The use of mini-containers in fresh food supply chains: the small grower perspective

January 2022

Pat Phelan, J. Rene Villalobos
International Logistics and Productivity Improvement Laboratory
Arizona State University

Schematic of Current Fresh Produce Supply Chain

1. **Farm, Farming Practices and harvesting**
2. **First mile logistics: Routing**
3. **Consolidation, pre-cooling and introduction to cold chain**
4. **Packaging and storage at origin**
5. **Long Haul Transportation**

Local Logistics

- **Transportation to retailer**
- **Storage at distribution Center**
- **Local Transportation**
- **Warehouse picking and preparation for local transportation**
- **Storage at broker's or wholesaler's warehouse**

- **Display at retailer shelf**
- **Transportation to Consumer's premises**
- **Storage at consumer's premises**
- **Preparation and Consumption**
Current Situation of Local Cold Logistics: Small Grower Perspective

• Lack of logistics capacity and service providers with focus on small growers
• Lack of open-access facilities for processing, packing, pre-cooling, and cold storage
• Lack of critical mass for an individual grower to access efficient logistics (full truck loads, processing, etc.)
• Aggregation of products from different growers in a vehicle made difficult because of regulations and incompatibility of products
• Not ready for the new market conditions
A Solution: Load aggregation through mini-containers

• Mini-containers are 4 x 4 x 4 ft³, stackable, insulated, environmentally controlled boxes.

• Each mini-container is a cyber-enabled, Lego-like device that can be incrementally connected to other mini-containers to reach just the volume needed to transport a freight load.

• Mini-containers enable capacity sharing of a container among multiple conveyances that may contain several product types under different transportation conditions.

• The combination of mini-containers with efficient refrigeration systems (Central Driving Units, CDUs) reduces logistics costs, food waste and energy/emissions footprint from perishable products.
Conceptual Design:
A conditioned box without a dedicated refrigerated system

Individual traceability sensor in real time:
- Temperature
- RH
- CO₂
- Ethylene

Cold Air Supply
Humidity/Dehumidify Supply
N₂ Supply

Return Air

Conceptual Design: connected to a Central Driving Unit (CDU) that provides conditioning

- Traceability
- Energy Recovery
- Pre-cooling
- Electrification

The Central Driving Unit (CDU) provides services to mini-containers

- External Electricity Input
- Electrical Power Unit
- Battery Bank (or IC engine for special cases)
- Vapor Compression System
- Filtration and Energy Recovery Unit
Conceptual Design: the Central Driving Unit (CDU)

The Central Control Unit interacts with sensors inside the freight mini-containers to provide real-time control and connectivity.

The bundle can be stored at the farm and solar energy can be used to reduce electricity costs.
36 MCs on an 18-wheeler
Indirect Refrigeration CO$_2$ Emissions

Phoenix, Arizona, USA

Assumes mini containers are powered by batteries charged with solar energy.
The Mini-container (FreshKube):

• By using efficient routing, it allows the efficient aggregation of perishable products from different producers at full-truck logistics costs.

• Allows the participation of small producers in the burgeoning direct-to-consumer markets with their own brands, traceable and customized products.

• Provides the standardized unit to make possible the deployment of seamless autonomous and automated logistics, including self-driving freight vehicles.

• Allows the fully verifiable, pristine, unopened, fully traceable journey from producer to consumer.

• Enables integrated decision environments (real time data, controls and predictive/prescriptive analytics) for overall logistics systems improvement.

• Allows share-economies solutions for the small farmers needs in first (and last mile) logistics
Current State

• Patent application filed on 6/15/21 via ASU.
• Calculations for refrigeration and ventilation requirements.
• Prototype of sensors control scheme design under development based on Raspberry Pi microprocessor.
• A functional full prototype is already available.
Next Steps

1. Complete energy requirements analysis for refrigeration, environmental control, and air flow.
2. Refine design of individual refrigeration, air purification, and prime mover subsystems.
3. Develop integrated system for packaging CDU in one or two mini containers.
4. Develop technoeconomic models to identify additional market opportunities and focus for future cost-reduction efforts.
5. Alpha prototype testing.
7. Develop detailed marketing, financial and management plans.
Summary of the Benefits of the Mini-Containers

• Allows the transportation of incompatible crops in the same vehicle.
• Allows the creation of temporary cold storage facilities in remote places.
• Allows the immediate precooling of crops at the farmer’s premises.
• Fully electrifies the cold chain, enables better vehicle routing, reducing energy waste and carbon emissions.
• Allows more efficient use of freight capacity.
• Enables consumer-direct transactions, skipping intermediaries and inefficient extra handling.
• Allows environmental control, full traceability and real-time tracking.
• Enables last-mile logistics strategies to deliver and position inventory close to the final customer.
• Provides the basis for upcoming automated and autonomous logistics systems
Sponsors Mini-Container Project

Faculty/Students

Faculty:
- J. Rene Villalobos
- Pat Phelan

Students:
- Keshawa Bandara
- Levi Siwek
- Derall Riley
- Mahmmoud Shyam
- Sergio Garcia
Thank you.

For more information please contact:
J. Rene Villalobos at renev@asu.edu
Pat Phelan at phelan@asu.edu
Or visit www.terra-fresh.com
First Mile Logistics Problems

- Harvest sizes too small to fill a full truck
- Very often regulations mandate that harvests from different growers cannot be consolidated in the same freight vehicle
- Lack of logistics agents with focus on harvest aggregation

What About the Regulations?