
Common-Source Amplifier Based Analog Artificial
Neural Network Classifier
Akshay Jayaraj ∗, Imon Banerjee† and Arindam Sanyal∗

∗Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
Email: akshayja@buffalo.edu, arindams@buffalo.edu

†Biomedical Data Science Department, Stanford University, Stanford, CA 94305, USA. Email: imonb@stanford.edu

Abstract—An analog artificial neural network (ANN) classifier
using a common-source amplifier based nonlinear activation
function is presented in this work. A shallow ANN is designed
using transistor level circuits and a multinomial (10 classes)
classification accuracy of 0.82 is achieved on the MNIST dataset
which consists of handwritten images of digits from 0-9. Use
of common-source amplifier structure simplifies the ANN and
results in 5X lower energy consumption than existing analog
classifiers. The classifier performance is validated using Spectre
and Matlab simulations.

I. INTRODUCTION
With emergence of internet-of-things (IoT), there is a

growing need to impart intelligence to sensor devices for
enabling real-time inference and decision making ability. A
machine learning classifier embedded inside an IoT sensor
can also reduce bandwidth requirements by only transmitting
classifier outcomes rather than raw sensor data. However,
digital implementation of machine learning classifier on-chip
far exceeds the power budget of typical IoT sensors [1]. This
has resulted in interest in analog machine learning classi-
fiers [1]–[5]. Classifiers embedded in IoT sensors are usually
trained offline and the weights are provided to an on-chip
artificial neural network (ANN) for classification at the sensor
node. Analog machine-learning classifiers reported so far in
the literature has implemented either only multiply-and-add
operations or binary classification using linear regression. [2]
presented a switched-capacitor based matrix-multiplier which
achieved 0.85 classification accuracy on images from Cifer-10
database. [3] embedded a matrix multiplier inside an analog-
to-digital converter (ADC) and achieved 0.83 classification
accuracy on a gender detection system while consuming
655nJ/classification. [4] embedded a multiply-and-add circuit
inside a ∆Σ ADC and achieved 0.87 classification accuracy
on MNIST dataset, while [1], [5] presented binary classifiers
with modified Adaboost [6] and achieved 0.9 classification
accuracy on MNIST dataset. [5] has reported the lowest energy
consumption of 534pJ/classification.

In this work, we report a shallow ANN consisting of an
input layer, a hidden layer and an output layer that performs
multinomial (10 classes) classification on MNIST dataset
using nonlinear activation function. MNIST dataset is used
because it is commonly available and image is a popular
modality for IoT sensors. We use common-source amplifiers
for implementing nonlinear activation functions which re-
sults in simulated energy consumption of 100pJ/classification.

While MNIST dataset has images with 28x28 pixels, it is
not feasible to provide 784 external inputs to a chip due to
limitations imposed by pad size. We resize the input images to
5x5 pixels to ensure that inputs can be provided to an on-chip
classifier. [1] resizes MNIST input to 47 pixels and [5] resizes
MNIST input to 82 pixels. While accuracy of our classifier
is limited by input resizing which is a lossy process, the
classification accuracy can be improved if an image sensor
array is integrated with the classifier such that inputs to the
ANN do not have to come from outside. In addition, the
purpose of this work is to show the feasibility of a complete
on-chip analog classifier and we have chosen MNIST dataset
as a vehicle for this demonstration to perform fair comparison
with existing works. Selecting another dataset with inputs
having lower number of pixels will significantly improve
classification accuracy of the proposed system. Even with
the inputs resized to 25 pixels, if the sensor data is to be
transmitted directly, the transmitter will need to send out 250-
bits every cycle assuming the analog sensor data is quantized
to 10-bit. In contrast, with the proposed on-chip classifier,
the transmitter needs to send out only 4-bit digital data every
cycle which reduces transmission bandwidth by approximately
a factor of 60.

