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Abstract— This paper presents a power-efficient noise reduc-
tion technique for successive approximation register analog-to-
digital converters (ADCs) based on the statistical estimation
theory. It suppresses both comparator noise and quantization
error by accurately estimating the ADC conversion residue.
It allows a high signal-to-noise ratio (SNR) to be achieved with
a noisy low-power comparator and a relatively low resolution
digital-to-analog converter (DAC). The proposed technique has
low hardware complexity, requiring no change to the standard
ADC operation except for repeating the least significant bit (LSB)
comparisons. Three estimation schemes are studied and the
optimal Bayes estimator is chosen for a prototype 11-b ADC
in 65-nm CMOS. The measured SNR is improved by 7 dB
with the proposed noise reduction technique. Overall, it achieves
10.5-b effective number of bits while operating at 100 kS/s and
consuming 0.6 µW from a 0.7-V power supply.

Index Terms— Analog-to-digital converter (ADC), comparator
noise, data converter, high resolution, low power, statistical
estimation, successive approximation register (SAR).

I. INTRODUCTION

RAPID advances in wireless sensor nodes and biomedical
devices place demanding requirements on low power and

high resolution analog-to-digital converters (ADCs) [1], [2].
Successive approximation register (SAR) ADC is a popular
choice due to its simple architecture and short development
cycle. It can achieve an excellent power efficiency of only
a few femtojoule (fJ) per conversion step, especially at low
resolution with a target effective number of bits (ENOB)
below 10 b [3], [4]. Despite these advantages, it is nontrivial
to design a high resolution SAR ADC and maintain a high
power efficiency when extending the resolution beyond 10 b.
To reach higher signal-to-noise ratio (SNR), the comparator
noise needs to be reduced. This can be accomplished by brute-
force analog scaling, but it requires four times the comparator
power for every 1-b reduction in noise [5]. The other challenge
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for a high-resolution SAR ADC is its exponentially growing
capacitive DAC size and power. Facing these challenges,
it is highly desirable to develop a more efficient way to
increase SAR ADC resolution without significantly increasing
the comparator power and the DAC size.

There are prior works that can reduce the comparator power
and noise. The technique of [6] arranges two comparators
with different noise and power levels. Its limitation is that
the offsets of the two comparators need to be tightly matched,
which is nontrivial at high resolution. To address this issue,
the majority voting technique is developed [7]. It uses only
one low-power high-noise comparator. When low comparator
noise is needed at critical decision points, the comparator is
fired multiple times and the decision is made via majority
voting. However, it requires a carefully tuned metastability
detector to sense the comparator input voltage. A similar
technique using an optimized vote allocation is reported in [8].
The majority voting technique of [7] and [8] can reduce
the comparator noise, but they do not make full use of the
information embedded in the voting results. It only cares about
whether there are more “1”s or more “0”s, and uses it only to
make a 1-b majority decision. It does not take advantage of the
detailed distributions of “1”s and “0”s, which carry valuable
information.

This paper presents a statistical estimation-based technique
that can reduce both the comparator noise and the quantization
error in SAR ADCs. Its circuit implementation is simple.
It does not require any change to the standard SAR ADC
operation except for repeating the last LSB comparison for
multiple times [9]. It exploits all the information embedded in
the comparator output distribution, not just making a binary
majority decision for the LSB bit as in [7] and [8], but
to estimate the magnitude of the comparator input voltage.
A useful property of an SAR ADC is that the comparator
input voltage is the ADC conversion residue. If we are able to
estimate the residue, we can subtract it from the ADC output
to increase the ADC resolution. Note that this reduces not only
the comparator noise, but also the quantization error, which is
impossible with prior works [6]–[8]. Although a “1”-b high-
noise comparator cannot provide an accurate estimation for
its input if used only once, we can improve the estimation
accuracy by repeating the comparison for multiple times and
examining the number of comparator outputs being “1” or “0.”
It turns out that the estimation of an unknown value via
multiple noisy binary tests is a classic statistical estimation
problem [10]. Thus, we can directly borrow the concepts
and theories from statistics to solve our estimation problem.
Specifically, this paper discusses three widely used statistical
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Fig. 1. Diagram for a b-bit SAR ADC.

estimators: the averaging-based estimator, the maximum like-
lihood estimator (MLE), and the Bayes estimator (BE). Out of
them, the BE achieves the lowest estimation error, and thus,
is chosen for our proposed SAR ADC.

