Logic Review
Overview

• Propositional logic
• Predicate calculus
• Soft logic / annotated logic
Propositional Logic

• We assume the existence of a universe of ground atomic propositions (‘atoms’ or ‘ground atoms’)
• Atoms can be either true or false

• Running example:

\[U = \{ a_1, \ldots, a_n \} \]
Syntax

• The syntax specifies the language of the logic.
• The key element of the syntax is a formula.
• In propositional logic, formulas are usually created with three connectors – disjunction, conjunction, and negation

\[f ::= a \mid \neg f \mid f \land f \mid f \lor f \]

Note: sometimes it is useful to also consider “literals.” A literal is any ground atom or a negation of a ground atom.
Semantics

• Semantics allow us to add meaning to the syntax and is defined separately
• In propositional logic, the main semantic structure is a world
• A world is simple a subset of atoms
• Intuition: if an atom is a member of a world, it is considered true in that world – otherwise it is false
• Example:

\[U = \{a_1, a_2, a_3\} \]
\[W = \{\emptyset, \{a_1\}, \{a_2\}, \{a_3\}, \{a_1, a_2\}, \{a_1, a_3\}, \{a_2, a_3\}, \{a_1, a_2, a_3\}\} \]
Satisfaction

- Satisfaction specifies the relationship between syntax and semantics
- Often, the symbol used for satisfaction is \models
- Satisfaction is defined recursively – the below is a standard definition of what is means for a world (w) to satisfy a formula.

\[
\begin{align*}
\text{if } f &= a: & w &\models f \text{ if } a \in w \\
\text{if } f &= \neg f': & w &\models f \text{ if } w \not\models f' \\
\text{if } f &= f' \land f'': & w &\models f \text{ if } w \models f' \text{ and } w \models f'' \\
\text{if } f &= f' \lor f'': & w &\models f \text{ if } w \models f' \text{ or } w \models f''
\end{align*}
\]
Implication / Rules

• An implication (\rightarrow) is what is used to establish logical rule. Often referred to as a

• However, given our previous standard definitions, an implication can be created based on the standard connectors (although other definitions are possible)

$$f \rightarrow f' \equiv f' \lor \neg f$$
Implication / Rule Terminology

- Implication:
 \[f \rightarrow f' \]

- Antecedent:
 (pre-condition, body)

- Consequent:
 (post-condition, head)

- Alternate notation:
 \[f' \leftarrow f \]
Notes on Implication / Rules

• Some frameworks treat everything as a rule. They represent formulas as a rule with no body, often referring to them as “facts”:

\[f \leftarrow \]

• The intuition is that the body consists of a tautology (the body is always true)

• Rule heads are typically atoms or negations
Logic programs

• A logic program is a set of logical formulas
• Often, we use the notation \(\Pi \)
• It is useful to separate out facts from the logic program. Facts are typically non-rules (often atoms, conjunctions, or rules with no body).
 • The intuition is that a set of facts is for a given situation, while the program is a set of rules that gets applied to the facts (and is more general)
• A world \(w \) satisfies program \(\Pi \) if it satisfies all elements of \(\Pi \)
Consistency

• A program is consistent if there exists a world that satisfies it.

• An example of an inconsistent program:

\[\Pi = \{a, \neg b, a \rightarrow b\}\]

• In most cases (e.g., where there are little or no restrictions on the logic) this is NP-hard as it is equivalent to satisfiability
Entailment

• If a program entails a query formula \(f \), it intuitively means that \(f \) can be concluded from the information in the program.

• For program notation \(\Pi \), let \(M(\Pi) \) be the set of all satisfying worlds. Likewise, for \(f \), let \(M(f) \), be the set of satisfying worlds for \(f \).

• We say \(\Pi \) entails \(f \) \((\Pi \models f) \) iff \(M(\Pi) \subseteq M(f) \)

• This problem is coNP hard for most logics
Set of Worlds as a Lattice Structure

• Lattice theory often comes in hand when dealing with logic
• In the propositional case, the set of all worlds is just the powerset of atoms.
• This forms a complete lattice under \subseteq
Example Lattice

\[U = \{ a_1, a_2, a_3 \} \]

\[W = \{ \emptyset, \{ a_1 \}, \{ a_2 \}, \{ a_3 \}, \{ a_1, a_2 \}, \{ a_1, a_3 \}, \{ a_2, a_3 \}, \{ a_1, a_2, a_3 \} \} \]
Restricting Logic

• Most work on logic adds some restrictions
• Lets give an example of such a logic:
 • Primary structure is a rule
 • Rules can have only a single atom in the head
 • Rules have only a conjunction of atoms in the body

• Note that not having negation greatly reduces expressiveness, but makes things a lot easier
Restricting Logic

• Given our simple logic, can we more easily compute all the atoms entailed by a program?