The rest of this paper is organized as follows: the classifier
training and circuit implementation is discussed in Section II,
simulation results are presented in Section III and the conclu-
sion is brought up in Section IV.

II. PROPOSED ARCHITECTURE

The core arithmetic operation that an on-chip classifier
needs to perform is given by f (

∑
Wixj) where f(·) can

be linear or non-linear function (also referred to as activation
function), Wi is the weight vector and xi is the input vector.
The arithmetic operation can be performed in either digital or
analog domain. However, analog computation using physical
properties of MOS devices is more energy efficient than digital
computation which only uses MOS devices as switches. We
use a simple common-source (CS) amplifier as the building
block for the proposed classifier. Fig. 1 shows a CS amplifier
with PMOS diode load and the plot of drain-source voltage of
the PMOS load versus input voltage. The transfer function has
a similar shape as activation functions commonly used in ma-
chine learning literature, such as tanh and softmax. In contrast
to prior CMOS implementation of activation functions [7], the

978-1-7281-0397-6/19/$31.00 ©2019 IEEE

proposed implementation uses only 2 transistors and has a
much lower hardware cost which is an enabling factor for
building a complete ANN classifier. Later in this section we
will show how the CS amplifier with diode load is used to
implement a complete ANN classifier. For our ANN classifier,
weight vectors are implemented by varying the widths of banks
of input transistors, while addition is performed in current
domain by summing the currents through each input transistor
using diode-connected load.

0 0.2 0.4 0.6 0.8 1

Vg

0

0.1

0.2

0.3

0.4

0.5

0.6

V
s
d

Vdd

Vsd

Vg

Fig. 1. CS amplifier and its transfer function

x[N]

x[1]

x[2]

W1,1

W2,1

W1,M

WN,M

WN,1

W2,M

Hidden LayerInput
U1,1

U1,10

UM,10

UM,1

Output Layer

Argmax

P0

P9

Predicted

Label

0

Resize

MNIST Image

f() g()

(a)

VDD

VP[j] VM[j]

x[1]

W1,jW2,jWN,j
W3,j W7,j WN-1,j

x[2]x[N] x[3] x[7] x[N-1]

(b)

VDD

Pk

VP[1]

U1,jU2,jUM,j

VM[2]VP[M] VM[3] VP[7] VM[M-1]

U3,j U7,j UM-1,j

(c)

Fig. 2. Schematic of (a) ANN for MNIST classification (b) j-th slice of hidden
layer activation function (c) k-th slice of output layer softmax function

Fig. 2 shows the transistor level schematic of the proposed
classifier with 1 hidden layer. As shown in Fig. 2(a), the input
image is resized from 28x28 pixels to 5x5 pixels and flatted
into a column vector. Each input is attenuated to limit the

input swing from 0 to 0.4V such that the input transistors in
the hidden layer never go into linear region. The inputs are
sent to a hidden layer which performs a nonlinear activation
function (denoted by f(·) in Fig. 2(a)) on the weighted sum
of all inputs. The proposed classifier has 28 hidden neurons
and the weights for the j-th hidden neuron is denoted by
Wi,j where the subscript i corresponds to the i-th input. The
outputs from the hidden layer are sent to the output layer.
Each output neuron performs softmax function (denoted by
g(·) in Fig. 2(a)) on the weighted sum of its inputs. The
output layer has 10 neurons and the predicted output digit
is the label associated with the output neuron with the highest
value, i.e, if for a certain image input, the 8-th output neuron
has the highest value, the classifier will predict the input image
to be digit ‘8’. Fig. 2(b) shows schematic of the j-th hidden
neuron built using the CS amplifier shown in Fig. 1. The inputs
to the hidden neuron are x[i] with the corresponding weight
denoted by Wi,j . Since Wi,j can be either positive or negative,
each hidden neuron is split into 2 halves with the inputs with
positive weight in the left half and inputs with negative weight
in the right half. The output of the hidden neuron is given by
the difference between drain-to-source voltages of the PMOS
loads in the two halves. Fig. 2(c) shows the schematic of the
k-th output neuron. The output neuron is a pseudo-differential
CS amplifier which implements softmax of weighted sum of
hidden layer outputs. Depending on the polarity of the weights
Uj,k, VP [j] and VM [j] are routed to the positive and negative
input of the pseudo-differential amplifier or vice versa. Since
the activation functions are based on current mode operations,
the proposed classifier is immune to charge injection errors
unlike previous switched-capacitor implementations of analog
classifiers.