This paper introduces the statistical estimation theory to the
field of ADC design and offers a new perspective. The theories
from statistics are helpful when we deal with multiple noisy
comparator outputs, as in our case. The concept of statistical
estimation has been used in prior studies. For example, the
stochastic flash ADC of [11] exploits random offsets in an
array of comparators to obtain a 6-b estimation of its input.
Recently, it has been used as a back end of an SAR ADC [13].
Though independently developed, the work of [13] shares a
similar big picture as our work as it uses multiple comparison
results to estimate the SAR conversion residue. However, this
paper has two key advantages for our intended applications
both in the choice of the estimator and the circuit. First,
the work of [13] uses MLE, which is a suboptimal choice
compared with the BE used in this paper. Second, it arranges
16 different comparators for the LSB estimation. Their offsets
need to be carefully calibrated, which is a big burden espe-
cially for high resolution applications and considering process,
voltage, and temperature (PVT) variations. By contrast, we just
reuse the original comparator in the SAR ADC, and thus, do
not have the offset mismatch problem. Our tradeoff is reduced
conversion speed as it requires a larger number of comparison
cycles. Yet, for the intended low-speed sensor applications, the
speed penalty is a minor issue.

To validate the proposed noise reduction technique, a pro-
totype 11-b SAR ADC is implemented in 65-nm CMOS.
Using the proposed technique, the SNR is improved by 7 dB,
which matches well with the theoretical prediction. Overall,
the prototype ADC achieves an ENOB of 10.5 b at 100 kS/s
while consuming 0.6 μW of power from a 0.7-V supply.

This paper is organized as follows. Section II describes the
basic idea of the proposed technique. Section III discusses
three statistical estimators. Section IV presents the prototype
ADC design. Section V shows measurement results. The
conclusion is given in Section VI.

II. STATISTICAL ESTIMATION-BASED NOISE REDUCTION

TECHNIQUE: BASIC IDEA

Fig. 1 shows the simplified block diagram of a single-ended
b-bit bottom-plate sampled SAR ADC. We can derive the

following relationship between the ADC input Vin and the
output Dout:

Dout = Vin + ns + Vos + Vres (1)

where ns represents the sampling kT/C noise, Vos is the
comparator offset, and Vres is the conversion residue with
Vos taken out. Here, for simplicity of presentation, we have
made two assumptions that do not undermine the practicality
of the proposed technique: 1) we assume the parasitic capacitor
CP = 0; it can be added in (1) by applying a scaling factor
to Vres and Vos and 2) we ignore the effect of capacitor
mismatch. In practice, if capacitor mismatch is a problem,
classic mismatch calibration techniques [14] can be applied.

As shown in (1), the ADC conversion error, defined as
(Dout − Vin), consists of ns , Vos, and Vres. Vos acts as a global
ADC offset and does not affect the SNR. ns is directly added to
Vin during the sampling phase. To reduce ns , the only option is
to increase the DAC capacitance CDAC, which is not the focus
of this paper. In an SAR ADC, its noise is typically dominated
by Vres [7], [19], [20]. Thus, this paper focuses on reducing
Vres. Vres consists of three parts: the quantization error, the
comparator noise, and the DAC noise. If the ADC does not
have any comparator noise or DAC noise, Vres is simply the
quantization error and is uniformly distributed between ±1/2
LSB. By contrast, in the presence of large comparator noise
(in an SAR ADC the comparator noise is typically much
large than the DAC noise), Vres is Gaussian distributed with
a standard deviation close to the comparator noise. To reduce
Vres, a straightforward way is to use a low-noise comparator
and a high-resolution DAC; however, both lead to greatly
increased circuit power.

This paper proposes a power efficient way to reduce Vres.
The core idea is that if we can estimate Vres, denoted as V̂res,
we can increase the ADC SNR by subtracting V̂res from Dout

D∗
out = Dout − V̂res = Vin + ns + Vos + (Vres − V̂res) (2)

which shows that the noise of the new ADC output D∗
out is

limited not by Vres but by the estimation error (Vres − V̂res).
An interesting note is that if the estimation error can be made
small, the SNR of D∗

out can even surpass the limit set by
the ADC quantization error. This implies that the proposed
technique can actually permit, for example, an SAR ADC with
a b-bit DAC array to reach more than b-bit resolution.

