Differentiable Inductive Logic Programming for Structured Examples
(published: AAAI 2021)

Hikaru Shindo, Masaaki Nishino, Akihiro Yamamoto

Presented by:
Jesse Jing, Divyagna Bavikadi, Kaustuv Mukherji
For a student led discussion on:
Neuro-symbolic Reasoning
At Arizona State University
Oct 24, 2022
Logic Programming Basics

$\text{Language } L = (\mathcal{P}, \mathcal{F}, \mathcal{A}, \mathcal{V})$

$\mathcal{P} : \text{Set of Predicates } (p/n)$

$\mathcal{F} : \text{Set of Function Symbols } (f/n)$

$\mathcal{A} : \text{Set of Constants}$

$\mathcal{V} : \text{Set of Variables}$
Logic Programming Basics

A term \((t)\) could be a constant, a variable, or \(f(t_1, t_2, \ldots, t_n)\).

An atom is a formula \(p(t_1, t_2, \ldots, t_n)\).

A ground atom has no variables.

A clause is a disjunction (\(\lor\)) of literals.

\(V(C)\) : Set of variables in clause \(C\).
Logic Programming Basics

\(\theta \): Substitution operation \([x_i \leftarrow t_i]\)

\(\theta \) applied to head of a rule \(A \), is written as \(A\theta \).

A unifier for a set \(\{A_1, A_2, \ldots, A_n\} \) is a substitution \(\theta \) such that, \(A_1\theta = A_2\theta = \cdots = A_n\theta \), written as: \(\theta = \sigma(\{A_1, A_2, \ldots, A_n\}) \)

\(\sigma \): Unification function

\(\bar{\sigma}(\{A_1, A_2, \ldots, A_n\}) = T \) if set is unifiable, else \(\perp \)

Decision function
The *ILP* problem

Given:

\[Q = (\mathcal{E}^+, \mathcal{E}^-, \mathcal{B}, \mathcal{L}) \]

Find a set of definite clauses (one atom in the head) \(\mathcal{H} \subseteq \mathcal{L} \), such that,

\[\forall A \in \mathcal{E}^+ \mathcal{H} \cup \mathcal{B} \models A. \]
\[\forall A \in \mathcal{E}^- \mathcal{H} \cup \mathcal{B} \not\models A. \]
Why ∂ILP?

- Unlike ILP, robust to noise and training data\(^1\)

- Formulates ILP problems as an optimization problem, which can be differentiated and solved much like traditional machine learning methods. Hence, it’s easy to combine these approaches to neural systems.

Drawbacks of previous ∂ILP systems

- No function symbols are allowed.
- The arity of predicates must be less than 2.
- The number of atoms in the clause body must not exceed 2.
- Every program must be comprised of pairs of rules for each predicate.
Drawbacks of previous δILP systems

Thus,

- Unsuitable for complex structured data, such as sequences or trees.

- Unsuitable for complex programs that are comprised of several clauses for a predicate.
Today’s paper -

Differentiable Inductive Logic Programming for Structured Examples

Hikaru Shindo, Masaaki Nishino, Akihiro Yamamoto
What are Structured Examples?

• Examples of data which has a ‘structure’ to it.
 \[[a, b, c], [d], [a, b, c, d] \]

• Sequences and Trees
 \[[1, 2, 4, 8, ...] \]

• Data with function symbols
 \[f^4(x) \ast f^8(x) = f^{12}(x) \]
Challenges

• Consider a large number of clauses.

• Number of possible ground atoms are infinite.
 \[c_1, c_2, \ldots, c_n, f(c_1), g(c_1), h(c_1, c_2) \ldots \ldots \ldots \]

• Keep memory and computation costs manageable.
What should the result look like?

\[\mathcal{E}^+ = \{p(a, a), p(b, b), p(b, c), p(c, b)\} \]

\[\mathcal{E}^- = \{p(a, b)\} \]

\[\mathcal{B} = \{q(b, c), q(c, b)\} \]
What should the result look like?

\[\mathcal{E}^+ = \{ p(a, a), p(b, b), p(b, c), p(c, b) \} \]
\[\mathcal{E}^- = \{ p(a, b) \} \]

\[\mathcal{B} = \{ q(b, c), q(c, b) \} \]

One possible solution:
\[p(x, x) \]
What should the result look like?

\[\mathcal{E}^+ = \{p(a, a), p(b, b), p(b, c), p(c, b)\} \]
\[\mathcal{E}^- = \{p(a, b)\} \]

\[\mathcal{B} = \{q(b, c), q(c, b)\} \]

One possible solution:
\[p(x, x) \]
\[p(x, y) \leftarrow q(x, y) \]
The Building Blocks

1. Get Clauses

2. Determine Ground Atoms for clauses

3. Introduce weights for clauses

4. Do Inference: Minimize error (Differentiable!)
Clause Search with Refinement

- **Objective:** Find promising clauses that entail many positive examples but few negative examples.