Fig. 3. Flowchart for proposed analog classifier design
Fig. 3 shows the flowchart used for design of the proposed

ANN classifier. 1 slice of hidden neuron and output neuron
are designed in transistor level and their transfer curves for
different widths of input transistors are extracted using Spectre
simulations. The extracted transfer curves are imported in
Matlab for training the ANN. The MNIST dataset is split
randomly into 60,000 training data and 10,000 testing data.

28x28 image 5x5 image

resize

Fig. 4. Example of resizing input image from 28x28 to 5x5

Algorithm 1 ANN Training pseudo-code
1: W1←Weight vector of input layer to hidden layer
2: W2←Weight vector of hidden layer to output layer
3: NumberCorrect = 0
4: for i<Number of Training Iterations do
5: for j< Size(Train set) do
6: Input← Trainset(j)
7: HiddenOuput← f(Bias;W1, Input)
8: Ouput← g(Bias;W2, HiddenOutput)
9: Prediction← argmax(Output)

10: if Prediction = Train label(j) then
11: NumberCorrect+ = 1

12: end if
13: delta1 ← (Output−trainlabel(j))∗(1−Output2)
14: delta2 ← (W2 ∗ delta1) ∗ (1−HiddenOutput2)
15: W1←W1− alpha ∗ (Input ∗ delta′2)
16: W2←W2− alpha ∗ (hiddenoutput ∗ delta′1).
17: end for
18: accuracy ← NumberCorrect/N

19: end for

20 40 60 80 100

Number of hidden neurons

0.7

0.8

0.9

1

T
ra

in
in

g
 a

c
c
u
ra

c
y

0

0.5

1

1.5

P
o
w

e
r(

m
W

)

operating point

(28 hidden neurons,

 0.83 accuracy, 0.4mW power)

Fig. 5. Classifier accuracy and power versus number of hidden layers

After the training is completed, the weights for hidden layer
and output layer are imported into Spectre netlists for transistor
level simulation. Fig. 4 shows an example of the resizing
operation used to convert 28x28 input image into a 5x5
image. Even though downsizing the input image introduces
loss, the input shape is retained which allows the classifier to
perform predictions with good accuracy. Algorithm 1 shows
the pseudo-code snippet for training the ANN in matlab based

on parameters extracted from Spectre simulations. The ANN
weights are updated as the network iterates through each input
from the training set. The weights are updated using the
well known stochastic gradient descent [8] which computes
derivative of error (mean squared error for our case) with
respect to current weights and calculates new weights based
on the learning rate, derivative of error and current weights.
The hidden layer weights are quantized to 3-bits (4-bits with
sign) and the output layer weights are quantized to 7-bits
(8-bits with sign) during ANN training to keep the ANN
area small. In order to determine the optimum number of
hidden neurons, we performed a sweep of number of hidden
neurons versus classifier accuracy and power consumed by
the hidden layer. The simulation results are shown in Fig. 5.
As the number of hidden neurons increases, classifier training
accuracy increases and so does power consumed by hidden
layer. Training accuracy increases slowly once the number
of hidden layer exceeds 40 but the power keeps increasing
steadily. For 100 hidden neurons, the training accuracy is 0.9
but the power consumed by the hidden layer is 1.4mW. For this
design, we have selected 28 hidden neurons which correspond
to hidden layer power of 0.4mW.