Now with the core idea captured in (2), the key question is
how we can estimate Vres. Since Vres is readily available at the
comparator input, we propose to use the original noisy SAR
comparator to estimate Vres. This may appear counterintuitive,
because the comparator can only provide a binary decision and
its output is error prone due to its high noise. Certainly, one-
time comparison is insufficient. What we propose is to simply
repeat the LSB comparison for a total of N times and estimate
Vres by examining the number of “1”s, denoted as k. This is
doable because the comparator output carries information on
its input. Qualitatively speaking, if k = N , we know that Vres
is most likely a large positive value; if k = 0, Vres is most
likely negative with a large magnitude, and if k = N/2, Vres

is highly probable to be close to zero.
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Fig. 2. Simplified SAR ADC model during the LSB comparison.

III. PROPOSED STATISTICAL ESTIMATORS

After presenting the basic idea of our proposed noise
reduction technique, we now quantitatively answer what is the
optimum choice of the estimator V̂res given the number of LSB
comparisons N and the number of “1”s k. Let us focus our
attention on the repeated LSB comparison, whose model is
shown in Fig. 2. d0,i presents the i th LSB comparison result,
where i is from 1 to N . nc represents the total noise referred
to the comparator input. It includes both the comparator noise
and the DAC noise. It is typically dominated by the comparator
noise. nc is zero mean, and we denote its standard deviation as
σ in the following discussion. Our goal is to form an estimator
V̂res that minimizes the mean square error (mse), defined as

MSE = Var(Vres − V̂res) = E[(Vres − V̂res)
2] (3)

where Var and E stand for statistical variance and expectation,
respectively [10]. Specifically, we discuss three widely used
statistical estimators: the simple averaging based estimator,
the MLE, and the BE. They all can be implemented as
precomputed lookup tables with similar hardware costs.

A. Estimator Based on Averaging

One straightforward way to define V̂res is +1 LSB for all
straight “1”s, −1 LSB for all straight “0” s, and performing
linear interpolation for other values of k, as follows:

V̂res,avg(k) = 2k − N

N
. (4)

Although V̂res,avg is easy to construct, it has several drawbacks.
First, because V̂res,avg is bounded by ±1 LSB, it cannot
estimate Vres that is outside of that range. This can be observed
from Fig. 3 that plots the mse of V̂res,avg as a function of
Vres, N , and the comparator noise σ . If the comparator noise
σ is large, there is a high probability for |Vres| > 1 LSB,
and V̂res,avg does not work well. Second, the shape of its mse
curve varies substantially with the comparator noise σ . The
reason is that the comparator noise affects the value of k,
but such influence is not captured in (4). The overall best
performance for V̂res,avg in terms of a small and relatively flat
mse is obtained only when the comparator noise σ is close to 1
LSB [see Fig. 3(c)]. This limits its applicability. Furthermore,
although its mse decreases as N increases, the region with a
small mse becomes narrower (see Fig. 3). For a nonzero Vres,
the mse of V̂res,avg does not decrease to 0 even if N goes to
infinity. The reason is that V̂res,avg is a biased estimator of Vres,
and the bias does not converge to zero [10].

B. Maximum Likelihood Estimator

A key reason that V̂res,avg does not achieve a low estimation
error is that it does not assume any prior information on the
comparator noise σ . In practice, σ is chosen by the designer.
It can be extracted via SPICE simulations or obtained by per-
forming a simple foreground estimation. We can set Vin = 0
by shorting the ADC input, and monitor the standard deviation
of Dout. Since we have assumed that comparator noise σ is the
dominant random source, the standard deviation of Dout sim-
ply reflects the value of σ . Given this, we can take advantage
of σ to form a much better estimator, which is the MLE.

