

Technology-Enabled, Rapid-Response Fresh Food Supply Chains (TERRa-Fresh) Complementary Regions

Grace Neal, Madhav Regmi and Omar Ahumada

International Logistics & Productivity Improvement lab

Background

Analytics: A SIMPLE Crop Model

- Simple generic crop model (SIMPLE) developed by Zhao et al. (2019) is used to predict crop yield.
- Inputs for SIMPLE model includes crop-specific parameters, daily weather data, and water availability.
- Following Zhao et al. (2019), daily biomass growth rate ($Biomass_{rate}$) is estimated as:

 $Biomass_{rate} = Radition \times fSolar \times RUE \times f(CO_2) \times f(Temp) \times min(f(Heat), f(Water))$

- \succ *fSolar* is the fraction of solar radiation (*Radition*) intercepted by a crop canopy.
- \succ *RUE* is the radiation use efficiency. [=1]
- > $f(CO_2)$ measures the CO2 impact on biomass growth. [=1]
- \succ f(Temp) measures the temperature impact on biomass growth.
- \succ *f*(*Heat*) measures the heat stress on biomass growth.
- > f(Water) measures the heat stress on biomass growth. [=1]

SIMPLE Model Parameters and Inputs

 $Biomass_{rate} = Radition \times fSolar \times RUE \times f(CO_2) \times f(Temp) \times min(f(Heat), f(Water))$

- I_{50A} is the cumulative temperature required to intercept 50% of solar radiation during canopy closure [=520].
- I_{50A} is the cumulative temperature required to 50% of radiation interception during canopy senescence [=400].

Crop	Harvest	T 1	T	T 1 4 4	T	
Name	Index	I_base	I_opt	I_neat	I_extreme	Dry Matter
Tomato	0.68	6	26	32	45	6%
Lettuce	0.68	6	26	32	45	10%
Celery	0.68	11	31	37	50	6%
Bell Pepper	0.68	11	31	37	50	8%
Carrot	0.7	6	26	32	45	12%
Cucumber	0.68	11	31	37	50	4%
Onion	0.85	6	26	32	45	10%
Green						
Bean	0.4	11	31	37	50	10%
Cauliflower	0.68	6	26	32	45	8%

- T_{base} and T_{opt} are the base and optimal temperature for biomass growth.
- T_{max}, T_{heat} and T_{extreme} respectively represents daily maximum temperature, temperature threshold when biomass growth rate starts to reduced by heat stress, and temperature threshold when biomass growth rate rate reaches 0 due to heat stress.

Estimating Yield using SIMPLE Crop Model

> The cumulative biomass until i^{th} day becomes:

 $Biomass_cum_{i+1} = Biomass_cum_i + Biomass_rate$

Finally, the total crop yield can be predicted as:

 $Yield = Biomass_cum_{maturity} \times Harvest Index$

Complementary Regions

Temperature Scenario Yield Curves by Planting Week, Crop, and City (AII) 2 degrees C decrease Crop / Harvest Weeks 2 degrees C increase City Tomato Temperatur.. ✓ Normal 2K /est (kgs/hectar Crop 1K (AII) Albuquerque Normal Bell Pepper The unique weather 1K Carrot patterns of different Cauliflower 0K est (kgs/hectares)H Celery areas can be an 2K Cucumber advantage as it can Green Bean 1K Lettuce Aspen Normal enable a continuous Onion 1K supply of a crop ✓ Tomato s)Har 0K throughout the year. City 2K ř ✓ (AII) (kgs/hect. ✓ Albuquerque 1K ✓ Aspen Las Cruces Normal ✓ Las Cruces est 1K ✓ Phoenix ectares)Har 0K ✓ Tucson ✓ Yuma 2K Planting Week (kgs/h Phoenix Normal ✓ (AII) √ 1 z √ 2 √ 3 √ 4 √ 5 √ 6 (kgs/h Tucson Normal √ 7 /est √ 8 √ 9 √ 10 arvest (kgs/hectares)H √ 11 2К √ 12 **√** 13 Yuma Normal **√** 14 ✓ 15 Temperature Scenario 1 2 3 4 5 6 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 8 9 10 11 44 45 46 47 48 49 50 51 52 Normal

Climate Change Effects on Crop Yields

Expansion to 5-Digit Zip Code Regions

Planting Week

Predicted Yield by Crop and Harvest Week

Terra-Fresh Tools Demo

Yield Estimation Tool

Simulate crop yields through different regions of Arizona, Colorado and New Mexico

Predicted Yield

Predicted crop yield in New Mexico, Arizona and Colorado.

Clustered Planning Units

Grouped regions according to their agronomic potential in New Mexico, Arizona and Colorado.

Future Work

- Modify the yield model to consider crops that have only one harvest
- Expand yield model results to other states
- Validate some of the model parameters for each region

Acknowledgements

FFAR Officers: Lucyna Kurtyka, John Reich

ASU Team

J. Rene Villalobos George Runger Arnie Maltz Pat Phelan Rodrigo Ulloa Xaimarie Hernández Cruz Other Partners Grace Neal Francisca Quijada Dibarrat Darshil Shaileshkumar Shah Aryan Bisht Miguel Peinado Alexander Eierle

Former ILPIL members

Hector Flores Omar Ahumada Octavio Sánchez

NMSU Team

Paul Gutierrez Madhav Regmi Chadelle Robinson Eric Nez

Jim Kallof Patty Emmert Paul Cordero **Duncan Family Farms** La Montañita Coop Sol y Tierra Growers Local First Stern Produce **CH** Robinson

12

International Logistics & **Productivity Improvement Lab**

I PIL

Visit Us!

Questions? Comments?

Additional Material

Market Intelligence Interactions

Prescriptive Analytics

Yield Prediction

Usage of biological models to predict the total yield and its harvest distribution for each possible planting week.

Planning Unit Definition

Identify yield homogeneous regions.

Farm Planning

Usage of predicted prices and yields as inputs for agricultural planning optimization models.