• Yes, and one technique to do so is to leverage lattice theory and a fixpoint operator
Fixpoint Operator

• Given a program Π, let T_Π be a function that maps worlds to worlds.
• We define it as follows:

$$T_\Pi(w) = w \cup \bigcup_{r \in \Pi}\{\text{head}(r) \text{ such that } \text{body}(r) \subseteq w\}$$

Where for a given rule r, $\text{head}(r)$ is the atom in the head and $\text{body}(r)$ is the set of atoms in the conjunction of the body.

Intuitively, it says that if you have a set of atoms (a world), return that world plus any atoms that can be concluded by a single application of a rule in the program.
Example

\[U = \{a_1, a_2, a_3\} \]

\[W = \{\emptyset, \{a_1\}, \{a_2\}, \{a_3\}, \{a_1, a_2\}, \{a_1, a_3\}, \{a_2, a_3\}, \{a_1, a_2, a_3\} \} \]

\[\Pi = \{→ a_1, a_1 → a_2, a_2 → a_3\} \]

\[T_\Pi(\{a_2\}) = \{a_1, a_2, a_3\} \]

\[T_\Pi(\{a_3\}) = \{a_1, a_3\} \]

\[T_\Pi(\emptyset) = \{a_1\} \]
Multiple Applications of the Fixpoint Operator

• It is useful to apply the fixpoint operator multiple times

• We can define that as follows:

\[
T_{\Pi}^{(i)}(w) = \begin{cases}
T_{\Pi}(w) & \text{if } i = 1 \\
T_{\Pi} \left(T_{\Pi}^{(i-1)}(w) \right) & \text{if } i > 1
\end{cases}
\]

The operator has a fixed point if there exists \(i \) such that:
\(T_{\Pi}^{(i+1)}(w) = T_{\Pi}^{(i)}(w) \)
Example

\[U = \{a_1, a_2, a_3\} \]

\[W = \{\}, \{a_1\}, \{a_2\}, \{a_3\}, \{a_1, a_2\}, \{a_1, a_3\}, \{a_2, a_3\}, \{a_1, a_2, a_3\} \} \]

\[\Pi = \{\rightarrow a_1, a_1 \rightarrow a_2, a_2 \rightarrow a_3\} \]

\[T_\Pi^{(1)}(\{\}) = T_\Pi(\{\}) = \{a_1\} \]

\[T_\Pi^{(2)}(\{\}) = T_\Pi(T_\Pi(\{\})) = \{a_1, a_2\} \]

\[T_\Pi^{(3)}(\{\}) = T_\Pi(T_\Pi(T_\Pi(\{\}))) = \{a_1, a_2, a_3\} \]

\[T_\Pi^{(4)}(\{\}) = T_\Pi(T_\Pi(T_\Pi(T_\Pi(\{\})))) = \{a_1, a_2, a_3\} \]
Why do we care if a fixpoint exists?

• Any time we apply the T operator, we get some information on which elements of the program led to that conclusion

$$\Pi = \{\rightarrow a_1, a_1 \rightarrow a_2, a_2 \rightarrow a_3\}$$

$$T_\Pi^{(1)}(\{}\{} = T_\Pi(\{}\{} = \{a_1\} \rightarrow a_1$$

$$T_\Pi^{(2)}(\{}\{} = T_\Pi(T_\Pi(\{}\{})) = \{a_1, a_2\} \quad a_1 \rightarrow a_2$$

$$T_\Pi^{(3)}(\{}\{} = T_\Pi(T_\Pi(T_\Pi(\{}\{}))) = \{a_1, a_2, a_3\} \quad a_2 \rightarrow a_3$$
Why do we care if a fixpoint exists?