The definition of MLE is easy to understand. Given the
number of comparisons N and the number of “1”s k, we
define the estimator V̂res to be the value that maximizes the
probability of observing k “1”s out of N comparisons. MLE
has been thoroughly studied in statistics and has several merits.
First, it is consistent. As N increases, V̂res,MLE converges
to Vres and can achieve arbitrary precision [10]. Second,
it is highly efficient from the information usage point of
view. It achieves the Cramer–Rao lower bound as N goes to
infinity, which means that MLE achieves the lowest asymptotic
mse [10]. We can derive V̂res,MLE for our problem [10]

V̂res,MLE(k) = σ · F−1
(

k

N

)
(5)

where F(x) is the cumulative distribution function of the nor-
mal distribution with mean of 0 and variance of 1. Equation (5)
shows that V̂res,MLE is linearly proportional to the comparator
noise σ . This is different from V̂res,avg that has no dependence
on σ [see (4)].

V̂res,MLE defined in (5) has one limitation that it does not
work for k = 0 and k = N . If we plug k = 0 or k = N into (5),
V̂res,MLE is ±∞. This is expected because V̂res,MLE = −∞
achieves the highest probability for k = 0, and V̂res,MLE = ∞
ensures that k = N . This issue may be minor for a large N ,
because the probability of k = 0 and k = N would approach
zero. However, for a small N , k = 0 and k = N do appear,
which causes an estimation failure. To solve this problem, we
redefine V̂res,MLE(0) = σ · F−1(0.2/N) and V̂res,MLE(N) =
σ · F−1(N − 0.2/N). For other k lies in [1, N − 1], we still
follow the definition of (5). Fig. 4 shows V̂res,MLE as a function
of k and N . Different from V̂res,avg, the relationship between
V̂res,MLE and k is nonlinear. The range of V̂res,MLE expands
with N , from ±1.6σ at N = 3 to ±2.3σ at N = 15. This
means that V̂res,MLE can approximate a wider range Vres as N
increases.

To evaluate how accurate V̂res,MLE is, we plot its estimation
error as a function of Vres and N in Fig. 5. In general, its mse
decreases as N increases. For the same N , its mse is small
for a small Vres value, but increases as the amplitude of Vres
increases. The reason is that the value of V̂res,MLE is bounded
for a given N (see Fig. 4) and, thus, does not work well for a
very large Vres. However, unlike V̂res,avg, the range of V̂res,MLE
increases with N , and thus, its region with a small mse is
broadened. This is a key advantage of V̂res,MLE compared to
V̂res,avg. It enables V̂res,MLE to accurately estimate a wide range
of Vres especially for a large N .
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Fig. 3. MSE of V̂res,avg for various N . (a) σ = 0.5 LSB. (b) σ = 2 LSB. (c) σ = 1 LSB.

Fig. 4. Value of V̂res,MLE as a function of N and k.

Fig. 5. MSE of V̂res,MLE for different values of Vres.

C. Bayes Estimator

MLE is a significant improvement over the simple averaging
based estimator, but it still does not achieve the lowest
estimation error. There is one extra piece of information that
MLE does not make use of, which is the distribution of Vres.
Fig. 6 shows the simulated histograms of Vres for an 11-b
SAR ADC assuming the comparator noise σ = 1 LSB.
Three different input signals are used. Sinusoidal inputs with
−6 and −20 dBFS are used in Fig. 6(a) and (b), respectively.
A Gaussian random input with a standard deviation of 10%
ADC full swing is used in Fig. 6(c). As can be seen, there is
negligible difference in the Vres distribution among the three
cases. They are all close to Gaussian distribution with zero
mean and a standard deviation of 1 LSB. This shows that

the distribution of Vres has very weak dependence on the
ADC input Vin. This is not hard to understand especially in a
power optimized design where the comparator noise usually
dominates over the quantization noise. By the end of the
11-b SAR conversion, the conversion residue Vres is almost
completely uncorrelated with Vin, and is basically set by the
comparator noise. Given this observation, we can approximate
Vres as a Gaussian random variable and its probability density
function (pdf) g(Vres) ≡ f (Vres/σ), where f (·) is the pdf of
Gaussian distribution with zero mean and standard deviation
of 1.