III. SIMULATION RESULTS

The ANN network trained using Matlab is simulated in
Spectre. The test set contains 10,000 images. Fig. 6 shows
the confusion matrix for the test set. The average classification
accuracy over the 10 classes is 0.82. As shown in the confusion
matrix, the accuracy for classifying ‘2’ is the highest at 0.89
while accuracy for classifying ‘3’ is the lowest at 0.77. Digit
‘3’ has a low classification accuracy because it is similar
in structure to ‘8’ and ‘5’ and the classifier has incorrectly
labeled ‘3’ 7% times each when the input is ‘5’ or ‘8’. The
classification accuracy is limited by the errors introduced due
to resizing of the input images and can be improved further if
the number of input features can be increased.

While accuracy is a good measure of how effective a
classifier is, for multinomial classes with uneven distribution,
accuracy does not provide the complete picture. We need other
metrics like precision, recall [9] and f1 score to evaluate the
performance of the classifier. Table I presents the precision,
recall, f1 score and support values for the classifier using
10,000 test data. Considering the class ‘1’, ”precision” of
class ‘1’ is the ratio of correctly predicted ‘1’s to the total
number of images which are predicted as ‘1’ by the classifier.
”Recall” for class ‘1’ is the ratio of correctly predicted ‘1’s
to the actual number of ‘1’s in the dataset. In other words,
”precision” is the ratio of true positive to (true positive + false
positive), while ”recall” is the ratio of true positive to (true
positive + false negative). Thus, a high precision and high
recall value indicates that the classifier is performing well.
”f1 score” captures the effect of both false positives and false
negatives by taking the harmonic mean of precision and recall.
The ”support” column in Table I indicates the number of times
each class appears in the test dataset. The proposed classifier
has the lowest f1 score for ‘8’. This observation is consistent

with the confusion matrix plot in Fig. 6 and the low f1 score
is due to the fact that after reducing the input features, the
distinction between ‘3’, ‘5’ and ‘8’ are reduced.

It is interesting to assess the effect of mismatches on the
classifier accuracy. The transistors are sized up to ensure
that random mismatch does not exceed 2%. Fig. 7 shows
the histogram of classification accuracy extracted from 10
monte-carlo runs across process and mismatch corners. It
can be seen that the classifier has an average accuracy of
0.819 with a standard deviation of 0.02. Thus, the classifier
accuracy is not affected by random variations in transistor
sizes. Fig. 8 shows histogram of classifier accuracy as the
proposed ANN performs classification repeatedly on the same
test set in presence of transient noise. The standard deviation
of classification accuracy is only 0.17m indicating that the
proposed ANN has very high signal-to-noise ratio.