• The fact that there is a logical connection utilized in an application allows us to prove that any world that satisfies the program is a superset of the least fixed point – this is called a *minimal model*

• This implies we know $M(\Pi)$ and entailment becomes much easier

• So the two items that have to be proven is that
 • (1.) the fixed point exits
 • and (2.) it corresponds with a minimal model
Proving the Fixed Point Exists

• By the Tarski-Knaster fixpoint theorem, any monotonic function over a complete lattice is guaranteed a fixed point.

• In the proof, we have to first prove that the structure is a complete lattice
 • This is trivial for the power set, as it has clear top and bottom element – but in some work it is not straight-forward

• Then we have to show that the function is monotonic.
 • In our example, this is easy, as every application of the operator includes the argument as a subset by definition
Predicate Calculus

- Predicate calculus can be thought of as a way to specify the atomic propositions
- The key components are:
 - Constants
 - Variable symbols
 - Predicate symbols

Predicate + Constant(s) = (Ground) atomic proposition

Predicate + Variable symbol(s) = Non-ground atomic proposition

Non-ground atoms are the key item that differentiates Predicate Calculus from Propositional Calculus

(Predicate Calculus is also called “First Order Logic” (FOL))
Example

- Let $C = \{v_1, v_2, \ldots, v_{20}\}$ be a set of constant symbols (representing people).
- Predicates can have an arity, specifying how many arguments it can have:
 - Let the set of binary predicates (2 arguments) be:
 \{email_conn, sms_conn, cell_conn\}
 - Let the set of unary predicates (1 argument) be:
 \{male, female, adopter, non_adopter, temp_adopter\}
- Example ground atoms:
 \[
 \text{female}(v_1), \text{adopter}(v_{11}), \text{cell_conn}(v_1, v_{11})
 \]
If we restrict our language to only binary and unary predicates, we can treat a knowledge base of facts as graph.
Variable Symbols

- Variable symbols allow us to talk about a set of atoms that share a predicate.

- Example:
 - Non ground atom $\text{adopter}(X)$ ground to:
 - $\text{adopter}(v_1), \text{adopter}(v_7), \text{adopter}(v_{10}), \text{adopter}(v_{11}), \text{adopter}(v_{15}), \text{adopter}(v_{19})$
Quantifiers

- **Universal**
 - $\forall X : p(X) = \land_{v \in C} p(v)$
 - For all X, $p(X)$ is true

- **Existential**
 - $\exists X : p(X) = \lor_{v \in C} p(v)$
 - There exists some X such that $p(X)$ is true
Grounding

• The use of quantifiers and variable symbols can lead to grounding – which is transforming non-ground atoms to ground atoms

• Existential quantifiers often appear in queries (e.g., does the logic program entail an existentially quantified formula) – this leads to many queries being performed (to prove existence). Think of it as a large disjunction.

• Universal quantifiers have a similar issue on the query side, but also tend to appear in non-ground programs. This can cause the grounded version of the program to become many times larger.
Annotated Logic

There are several frameworks that “annotate” logical syntax with additional information – they use special semantic structures.

<table>
<thead>
<tr>
<th>Annotation Type</th>
<th>Examples</th>
<th>Semantic Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar in [0,1]</td>
<td>Fuzzy logic</td>
<td>Interpretation that maps atoms to reals</td>
</tr>
<tr>
<td></td>
<td>VanEmden logic</td>
<td></td>
</tr>
<tr>
<td>Scalar as an interval subset of [0,1]</td>
<td>MANCALog</td>
<td>Interpretation that maps atoms to reals</td>
</tr>
<tr>
<td></td>
<td>Real valued logic of LNN’s</td>
<td></td>
</tr>
<tr>
<td>Point Probability</td>
<td>PCTL tp-programs</td>
<td>MDP</td>
</tr>
<tr>
<td>Probability interval</td>
<td>Nilsson logic</td>
<td>PDF over worlds</td>
</tr>
<tr>
<td></td>
<td>AP-programs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APT logic</td>
<td></td>
</tr>
<tr>
<td>Elements of a lattice structure</td>
<td>Generalized annotated programs</td>
<td>Interpretation that maps atoms to elements of the lattice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fuzzy Operators

• The fuzzy operators are used as functions to provide the feeling of various logical operations

• T-Norms: Fuzzy conjunction

• T-Conorms: Fuzzy disjunction

• Strong negation: 1-x (where x is the value associated with the atom)

• Aggregate operators: Quantification (for predicate calculus)
Fuzzy Operators

Table 1
The t-norms of interest.