Now let us derive the BE. For simplicity, let us consider an
example of N = 3. We can have four different values for k,
which is 0, 1, 2, and 3. For each case, we can calculate the
posterior distribution g(Vres|k) using the Bayes theorem [10]

g(Vres|k) = P(k|Vres)g(Vres)∫ +∞
−∞ P(k|Vres)g(Vres)dVres

(6)

where P(k|Vres) is the probability of observing k “1”s condi-
tioning on Vres. Fig. 7 plots the Vres prior distribution g(Vres)
together with its posterior distributions g(Vres|0), g(Vres|1),
g(Vres|2), and g(Vres|3). Bayes rule basically allows us to
update the distribution of Vres given the observation result k.
We see that the prior and posterior distributions are different,
which is enabled by the knowledge of k. For example, com-
pared to g(Vres), the posterior distribution g(Vres|0) is shifted
toward the negative side. This is because after observing
all “0”s from the comparator outputs, we can update the
distribution of Vres, which should be more negatively biased.

The BE is defined as the mean of the posterior distribution

V̂res,BE(k) ≡ E(Vres|k) =
∫ +∞

−∞
Vres · g(Vres|k)dVres. (7)

For the case of N = 3, we can calculate that V̂res,BE(0) =
−1σ , V̂res,BE(1) = −0.3σ , V̂res,BE(2) = +0.3σ , and
V̂res,BE(3) = +1σ , respectively. Note that (6) and (7) are
computationally intensive. Fortunately, we do not need to solve
V̂res,BE for every ADC output. We only need to compute once,
and store the results for all possible k values in a lookup table.
This way, once we know k, V̂res,BE can be directly obtained
from the table.

The BE can be proved to achieve the minimum mse. It
is easy to derive that the mse for an estimator V̂res with the
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Fig. 6. Histogram of Vres for (a) −6 dBFS sinusoidal input, (b) −20 dBFS sinusoidal input, and (c) Gaussian random input with standard deviation of 10%
ADC full range.

Fig. 7. Prior distribution g(Vres) and posterior distribution g(Vres|k) for
N = 3.

Fig. 8. V̂res,BE as a function of N and k.

observation k is given by

MSE(k) = E[(Vres − V̂res)
2| k]

= V̂ 2
res(k) − 2 · E(Vres|k) · V̂res(k) + E

(
V 2

res| k
)
. (8)

It is minimized by choosing the BE defined in (7).
Fig. 8 shows V̂res,BE as a function of k and N . Comparing it

with V̂res,MLE shown in Fig. 4, the range of V̂res,BE is smaller
than that of V̂res,MLE. The reason is that V̂res,BE makes use
of the prior distribution of Vres. Since Vres is concentrated
around zero, V̂res,BE is biased more toward zero. Fig. 9 shows
mse for V̂res,BE as a function of Vres and N . Comparing it
with Fig. 5 of V̂res,MLE, the mse of V̂res,BE is smaller than

Fig. 9. MSE of V̂res,BE for different values of Vres.

Fig. 10. MSE versus N for a normal distributed Vres with σ = 1 LSB.

that of V̂res,MLE for a small Vres in [−2σ,+2σ ], but is slightly
larger for |Vres| > 2σ . However, because Vres is known to
concentrate around 0, it is expected that the overall mse of
V̂res,BE is smaller than that of V̂res,MLE.

To compare the estimation error for the three estimators,
we compute the mse of V̂res,avg, V̂res,MLE, and V̂res,BE for
σ = 1 LSB, and plot them as a function of N in Fig. 10.
As expected, the mse of V̂res,BE is consistently smaller than
that of V̂res,avg and V̂res,MLE, indicating the highest estimation
accuracy. The mse asymptotic slopes for V̂res,MLE and V̂res,BE
are both 3 dB/octave, which is set by the Cramer–Rao lower
bound [10].
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Fig. 11. MSE reduction versus various comparator noise σ .

So far we have assumed σ = 1 LSB. The BE also works for
other σ values. If σ is small, g(Vres) is no longer Guassian, but
it can be obtained by either more complicated hand calculation
or running behavioral simulation. Once g(Vres) is obtained,
the rest of the computation for V̂res,BE remains the same as
in (6) and (7). Fig. 11 shows the simulated mse reduction
versus σ for N = 32. BE works well and always outperforms
MLE. As σ reduces, both BE and MLE become less effective.
This is because statistical estimation relies on the comparator
noise to randomize the comparator output. If σ is too small,
the comparator outputs tends to be all “1”s or “0”s, and
the information that can be extracted from the comparator
output reduces. The dotted lines in Fig. 11 plot the mse
reduction using fixed BE and MLE obtained at σ = 0.65 LSB.
They clearly show that both BE and MLE require accurate
knowledge of σ . As σ varies, both BE and MLE need to be
recomputed to ensure consistent mse reduction.