 - **Start:** General/Strong clauses
 Might entail many examples, including negative examples.

 - **Refine:** Iteratively specify/weaken clauses.
 Now, they may entail lesser number of \mathcal{E}^+, but will also entail lesser \mathcal{E}^-.
The Refinement Operator ($\rho_\mathcal{L}$)

$$\rho_\mathcal{L}(C) = \rho^\text{func}_\mathcal{L}(C') \cup \rho^\text{subs}_\mathcal{L}(C') \cup \rho^\text{rep}_\mathcal{L}(C) \cup \rho^\text{add}_\mathcal{L}(C)$$
The Refinement Operator (ρ_L)

$$\rho_L(C) = \rho_L^{\text{func}}(C') \cup \rho_L^{\text{subs}}(C') \cup \rho_L^{\text{rep}}(C) \cup \rho_L^{\text{add}}(C)$$

Start: $p(x, y)$

$\mathcal{V} = \{x, y, z\}$

$\mathcal{A} = \{a, b\}$

- Application of function symbols

$$\rho_L^{\{\text{func}\}}(p(x, y)) = p(x, f(z))$$
The Refinement Operator (ρ_L)

$$\rho_L(C) = \rho^\text{func}_L(C') \cup \rho^\text{subs}_L(C) \cup \rho^\text{rep}_L(C) \cup \rho^\text{add}_L(C)$$

Start: $p(x, y)$

$\mathcal{V} = \{x, y, z\}$

$\mathcal{A} = \{a, b\}$

• Application of function symbols

$$\rho^\{func\}_L(p(x, y)) = p(x, f(z))$$

• Substitution of constants

$$\rho^\{subs\}_L(p(x, y)) = p(x, a)$$
The Refinement Operator \((\rho_{\mathcal{L}})\)

\[
\rho_{\mathcal{L}}(C) = \rho_{\mathcal{L}}^{\text{func}}(C) \cup \rho_{\mathcal{L}}^{\text{subs}}(C) \cup \rho_{\mathcal{L}}^{\text{rep}}(C) \cup \rho_{\mathcal{L}}^{\text{add}}(C)
\]

Start: \(p(x, y)\)

\[\mathcal{V} = \{x, y, z\}\]
\[\mathcal{A} = \{a, b\}\]

- Replacement of variables

\[
\rho_{\mathcal{L}}^{\{\text{rep}\}}(p(x, y)) = p(x, z)
\]
The Refinement Operator ($\rho_\mathcal{L}$)

$$\rho_\mathcal{L}(C) = \rho_\mathcal{L}^{\text{func}}(C) \cup \rho_\mathcal{L}^{\text{subs}}(C) \cup \rho_\mathcal{L}^{\text{rep}}(C) \cup \rho_\mathcal{L}^{\text{add}}(C)$$

Start: $p(x, y)$

- Replacement of variables
 $$\rho_\mathcal{L}^{\{\text{rep}\}}(p(x, y)) = p(x, z)$$

- Addition of atoms
 $$\rho_\mathcal{L}^{\{\text{add}\}}(p(x, y)) = p(x, y) \leftarrow q(x, y)$$

\[\mathcal{V} = \{x, y, z\} \]
\[\mathcal{A} = \{a, b\} \]
What should the result look like?

\[\mathcal{E}^+ = \{p(a, a), p(b, b), p(b, c), p(c, b)\} \]
\[\mathcal{E}^- = \{p(a, b)\} \]
\[\mathcal{B} = \{q(b, c), q(c, b)\} \]
Refinement with beam search

\[\mathcal{E}^+ = \{p(a, a), p(b, b), p(b, c), p(c, b)\} \]
\[\mathcal{E}^- = \{p(a, b)\} \]

\[\mathcal{B} = \{q(b, c), q(c, b)\} \]

\[C_0 = \{p(x, y)\} \]

\[N_{beam} = 2 \]
\[T_{beam} = 2 \]
Refinement with beam search

\[
eval(R, Q) = \left| \{ E \mid E \in \mathcal{E}^+ \land B \cup \{R\} \models E \} \right|
\]
Adaptive Fact Enumeration
Soft Program Composition
Putting it all together – solving the ILP!
Experiments

• Enumeration Algorithm
• Beam Searching Approach for Clause Generation
• Memory and Computational efficiency
• Does the method efficiently learn from noisy and structured examples?
• Used standard 5 ILP tasks with structured examples
Experiments

\[V = \{x, y, z, v, w\} \quad \gamma = 10^{-5} \]