0.82

0.01

0.05

0.05

0.01

0.07

0.04

0.01

0.02

0.02

0.01

0.82

0.01

0.02

0.03

0.02

0.03

0.02

0.12

0.02

0.02

0.01

0.89

0.03

0.02

0.02

0.04

0.02

0.04

0.02

0.03

0.01

0.07

0.77

0.01

0.10

0.01

0.01

0.06

0.02

0.01

0.02

0.04

0.02

0.83

0.03

0.02

0.04

0.04

0.04

0.04

0.02

0.03

0.07

0.01

0.79

0.02

0.01

0.08

0.02

0.02

0.03

0.06

0.02

0.02

0.04

0.86

0.01

0.04

0.01

0.02

0.01

0.05

0.02

0.01

0.03

0.01

0.86

0.03

0.05

0.02

0.07

0.05

0.07

0.02

0.02

0.01

0.02

0.78

0.03

0.01

0.02

0.02

0.04

0.05

0.02

0.01

0.09

0.08

0.76

0 1 2 3 4 5 6 7 8 9

Target Class

0

1

2

3

4

5

6

7

8

9

O
u

tp
u

t
C

la
s
s

Fig. 6. Confusion matrix plot

TABLE I
PRECISION AND RECALL FOR THE CLASSIFIER

Label Precision Recall f1 score Support
0 0.9122 0.8135 0.86 980
1 0.91724 0.8076 0.8589 1135
2 0.7355 0.8764 0.7998 1032
3 0.7733 0.7627 0.7679 1010
4 0.8921 0.8241 0.8567 982
5 0.7018 0.7825 0.74 892
6 0.8914 0.8472 0.8688 958
7 0.8424 0.8507 0.8465 1028
8 0.5287 0.771 0.6273 974
9 0.8662 0.7502 0.804 1009

Table II compares our work with state-of-the-art classifiers.
All of [1], [3], [5] implements only the weak linear regression
classifiers on-chip and the boosting is done off-chip to improve
accuracy. As can be seen from Table II, the proposed classifier

Fig. 7. Classifier accuracy versus monte-carlo iterations

Fig. 8. Classifier accuracy versus noise

consumes 5X lower energy/classification than state-of-the-art
while achieving comparable classification accuracy as existing
analog/mixed-signal classifiers. Accuracy of our classifier can
be improved if we can accommodate a larger input size.

TABLE II
COMPARISON WITH STATE-OF-THE-ART CLASSIFIERS

[3] [1] [5] This work
Process(nm) 130 130 130 65
Architecture ADC Comparator SRAM Amplifier
Application Gender MNIST MNIST MNIST
Accuracy 0.83 0.9 0.9 0.82
Speed (MHz) 0.02 0.2 50 1
Energy(nJ/ 655a 0.534a 0.633a 0.1b

classification)
a measured; b simulated results

IV. CONCLUSION

In this paper, we have presented an analog machine learning
classifier which uses two-transistor common-source ampli-
fier as the basic building block. We have used the popu-
lar MNIST dataset with hand written images from 0-9 to
demonstrate the effectiveness of the proposed classifier. The
proposed classifier has an accuracy of 0.82 and consumes only
100pJ/classification which is 5X better than state-of-the-art.

REFERENCES

[1] Z. Wang and N. Verma, “A low-energy machine-learning classifier based
on clocked comparators for direct inference on analog sensors,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 11,
pp. 2954–2965, 2017.

[2] E. H. Lee and S. S. Wong, “ A 2.5 GHz 7.7 TOPS/W switched-capacitor
matrix multiplier with co-designed local memory in 40nm,” in IEEE
International Solid-State Circuits Conference (ISSCC), 2016, pp. 418–
419.

[3] Z. Wang, J. Zhang, and N. Verma, “Realizing Low-Energy Classification
Systems by Implementing Matrix Multiplication Directly Within an
ADC.” IEEE Trans. Biomed. Circuits and Systems, vol. 9, no. 6, pp.
825–837, 2015.

[4] F. N. Buhler, A. E. Mendrela, Y. Lim, J. A. Fredenburg, and M. P. Flynn,
“A 16-channel noise-shaping machine learning analog-digital interface,”
in IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, pp. 1–2.

[5] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier im-
plemented in a standard 6T SRAM array,” in IEEE Symposium on VLSI
Circuits (VLSI-Circuits), 2016, pp. 1–2.

[6] D. P. Solomatine and D. L. Shrestha, “AdaBoost. RT: a boosting algorithm
for regression problems,” Neural Networks, vol. 2, pp. 1163–1168, 2004.

[7] M. Carrasco-Robles and L. Serrano, “A novel CMOS current mode fully
differential tanh (x) implementation,” in IEEE International Symposium
on Circuits and Systems, 2008, pp. 2158–2161.

[8] S.-i. Amari, “Backpropagation and stochastic gradient descent method,”
Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993.

[9] J. Davis and M. Goadrich, “The relationship between Precision-Recall
and ROC curves,” in Proceedings of the 23rd international conference
on Machine learning. ACM, 2006, pp. 233–240.