D. Practical Considerations

As mentioned in Section II, the proposed technique can
improve the ADC SNR by minimizing the effect of Vres, but
it cannot reduce the sampling kT/C noise ns , which cannot
be differentiated from Vin after the sampling. Another source
of error that cannot be reduced is the capacitor mismatch that
causes DNL/INL errors. As a result, the sampling noise and
the capacitor mismatch reduce the ADC SNR improvement
and place an upper bound for the maximum achievable SNR.
Fig. 12 shows the simulated SNR versus N for an 11-b
SAR ADC with 1 LSB comparator rms noise. Without the
sampling noise and the capacitor mismatch, the SNR increases
at the asymptotic rate of 3 dB/octave. With 0.1 LSB rms
sampling noise and 1% unit capacitor mismatch added, the
SNR improvement degrades. The gap between two curves
widens as N increases due to the increasing proportion of
ns and the mismatch error in the total ADC error.

Another practical issue to consider is that the comparator
noise σ may not be known with 100% accuracy. Thus, it is
important to examine the sensitivity of the proposed technique
to the inaccuracy in the estimated value of σ . Let us assume
σ is estimated to be 1 LSB from the foreground estimation.
However, due to PVT variation, the value of σ changes to
0.9 or 1.1 LSB, but we still use σ = 1 LSB in the BE.

Fig. 12. Simulated SNR versus N with/without the 0.1 LSB sampling noise
ns and 1% unit capacitor mismatch.

Fig. 13. Simulated SNR versus N with ±10% variations in the comparator
noise σ .

Fig. 13 shows the simulated SNR versus N , including the
sampling noise and the capacitor mismatch. The proposed
technique still works well with 0.1 LSB inaccuracy in the
value of σ . In practice, the comparator noise can vary by more
than ±0.1 LSB. For example, our simulation shows that the
noise of the comparator used in the prototype ADC varies
from 0.4 to 1 LSB across all corners, ±10% power supply
variation, and −40° to 80° temperature variation. Here, we
assume that the ADC reference voltage is generated from
a bandgap circuit, and thus, the LSB size is insensitive to
PVT variation to the first order. Our strategy to ensure the
robustness of the algorithm is to precompute and prestore
three lookup tables for the comparator noise σ of 0.5, 0.7,
and 0.9 LSB, respectively. We track the comparator noise
variation by performing a periodic foreground comparator
noise estimation and, then, choose the appropriate lookup
table to use. This ensures that no on-the-fly computations
for the BE values are needed, which reduces the hardware
complexity.

E. Comparison to Oversampling and Analog Scaling

Oversampling can also be used to reduce ADC noise by
averaging. The merit of oversampling is that it reduces both
the sampling noise ns and the comparison noise nc, while the
proposed technique only reduces nc. However, as mentioned
earlier, in an SAR ADC, the noise is typically dominated by
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Fig. 14. Simulated normalized total comparator power versus SNR improve-
ment for analog scaling, estimation based on averaging, MLE and BE with
11-b quantization noise.

nc, and thus, their effect in total noise reduction is similar.
The disadvantage of oversampling is that it cannot improve
the ADC power efficiency. Every doubling of the oversampling
ratio leads to twice the ADC power, as it requires repeating all
the sampling, comparison, and DAC switching operations. By
contrast, the proposed technique only increases the number of
LSB comparisons, so its required total number of comparator
operations is much smaller. Additionally, the DAC is not
switched and, thus, does not consume any extra power. Thus,
the power efficiency of the proposed technique is much higher
than oversampling.

