSED ARCHITECTURE

The proposed cascaded strong PUF design is shown in
Fig. 1. The unit PUF cell is designed using a CMOS inverter
with the gate and drain shorted together allowing it to act as a
voltage divider circuit. Each PUF cell is biased in weak inver-
sion through a tail current source. Challenges are provided as
inputs to each PUF cell which either connect/disconnect the
PUF cell to the comparator input depending on the challenge
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Fig. 1. Proposed cascaded strong PUF architecture

input being ‘1’ or ‘0’ respectively. Each PUF cell also has
a switch VSLP to disconnect it from power supply and
transitioning the PUF into sleep mode to save power when
the PUF is not in use. Each stage of the cascade is formed
by connecting an array of 20 unit PUFs differentially to the
two inputs of a comparator. Three such stages are cascaded to
form the overall strong PUF with 258 challenge inputs, with
the first stage accepting 220 external challenges and the other
two stages accepting 219 external challenges. The comparator
output of the first stage provides the 20−th challenge input to
the second stage and comparator output of the second stage
provides the 20−th challenge input to the third stage.

Fig. 2. Comparator schematic

A strong-arm latch is used as the comparator as shown in
Fig. 2. Offset of the three comparators should be calibrated to
ensure that the PUF has a normalized inter-HD close to 0.5. In
this design, the comparator offset is calibrated through the pins
Vcp and Vcm which control the bias voltage of two auxiliary
input transistors as shown in Fig. 2. Simulation results indicate
that upto 8mV of comparator offset can be canceled by varying
the bias voltages Vcp and Vcm.
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Fig. 3. PDF of differential voltage between PUF cells

Modeling attack accuracy reduces drastically with the in-
crease in number of cascade stages [9]. In addition, each stage
needs at least 7 unit PUF cells to improve resistance against
ML attacks [9]. However, if there are many stages involved the
design becomes more complex and hardware implementation
requires more area. Also, increase in number of stages, each
with its own comparator, increases the total comparator noise
thus necessitating more energy consumption to improve PUF
reliability. Keeping these considerations in mind, we have
chosen 3 cascade stages with 20 unit PUFs in each stage.

Since each PUF cell is biased in subthreshold region, the
component MOS transistors exhibit large variation in thresh-
old voltages. The probability distribution of the differential
voltages between two PUF units is shown in Fig. 3. Based on
monte-carlo simulations across process and mismatch corners,
voltage difference between two unit PUFs has a standard
deviation of 35mV. For each cascade stage, the worst case
condition in terms of intra-HD occurs when all 20 PUF cells
are connected to the comparator inputs resulting in a reduced



mismatch standard deviation of 8mV. Reliability of the PUF is
degraded due to noise from the comparator and the unit PUF
cells. Noise from PUF cell can be suppressed by reducing
its bandwidth through capacitive loading. For this design,
capacitive loading due to parasitics at the comparator input is
sufficient to adequately suppress PUF noise. The comparator
thermal noise is the dominant noise source for this design.
If the PUF mismatch for a certain challenge input is smaller
than comparator noise level, the response for that challenge
will vary with time or be temporally unstable. Cascading of
stages increases temporal instability and thus places greater
constraints on allowable comparator noise.

Comparator noise depends on input common mode voltage
Vcmi and the power consumed by it. Fig. 4 shows variation of
comparator noise with Vcmi. Keeping the power consumption
constant, the comparator noise can be lowered by reducing the
Vcmi as shown in Fig. 4. The variation of comparator power
with respect to the comparator input common mode voltage is
shown in Fig. 5. Comparator power reduces with increase in
Vcmi while noise increases with increase in Vcmi. Thus, there
is a trade-off between PUF reliability and power and requires
a judicial choice of Vcmi. For the present design, Vcmi of
520mV is chosen for a comparator power of 0.8µW and noise
standard deviation of 600µV.
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Fig. 4. Comparator noise vs Vcmi
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Fig. 5. PUF power vs Vcmi

For good reliability of PUF output, standard deviation of
noise should be much smaller than standard deviation of
random mismatch in PUF cells. Since the distribution of PUF

mismatch and noise are gaussian, probability of a CRP being
temporally stable can be written as

P =

[
1− erf

(
σn

σmis

√
2

)]3
(1)

where σn is the standard deviation of comparator noise, σmis

is the standard deviation of random mismatch in each stage
and the factor 3 comes from the fact that there are 3 stages
in the design. For a target average reliability of 95% and
σmis of 8mV, σn can be calculated to be 170µV. Since
the comparator noise standard deviation is 600µV, we use
averaging in the form of majority voting to reduce comparator
noise. Averaging a random variable by n times reduces its
standard deviation by

√
n. The comparator output has to be

averaged 13 times to reduce its noise to 170µV. A counter
clocked by comparator positive output is used to implement
majority voting of comparator output. We choose a majority
voting of 15 in this design, as for this case the MSB of the
counter can be directly used as the averaged comparator output
without additional hardware.

