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A statistical estimator based on maximum-likelihood estimation theory
is developed to simultaneously reduce capacitor mismatch and noise in
a SAR ADC. After the SAR ADC has finished quantization, the residue
voltage is available at the comparator input and is estimated accurately
by using the statistical estimator. The ADC resolution is improved by
subtracting the estimated residue from the digital output. The same
technique of residue extraction is used to estimate mismatches in the
capacitive DAC. This work shows a 7dB improvement in SNDR by
using the statistical estimator for an 11-bit SAR over a wide range of
capacitance mismatch and ADC noise.

Introduction: Successive approximation register (SAR) analog-to-digital
converter (ADC) is widely used for medium resolution applications due
to its very high energy efficiency and highly digital nature. While medium
resolution SAR ADCs can have energy consumption as low as a few fJ
for each conversion-step, energy efficiency of SAR ADCs reduces with
increase in resolution. This is because at high resolutions, comparator
thermal noise becomes the dominant noise source and requires 4X
increase in power consumption for 1-bit increase in SAR resolution. A
technique to address this issue is to add a second-stage after the SAR
ADC [1]. The second-stage ADC quantizes the residue of the SAR
stage, vres, and subtracts it from the first stage output to digitize the
analog input with better accuracy than the SAR stage alone. Since the
second-stage quantizer cancels the quantization and comparator thermal
noise of the SAR, a high resolution can be achieved with good energy-
efficiency [1]. In principle, a separate quantizer is not required to digitize
vres. Once the SAR has finished quantization, vres is available at the
comparator input nodes. Hence, the SAR comparator itself can be used
to digitize vres. However, a single comparison is not going to yield a
very accurate estimate of vres. The presence of random noise at the
comparator input ensures that if multiple comparisons are performed on
vres, a better estimate of vres can be obtained by simple averaging or
majority voting [2]. More recently, statistical estimation theory has been
applied to digitize vres. The technique in [3] uses maximum likelihood
estimator (MLE) to digitize vres. However, [3] uses 16 comparators for
vres estimation and it is not trivial to match offsets of all 16 comparators.
The technique in [4] presents a Bayes estimator (BE) which performs
better than the MLE technique proposed in [3], but requires prior
knowledge of noise distribution at the comparator input. While adoption
of low power switching techniques [5] and statistical estimation has
improved SAR energy-efficiency significantly, further increase in energy
efficiency can be achieved if size of the capacitive digital-to-analog
converter (DAC) is reduced. Reducing DAC size comes with the penalty
of increased capacitance mismatch. [6] presents a widely used technique
to calibrate capacitance mismatches, but requires an additional sub-DAC.
Other mismatch reduction techniques use perturbation-based digital
background calibration [7] or inject pseudo-random sequences during
comparator metastability periods to measure the distance between code-
boundaries [8]. However, most previously reported techniques cannot
address both noise and mismatch simultaneously. In this letter, we will
present a statistical estimator which uses maximum likelihood estimation
(MLE) to simultaneously suppress both noise and capacitor mismatch
in SAR ADCs without any prior knowledge of noise distribution. The
proposed estimator provides asymptotically unbiased and consistent
estimation of vres.

Proposed Architecture: Fig. 1 shows the architecture and mathematical
model of the proposed technique. A single-ended circuit architecture is
shown in Fig. 1(a) for simplicity. In Fig. 1(b), thermal noise from the
comparator and kT/C sampling noise is represented by nth at the ADC
input, quantization noise is modeled by an additive error q1 and δ denotes
capacitor mismatch in the DAC. Using Fig. 1(b), dsar and vres can be
calculated as

dsar = Vin + nth + q1; vres = dsar + δ − Vin (1)

A maximum likelihood estimator is used to digitize vres and capacitor
mismatch δ and subtract them at the output. The final digital output is

given as

dout = dsar − v̂res + δ̂= Vin + ε (2)

where ε is the estimation error of MLE. Thus, resolution of the ADC is
determined solely by how accurately vres and δ can be estimated.
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Fig. 1. (a) Circuit diagram, (b) mathematical model of proposed technique

Estimation of capacitor mismatch and noise: After the SAR ADC has
finished quantization, vres is available at the comparator’s inputs. The
comparator is fired M times and the comparator outputs di(i ∈ [1,M ]),
are passed to the estimator. The estimator’s task is now to extract v̂res
from the distribution of di such that χ= (vres − v̂res)2 is minimized.
The main challenge for applying MLE is how to define a likelihood
function for the comparator. For each quantization, we modeled the
likelihood function as the joint density of vres and the comparator outputs
di(i ∈ [1,M ]):

L(vres|d1, d2, ...dM ) =
1√

2πσ2
c

M∏
i=1

e
(di−vres)

2

2σ2c (3)

where σc is the standard deviation of comparator noise. To minimize the
error χ, the estimator maximizes the likelihood by following MLE theory
and estimates v̂res as:

v̂res = arg maxL(vres|d1, d2, ...dM ) (4)

The effect of kT/C sampling noise is ignored in the calculation as
for medium to high resolution SAR ADCs, comparator noise usually
dominates kT/C noise.

