

Finding Best Partnerships to Meet Demand with Coordination Tools

Miguel Peinado-Guerrero and Rodrigo Ulloa, ASU

International Logistics & Productivity Improvement Lab

Technical Feasibility Methodology

Through statistical and mathematical programming techniques, this module finds the best match of the available resources to the opportunity.

Celery Opportunity

- Goal: Given the detected market opportunity, capture as much value as we can given the available resources (land, labor, etc.)
- Note that here we consider the <u>market opportunity</u> to be a potential price spike identified by the market intelligence module
- This price spike may not have been identified by traditional forecasting, such as looking at last year's trends alone
- Hence, here we are showcasing the utility of being able to quickly identify price spikes by monitoring social media platforms, google trends, etc. Arizona Sta University

Celery Opportunity

 The decisions made depend on the specific goal, such as maximizing profits, minimizing risk, or maximizing fulfillment of some contract

Celery Opportunity

- To demonstrate technical feasibility, we consider all the available locations acting cooperatively in order to maximize the overall profits
- The collective farmers may choose sell the products on the spot market, or fulfill a pre-existing volume contract

Contract Design

- Once an opportunity has been discovered, we need to determine the volumes to target
- In practice, we envision a negotiation process that takes place between the Supply Chain Articulator (acting on behalf of the coalition of growers) and the buyer
- This process will allow the grower to deal with a single entity, rather than several individual small growers

Contract Design

- To demonstrate the use of the model here, we assume that the negotiation process has already taken place
- The resultant contract is used by the Supply Chain Articulator in order to make the tactical planting decisions that bring the most benefit to the coalition of farmers as a whole
- These <u>tactical</u> decisions (what to plant, when to plant) will be used to guide our decisions downstream, where more granular decision models will be used for <u>operational</u> decisions

Process Flow

Arizona State University

Planting Decisions

No Market Opportunity

		Planted Acres						
	Acres							
Location	Available	Green Beans	Cauliflower	Celery	Cucumber	Lettuce	Bell Peppers	Tomatoes
Albuquerque	60	0	0	0	0	0	0	60
Aspen	10	0	0	0	0	0	0	10
Las_Cruces	30	0	0	0	30	0	0	0
Phoenix	40	0	0	0	40	0	0	0
Tucson	30	0	0	0	30	0	0	0
Yuma	30	0	0	0	0	0	0	30

		Planted Acres						
	Acres							
Location	Available	Green Beans	Cauliflower	Celery	Cucumber	Lettuce	Bell Peppers	Tomatoes
Albuquerque	60	0	0	0	0	0	0	60
Aspen	10	0	0	0	0	0	0	10
Las_Cruces	30	0	0	0	30	0	0	0
Phoenix	40	0	0	40	0	0	0	0
Tucson	30	0	0	30	0	0	0	0
Yuma	30	0	0	30	0	0	0	0

With Market Opportunity

Location	Plant Week		
Albuquerque	8-Feb		
Aspen	22-Feb		
Las_Cruces	22-Mar		
Phoenix	8-Mar		
Tucson	15-Mar		
Yuma	8-Mar		

Location	Plant Week
Albuquerque	8-Feb
Aspen	22-Feb
Las_Cruces	22-Mar
Phoenix	8-Mar
Tucson	8-Feb
Yuma	8-Mar

Harvest Volumes (lbs.)

No Market Opportunity

With Market Opportunity

Celery — Cucumber — Tomatoes

No Market Opportunity

Contract Fulfillment

With Market Opportunity

No Market Opportunity

Contract Fulfillment

With Market Opportunity

Cauliflower

Risk and Variability

Higher Expected Value

Arizona State University

No Market Opportunity

Expected Profit		S ¹	tandard	Coefficient	
		D	eviation	of Variation	
\$	1,170,015	\$	306,148	26%	

With Market Opportunity

Expected Profit		S ^t	tandard eviation	Coefficient of Variation	
\$	1,703,274	\$	679,529	40%	

VS.

Wider range of profits (higher uncertainty)

Technical Feasibility Insights

- This tools provide a preliminary assessment of the value of a market opportunity given available resources and constraints
- Operational planning models can assist to evaluate further impact of a market opportunity in operational decisions (i.e.: logistics)
- The outputs of the models are highly dependent of the inputs being used
- For demonstrative purposes, we have considered a central decision-maker, this is being expanded to a **negotiation** process between the growers and the Supply Chain Articulator

General Conclusions

- Centralized decision making assumes a single decision maker, without considering independent agents (i.e.: growers)
- How the risk is accounted for can result in different solutions, and will affect the likelihood of an effective coordination
- Following the tactical planning decisions, there is a need to translate them into coordination contracts, and to analyze the operational implications
- To validate these models, we need to collaboration of growers and other potential participants who will have access to these tools

Thank You

Miguel Peinado-Guerrero, ASU Rodrigo Ulloa, NMSU

International Logistics & Productivity Improvement Lab