III. SIMULATION RESULTS

Fig. 6. Normalized hamming distance

The inter-HD and intra-HD histograms are shown in Fig. 6.
For intra-HD simulations, the supply voltage is varied from
750mV to 900mV and the temperature is varied from −20◦C
to 85◦C. Intra-HD simulation is performed for 1000 challenges
and averaged over 2 different PUF instances. For inter-HD
simulation, 50 monte-carlo runs of 1000 challenges at 27◦

C and 0.8V is performed. The normalized intra-HD has a
mean of 0.0696 and standard deviation of 0.0214, while the
normalized inter-HD has a mean of 0.5065 and standard
deviation of 0.0567.

We have used logistic regression, artificial neural network
(ANN) and SVM with RBF kernel for implementing ML
modeling attacks on the proposed PUF. These three algorithms
are widely used for testing resistance of strong PUF against
modeling attacks. Open source python package scikit-learn is
used for logistic regression and ANN [14] and open source li-
braries LIBLINEAR and LIBSVM are used for SVM [15]. We
have set inverse regularization strength and penalty parameter



TABLE I
COMPARISON WITH STATE-OF-THE-ART PUFS

This work [10] [11] [12] [3] [13]

Technology(nm) 65 130 90 40 180 28

Type of PUF Strong Strong Strong Strong Strong Strong

Possible CRPs 1.15 x 1018 ≈ 3.7× 1019 523776 ≈ 5.5× 1028 ≈ 1.4× 1020 1.17× 1011

ML attack accuracy for 104 CRPs 60% 60% 99% − 99% 89.4%

Energy/bit (pJ/bit) 0.43 11 − 17.75 − 0.097

Voltage range (V) 0.75−0.9 1.08− 1.32 1.08− 1.2 0.7− 1.2 1.75− 1.85 0.5− 0.9

Temperature range (◦C) -20 to 85 -20 to 80 20 to 120 -25 to 125 20 to 70 0 to 80

Inter-HD 0.5065 0.499 0.4615 0.5007 0.4 0.481-0.495

Intra-HD 0.0696 0.058 0.0048 0.0101 0.0357 0.0317

to 0.01 for optimizing LR and SVM algorithms respectively.
ANN attack was performed using a hidden layers consisting of
50 neurons with 1000 iterations at learning rate of 0.001. Fig. 7
shows the prediction accuracy for all ML modeling attacks to
be around 60% for the proposed design and the prediction
accuracy does not improve beyond 60% as the number of
CRPs are increased. This indicates a strong resilience of the
proposed PUF against ML attacks.
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Fig. 7. Prediction accuracy for ML attacks on proposed design

In order to more completely investigate the ML resistance
characteristic of the proposed PUF, we adopted 5-fold cross-
validation technique for SVM based ML attack in which
for the same number of CRPs, the training and test set are
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Fig. 8. Prediction accuracy of SVM based ML attacks for five-fold cross-
validation

chosen randomly 5 times. Fig. 8 shows the results of the
cross-validation simulation. The prediction accuracy remained
within 58%-61% over the different cross-validation folds. Prin-
cipal component analysis (PCA) is performed with 1000 CRP.
The data set provided to the ML algorithms are visualized
through PCA while converting the input challenges to 2-
dimension as principal component 1 & 2 while the output
response is mapped to a binary 0 or 1 shown in Fig. 9. No
defined clusters are formed due to the randomness of the
designed PUF’s CRP. This randomness and the non linearity
of the design results in robustness of the proposed PUF design
against ML based modeling attacks. Table I compares the
proposed work with state-of-the-art PUFs. The proposed PUF
has similar robustness against ML attacks as [10] but with 20X
better energy-efficiency. The proposed PUF has a high worst-
case bit-error rate (BER) of 14.75% but this can be reduced by
either removal of worst-case CRPs like in [10] or by reducing
comparator noise at the cost of increased power consumption.

Fig. 9. PCA on 1000 CRP

IV. CONCLUSION

In this work, we have presented a novel, cascaded strong
PUF using voltage divider arrays that can resist ML based
modeling attacks limiting the prediction accuracy to 60%
even with large CRP data. The proposed PUF consumes an
energy of 0.43pJ/bit which compares favorably to state-of-the-
art strong PUFs.
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