As in any noise reduction technique, there is always a
cost of power. Fig. 14 shows the simulated normalized total
comparator power versus SNR improvement for an 11-b SAR
ADC using analog scaling, the proposed estimation technique
based on averaging, MLE, and BE. The total comparator power
on the y-axis is normalized to the power of a comparator
with the rms noise of 1 LSB firing once. As shown in
Fig. 14, the SNR improvement for analog scaling is limited
to 10 dB (its maximally achievable SNR is 68 dB set by the
11-b quantization noise), no matter how much more power
is consumed by the comparator. The power efficiency of
estimation based on averaging (AVG) is good when the SNR
improvement is low. However, its SNR improvement is limited
to 6 dB, which matches the analysis shown in Fig. 10. This is
because the estimator based on averaging is intrinsically biased
and cannot achieve consistent SNR improvement. By contrast,
both MLE and BE can consistently improve SNR. Because
they also reduce the quantization noise, they can even break
the SNR limit set by the quantization noise. For the same SNR
improvement, the power required by BE is always the lowest.
It is about 20% lower than that of MLE.

IV. PROTOTYPE ADC DESIGN

To verify the proposed technique, an 11-b prototype SAR
ADC is designed, whose architecture is shown in Fig. 15.
There are only two simple changes made to the standard SAR
ADC architecture: 1) the SAR logic is modified to repeat the
LSB comparison for N = 17 times and 2) a counter is used to
count the number of “1”s during LSB comparisons to obtain k.
A low power supply voltage of 0.7 V is chosen to demonstrate

Fig. 15. Proposed SAR ADC architecture.

the effectiveness of the proposed technique for low voltage and
low power applications.

The DAC is implemented using MoM capacitors. Since
the DAC power is proportional to the total capacitance, it is
desirable to reduce the unit capacitor Cu for power saving.
Considering the noise and matching requirement, this design
chooses Cu = 2 fF. A bidirectional single-side (BSS) switch-
ing technique is adopted to further reduce the DAC reference
power by 86% compared to the conventional switching scheme
[21], [22]. BSS reduces the number of unit capacitors by four
times, leading to a small capacitor array of {256, 128, 64, 32,
16, 16, 8, 4, 2, 1, 1}Cu for an 11-b ADC. This is helpful in
reducing the total DAC capacitance when the unit comparator
size is not limited by the matching requirement. Compared to
the widely used monotonic switching technique of [23], BSS
achieves higher SNDR as the comparator input common-mode
voltage Vcm variation is reduced and Vcm can converge to half
Vdd instead of ground. A redundant capacitor of 16Cu is added
to recover possible errors due to incomplete DAC settling and
Vcm variation during the first several MSB comparisons [21].
The total capacitance is 528Cu = 1056 fF, leading to 88-μV
differential sampling kT/C noise.

To ensure a high sampling linearity, bottom-plate sampling
is used. In addition, a clock booster shown in Fig. 16(a) is
employed to boost the sampling clock voltage. Thus, small
nMOS transistors can be used to sample Vin instead of an
array of bootstrapped switches or large CMOS switches to
reduce the design complexity and the switch driving power.
Fig. 16(b) shows the dynamic comparator. In this design, the
SPICE simulated comparator rms noise is 480 μV or 0.7 LSB.
Note that this is much larger than the sampling kT/C noise.
Thus, the overall ADC noise is dominated by the comparator
noise. The ADC timing diagram is shown in Fig. 16(c). It
uses a synchronous clocking scheme implemented using a
simple DFF-based clock divider and several AND gates. The
frequency of the master clock is 32 times faster than the
sampling rate. The first 4 clock cycles are used for the input
sampling to ensure a high sampling linearity, the subsequent
11 cycles are used for normal SAR operation, and the final
17 cycles are used for repeated LSB comparisons. When the
normal SAR operation ends, a 5-b ripple counter is enabled,
which records the number of “1”s during the LSB comparisons
to obtain k.
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Fig. 16. Schematic of (a) clock booster, (b) comparator, and (c) timing diagram.

Fig. 17. Die micrograph.

V. PROTOTYPE ADC MEASUREMENT RESULTS

The prototype ADC is implemented in the 65-nm CMOS
process. Fig. 17 shows the die photo. The power supply is
0.7 V. The sampling rate is 100 kS/s. Fig. 18 shows the DNL
and INL, which are +1.04/−1 LSB and +1.57/−1.23 LSB,
respectively. The INL plot shows a 1-LSB systematic mis-
match between the 6 MSB capacitors and the 6 LSB capaci-
tors. A simple foreground calibration of [17] is performed and
the periodic INL transition pattern disappears [9].