- Member:

\[\mathcal{P} = \{\text{mem}/2\} \quad \mathcal{F} = \{f/2\} \]

\[\mathcal{C}_0 = \{\text{mem}(x, y)\} \quad \mathcal{A} = \{a, b, c, *\} \]

\[(N_{\text{beam}}, T_{\text{beam}}) = (3, 3) \quad m = 2 \quad T = 4 \]

\[\mathcal{E}^+ = \{\text{mem}(a, [a, c]), \text{mem}(a, [b, a]), \ldots\}, \]

\[\mathcal{E}^- = \{\text{mem}(c, [b, a]), \text{mem}(c, [a]), \ldots\}, \]

\[\mathcal{B} = \{\text{mem}(a, [a]), \text{mem}(b, [b]), \text{mem}(c, [c])\}. \]
Experiments

• Plus:
 \[\mathcal{P} = \{\text{plus}/3\}, \mathcal{F} = \{s/1\} \]

 \[\mathcal{C}_0 = \{\text{plus}(x, y, z)\} \quad \mathcal{A} = \{0\} \]

 \[(N_{\text{beam}}, T_{\text{beam}}) = (10, 5) \quad m = 3 \quad T = 8 \]

 \[\mathcal{E}^+ = \{\text{plus}(s(0), 0, s(0)), \text{plus}(s^5(0), s^3(0), s^8(0)), \ldots\}, \]

 \[\mathcal{E}^- = \{\text{plus}(s(0), s^2(0), 0), \text{plus}(0, s^2(0), s^4(0)), \ldots\}, \]

 \[\mathcal{B} = \{\text{plus}(0, 0, 0)\}. \]
Experiments

- Append:

\[P = \{app/3\}, \ F = \{f/2\} \]

\[A = \{a, b, c, *\} \quad C_0 = \{app(x, y, z)\} \]

\[(N_{beam}, T_{beam}) = (10, 5) \quad m = 3 \quad T = 4 \]

\[\mathcal{E}^+ = \{app([c], [], [c]), app([a, a, b], [b, c], [a, a, b, b, c]), \ldots\} \]

\[\mathcal{E}^- = \{app([], [a, a], [a, a, b]), app([b], [], [c]), \ldots\} \]

\[\mathcal{B} = \{app([], [], [])\} \]
Experiments

• Delete:

\[P = \{ \text{del}/3 \}, \quad F = \{ f/2 \} \]

\[C_0 = \{ \text{del}(x, y, z) \} \quad A = \{ a, b, c, * \} \]

\[(N_{beam}, T_{beam}) = (10, 5) \quad m = 2 \quad T = 4 \]

\[E^+ = \{ \text{del}(b, [a, c, b], [a, c]), \text{del}(a, [b, a, a], [b, a]), \ldots \}, \]

\[E^- = \{ \text{del}(c, [c, a, a], [a, b]), \text{del}(b, [b], [a]), \ldots \}, \]

\[B = \{ \text{del}(a, [a], []), \text{del}(b, [b], []), \text{del}(c, [c], []) \}. \]
Experiments

• Subtree:

\[\mathcal{P} = \{ \text{sub}/2 \} \quad \mathcal{F} = \{ f/2 \} \]

\[\mathcal{C}_0 = \{ \text{sub}(x, y) \} \quad \mathcal{A} = \{ a, b, c \} \]

\[(N_{\text{beam}}, T_{\text{beam}}) = (15, 3) \quad m = 4 \quad T = 4 \]

\[\mathcal{E}^+ = \{ \text{sub}(f(b, b), f(f(f(b, b), f(a, c)), f(a, c))), \ldots \}, \]

\[\mathcal{E}^- = \{ \text{sub}(f(a, a), f(f(c, a), f(a, c))), \ldots \}, \]

\[\mathcal{B} = \{ \text{sub}(a, a), \text{sub}(b, b), \text{sub}(c, c) \}. \]
Experiment 1

- The dILP method won’t be feasible here.
- Enumeration algorithm yields reasonable number of ground atoms

<table>
<thead>
<tr>
<th>Member</th>
<th>Plus</th>
<th>Append</th>
<th>Delete</th>
<th>Subtree</th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
<td>1857</td>
<td>2899</td>
<td>2513</td>
<td>2172</td>
</tr>
</tbody>
</table>

Table 1: Number of enumerated ground atoms
Experiment 2

- Two Clause Generation Algorithms:
- 1. Beam Searching + Refinement
- 2. Naive generation without beam searching

AUC for number of generated clauses
Experiment 3

• 1. Multiple weights and softer approach $\mathbf{W} \in \mathbb{R}^{|C|}$
• 2. 2-d weights for pairs of clauses
• assigned weights in the form of a 2-d matrix $\mathbf{W} \in \mathbb{R}^{|C| \times |C|}$