<table>
<thead>
<tr>
<th>Name</th>
<th>T-norm</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gőděl (minimum)</td>
<td>$T_G(a, b) = \min(a, b)$</td>
<td>idempotent, continuous</td>
</tr>
<tr>
<td>Product</td>
<td>$T_P(a, b) = a \cdot b$</td>
<td>strict</td>
</tr>
<tr>
<td>Łukasiewicz</td>
<td>$T_{LK}(a, b) = \max(a + b - 1, 0)$</td>
<td>continuous</td>
</tr>
<tr>
<td>Drastic product</td>
<td>$T_D(a, b) = \begin{cases} \min(a, b), & \text{if } a = 1 \text{ or } b = 1 \ 0, & \text{otherwise} \end{cases}$</td>
<td>continuous</td>
</tr>
<tr>
<td>Nilpotent minimum</td>
<td>$T_{NM}(a, b) = \begin{cases} 0, & \text{if } a + b \leq 1 \ \min(a, b), & \text{otherwise} \end{cases}$</td>
<td>left-continuous</td>
</tr>
<tr>
<td>Yager</td>
<td>$T_Y(a, b) = \max(1 - ((1 - a)^p + (1 - b)^p)^{\frac{1}{p}}, 0), p \geq 1$</td>
<td>continuous</td>
</tr>
</tbody>
</table>

Table 2
The t-conorms of interest.

<table>
<thead>
<tr>
<th>Name</th>
<th>T-conorm</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gőděl (maximum)</td>
<td>$S_G(a, b) = \max(a, b)$</td>
<td>idempotent, continuous</td>
</tr>
<tr>
<td>Product (probabilistic sum)</td>
<td>$S_P(a, b) = a + b - a \cdot b$</td>
<td>strict</td>
</tr>
<tr>
<td>Łukasiewicz</td>
<td>$S_{LK}(a, b) = \min(a + b, 1)$</td>
<td>continuous</td>
</tr>
<tr>
<td>Drastic sum</td>
<td>$S_D(a, b) = \begin{cases} \max(a, b), & \text{if } a = 0 \text{ or } b = 0 \ 1, & \text{otherwise} \end{cases}$</td>
<td>continuous</td>
</tr>
<tr>
<td>Nilpotent maximum</td>
<td>$S_{NM}(a, b) = \begin{cases} 1, & \text{if } a + b \geq 1 \ \max(a, b), & \text{otherwise} \end{cases}$</td>
<td>right-continuous</td>
</tr>
<tr>
<td>Yager</td>
<td>$S_Y(a, b) = \min((a^p + b^p)^{\frac{1}{p}}, 1), p \geq 1$</td>
<td>continuous</td>
</tr>
</tbody>
</table>

Table 3
Some common aggregation operators.

<table>
<thead>
<tr>
<th>Name</th>
<th>Generalizes</th>
<th>Aggregation operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>T_G</td>
<td>$A_{T_G}(x_1, \ldots, x_n) = \min(x_1, \ldots, x_n)$</td>
</tr>
<tr>
<td>Product</td>
<td>T_P</td>
<td>$A_{T_P}(x_1, \ldots, x_n) = \prod_{i=1}^n x_i$</td>
</tr>
<tr>
<td>Łukasiewicz</td>
<td>T_{LK}</td>
<td>$A_{T_{LK}}(x_1, \ldots, x_n) = \max(\sum_{i=1}^n x_i - (n - 1), 0)$</td>
</tr>
<tr>
<td>Maximum</td>
<td>S_G</td>
<td>$A_{S_G}(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n)$</td>
</tr>
<tr>
<td>Probabilistic sum</td>
<td>S_P</td>
<td>$A_{S_P}(x_1, \ldots, x_n) = 1 - \prod_{i=1}^n (1 - x_i)$</td>
</tr>
<tr>
<td>Bounded sum</td>
<td>S_{LK}</td>
<td>$A_{S_{LK}}(x_1, \ldots, x_n) = \min(\sum_{i=1}^n x_i, 1)$</td>
</tr>
</tbody>
</table>

From van Krieken et al., *AIJ 2022.*