To verify the proposed noise reduction technique, we first
measure the ADC noise (e.g., the variance of Dout) at Vin = 0.
The measured distributions of Dout before and after noise
reduction are shown in Fig. 19 together with fitted normal
distributions. Before noise reduction, the standard deviation
of Dout is 0.73 LSB. It indicates that the comparator input
referred noise is about 500 μV, which is in agreement
with SPICE simulation. After noise reduction, the standard
deviation of D∗

out is reduced by 7 dB to 0.33 LSB, which
matches well with the estimation theory. Note that if the
conventional SAR ADC design approach is used, the com-
parator noise needs to be reduced to 0.16 LSB in order for

Fig. 18. Measured DNL and INL.

Fig. 19. Dout distribution with and without estimation at Vin = 0.

the total ADC noise to be 0.33 LSB, which also includes
the 0.29 LSB quantization error. This means that the total
comparator power needs to be increased by 21 times. By
contrast, for our proposed technique, the total comparator
power is only increased by 2.5 times, which proves its higher
power efficiency compared to brute-forth analog scaling.

Fig. 20 shows the measured spectrum for a 96-kHz full-
scale input sampled at 100 kS/s. The reason for choosing
the 96-kHz frequency input is our high-quality low-distortion
bandpass filter has a bandwidth from 90 to 110 kHz. The
measured SNDR and SNR are 59.4 and 59.7 dB, respectively.
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Fig. 20. Measured 214-point ADC output spectrum with 96-kHz input.

Fig. 21. Measured SNR versus input amplitudes.

After applying the proposed technique, the noise floor is
lowered. SNDR and SNR are improved to 64.5 and 65 dB,
respectively. The corresponding ENOB is 10.5 b.

Fig. 21 shows the measured SNR versus input amplitudes.
The SNR improvement using simple averaging-based estima-
tor V̂res,avg is limited to only 2.2 dB. MLE achieves 5.8-dB
SNR improvement. With BE, the SNR is improved by 7 dB,
which is 4.8 dB better than that of averaging and 1.2 dB better
than that of MLE. This matches well with the analysis in
Section III. When the input is large, the SNR improvement
decreases slightly to 5.3 dB, which is caused by the unwanted
capacitive coupling from the ADC input to the reference
lines, discovered during measurements. Such SNR loss can
be recovered by layout optimization to reduce the coupling.

To evaluate the robustness of the proposed technique in the
presence of errors in the extracted value of the comparator
noise σ , we have tested the SNR improvement as a function
of the comparator noise σ value used in the BE. Fig. 22 shows
both the simulated and the measured results. As expected, the
highest SNR improvement is obtained when we use the accu-
rate σ value of 0.73 LSB. The SNR improvement decreases
if an inaccurate σ value is used. Nevertheless, as long as the
value of σ is within [0.6, 0.86] LSB, the SNR improvement
is greater than 6 dB. This shows that the proposed technique
is robust and can tolerate up to 15% error in σ with less than
1-dB SNR degradation.

The prototype ADC consumes 0.6 μW from a 0.7-V power
supply. The comparator, DAC, clock generator, and SAR logic

Fig. 22. Simulated and measured SNR improvements versus various
comparator noise σ .

TABLE I

MEASURED PERFORMANCE SUMMARY

Fig. 23. FOM versus SNDR plot for this work and recently published ADCs
in ISSCC and VLSI conferences.

consume 70, 102, 193, and 280 nW, respectively. With the
noise reduction technique, the comparator power accounts for
only 10% of the total power at the ENOB of 10.5 b. The digital
power, including both clock generator and SAR logic, domi-
nates the overall ADC power. It can be substantially reduced
via optimization and/or going to a more advanced technology
node, without affecting SNR. The measured Walden figure
of merit (FOM) of the prototype ADC is 4.5 fJ/conversion-
step. The performance of the proposed ADC is summarized
in Table I. Fig. 23 shows the Walden FOM versus SNDR for
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this paper and recently published ADCs in ISSCC and VLSI
conferences [24].

VI. CONCLUSION

This paper has presented a noise reduction technique for
SAR ADC based on statistical estimation. To the best of
our knowledge, this is the first work that comprehensively
introduces the statistical estimation theory to the field of ADC
design. The proposed technique requires minimum change
to the original SAR ADC design. It can reduce both the
comparator noise and the quantization error. It is suitable
for applications that require low-power high-resolution SAR
ADCs.
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