In presence of mismatches in the DAC, each capacitor in the DAC
array can be written as C

′
i =Ci + ∆Ci, i∈ [1, N ]. The voltage error

contributed by ∆Ci is given by

Vε,i =
∆Ci∑N
i=1 C

′
i

· Vref (5)

The error due to capacitor mismatches can be written as δ=
N∑
i=1

Vε,idsar,i. In order to estimate δ, a technique similar to [6] is used

but without using any auxiliary sub-DAC. As an example, to estimate
mismatch in the MSB capacitor, during the sampling phase of the ADC,
Vref is sampled on the MSB capacitor and ‘0’ on all the other capacitors.
During the quantization phase, the MSB capacitor’s top-plate is tied to
‘0’ and top-plate of all the other capacitors are tied to Vref . Voltage error
due to MSB capacitor mismatch, Vε,N , can be calculated from the residue
voltage, vres,N at the comparator input and is estimated using MLE. The
same technique is used for the other capacitors in the DAC and error
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voltage due to mismatch in the i-th capacitor can be written as

Vε,N =
vres,N

2
; Vε,i =

1

2

vres,i − N∑
j=i+1

Vε,j

 , i∈ [1, N − 1] (6)

Thus, MLE can be used to extract capacitor mismatch in the DAC by
providing estimates of vres,i, (i ∈ [1, N ]). Since, capacitor mismatch
does not vary much with PVT, mismatch calibration can be performed
once and the extracted mismatch values can be used for subsequent
quantization operations.

Simulation Results: The capacitance mismatch and residue extraction
algorithm was tested with an 11-bit SAR. A 1% capacitor mismatch was
assumed. The comparator noise standard deviation, σc, was set to 0.65
LSB. After the SAR had finished quantization, the comparator was fired
20 times for estimation of vres using MLE. 213 point FFT of the ADC
with and without MLE is shown in Fig. 2. Use of MLE improved the
SNDR of the ADC from 57dB to 64dB and improved the SFDR by 10dB.
The lowering of noise floor due to MLE can be clearly seen. Compared
to [4], use of MLE to reduce both noise and capacitance mismatch results
in a 2dB better SNDR.
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Fig. 2. Spectra of 11-b SAR ADC with and without estimation

Fig. 3 shows the SNDR variation with capacitance mismatch with and
without using MLE. It can be clearly seen that use of MLE results in a
consistent improvement in SNDR of around 7dB over a wide range of
capacitance mismatch.
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Fig. 3. SNDR versus capacitance mismatch

Use of MLE allows significant reduction in comparator and DAC
switching power. To achieve the same SNDR without using MLE requires
7dB reduction in comparator noise power which necessitates a σc of
0.13 LSB. To reduce the comparator noise from 0.65 LSB to 0.13 LSB
requires 25 times increase in comparator power. For an 11-bit SAR, the
unit capacitor requires a matching accuracy of at least 0.5%. However,
as can be seen from Fig. 3, use of MLE relaxes the capacitor matching
accuracy to 1% which allows 4 times reduction in unit capacitor size, thus
reducing the DAC switching power by 4. Thus, the overall ADC power
can be greatly reduced through simultaneous reduction in capacitor
mismatch and ADC noise using MLE. As an example, an 11-bit SAR
ADC, with SNDR of 64dB, designed in 40nm CMOS process consumes

292µW power of which the comparator consumed 256µW and the DAC
consumed 28µW. The DAC had a matching accuracy of 0.3%. Use of
MLE reduces the comparator power to 10.2µW and the DAC switching
power to 2.5µW, thus reducing the overall ADC power by a factor of 14.
Firing the comparator for an additional 20 times will reduce the sampling
speed by roughly a factor of 2.5, but that is not a major issue for most
low speed bio-medical applications which can trade-off speed for lower
power and higher resolution.

A pertinent question that arises here is since the estimation accuracy
depends on the comparator noise standard deviation, (see (3)), how
accurate will the estimation be as σc varies with PVT. Fig. 4 shows the
improvement in SNDR by using MLE as σc is varied from 0.3 LSB to 1
LSB. As is expected, if σc is very small, multiple comparisons will not
yield much information about the residue and the estimation accuracy
will be low. Once σc is over 0.5 LSB, MLE results in a consistent 7dB
better SNDR than without estimation.
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Fig. 4. SNDR versus comparator noise

Conclusion: This work has presented a statistical estimation technique
based on MLE for reducing both noise and capacitance mismatch in a
SAR ADC. The use of MLE results in 7dB improvement in SNDR for an
11-bit SAR ADC, or equivalently, for the same resolution MLE results in
lowering of the 11-bit SAR ADC power by 14 times.
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