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Proposed</th>
<th>Pair</th>
<th>Runtime [s] Proposed</th>
<th>Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
<td>24</td>
<td>144</td>
<td>0.015</td>
<td>0.12</td>
</tr>
<tr>
<td>Plus</td>
<td>120</td>
<td>1600</td>
<td>0.03</td>
<td>6.91</td>
</tr>
<tr>
<td>Append</td>
<td>150</td>
<td>2500</td>
<td>0.09</td>
<td>5.18</td>
</tr>
<tr>
<td>Delete</td>
<td>150</td>
<td>2500</td>
<td>0.06</td>
<td>5.4</td>
</tr>
<tr>
<td>Subtree</td>
<td>80</td>
<td>400</td>
<td>0.039</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Table 2: Number of parameters and mean runtime in learning steps
Experiment 4

- Change the proportion of the mislabeled training data.
- Mean-squared test error as proportion of mislabeled training data: (gets a solution for mislabeled data as well)
<table>
<thead>
<tr>
<th>Problem</th>
<th>Learned logic program</th>
</tr>
</thead>
</table>
| Member | `mem(x, [y | z]) ← mem(x, z)`
 `mem(x, [x | y])` |
| Plus | `plus(0, x, x)`
 `plus(x, s(y), s(z)) ← plus(x, y, z)`
 `plus(s(x), y, s(z)) ← plus(y, x, z)` |
| Append | `app([], x, x)`
 `app(x, [], x)`
 `app([x | y], z, [x | v]) ← app(y, z, v)` |
| Delete | `del(x, [x | y], y)`
 `del(x, [y | z], [y | v]) ← del(x, z, v)` |
| Subtree | `sub(f(x, y), f(x, y))`
 `sub(x, f(y, z)) ← sub(x, z)`
 `sub(x, f(y, z)) ← sub(x, y)`
 `sub(x, f(y, x))` |

Table 3: Learned logic programs in standard ILP tasks
Conclusion

• Differentiable inductive logic programming framework that deals with complex logic programs that have several clauses with function symbols that yield readable outputs for noisy structured data.

• Clause generation algorithm uses beam searching with refinement that improves differential program searching

• Enumeration algorithm for sufficient ground atoms from given examples and clauses

• Soft program composition approach using multiple weights and the softer function

• Proposed method estimates logic programs efficiently in terms of memory and computational costs
Conclusion

• Filling the gaps for both ∂ILP and standard ILP approaches, the framework learns logic programs successfully from noisy and structured examples

• Incorporates symbolic methods, such as refinement, with a differentiable ILP approach
Limitations

• Scalability for large-scale programs.
• Learning more expressive programs for more complex tasks like learning sorting from captured images. (Incorporating biases2 to manage the search space can help solve this)

2Claire, N.; Celine, R.; Hilde, A.; Francesco, B.; and Birgit, ´ T. 1996. Declarative bias in ILP. Advances in inductive logic programming 32: 82—103
Algorithm 1 Clause generation by beam searching

Input: C_0, Q, N_{beam}, T_{beam}

1: $C_{to_open} \leftarrow C_0$
2: $C \leftarrow \emptyset$
3: $t = 0$
4: while $t < T_{beam}$ do
5: $C_{beam} \leftarrow \emptyset$
6: for $C_i \in C_{to_open}$ do
7: $C = C \cup \{C_i\}$
8: for $R \in \rho_C(C_i)$ do
9: score = eval(R, Q) //Evaluate each clause
10: $C_{beam} = \text{insert}(C_{beam}, R, score)$ //Insert refined clause in order of scores possibly discarding it
11: $C_{to_open} = C_{beam}$ //top-N_{beam} clauses are refined in the next loop
12: $t = t + 1$
13: return C
Algorithm 2 Enumeration of ground atoms

Input: \(Q, C, T \)

1: \(G \leftarrow \{ \bot, \top \} \cup \varepsilon^+ \cup \varepsilon^- \cup B \)
2: \textbf{for} \(i = 0 \) to \(T - 1 \) \textbf{do}
3: \hspace{1em} \(S \leftarrow \emptyset \)
4: \hspace{2em} \textbf{for} \(A \leftarrow B_1, \ldots, B_n \) in \(C \) \textbf{do}
5: \hspace{3em} \textbf{for} \(G \in G \) \textbf{do}
6: \hspace{4em} \textbf{if} \(\bar{\sigma}(A, G) \) \textbf{then}
7: \hspace{5em} \theta \leftarrow \sigma(A, G)
8: \hspace{6em} S \leftarrow S \cup \{ B_1\theta, \ldots, B_n\theta \}
9: \hspace{2em} G \leftarrow G \cup S
10: \textbf{return} \(G \)