# Design of Serial Assembly Lines Under Labor Turnover 

Rene Villalobos, Adrian Montaño, Luis Mar, Luis Muñoz

## Department of Industrial Engineering

Arizona State University

## Labor Turnover/Problem Definition

- One estimate calculates the cost of turnover to American industry at about $\$ 11$ billion a year.
- Turnover is an important factor in declining productivity and competitiveness.
- High labor turnover is often cited as a factor for low productivity.
- Turnover is caused by internal or externals factors. Solutions are limited or non existent.


## Labor Turnover/Problem Definition

- Input costs:
- Replacement costs
- Training costs
- Output costs:
- Reduction of production per employee
- Production loss due to differential in assembly speed between an experienced and a new employee
- Whatever the causes, the negative effects of turnover translate into high monetary costs.


## Statement of the Problem/Research Objectives

- Focus on the design of the assembly line to diminish the effect of labor turnover.
- Investigate whether hybrid methods that combine the characteristics of current dynamic work allocation methods (such as Work Sharing and Bucket Brigades) and Traditional assembly lines, mitigate better the effects of labor turnover than the original methods.


## Statement of the

## Problem/Research Objectives

- In particular we explored the performance of three serial assembly line designs
- Traditional (Balanced)
- Bucket Brigades (BB)
- Hybrid (MWS)



## Assembly Methods

- Methods make use of different work allocation strategies and worker replacement policies in order to reduce the effects of variability.
- The traditional method will serve as a reference point since is by far the most widely used design.
- The Bucket Brigades uses a flexible allocation method shown to perform well under labor turnover (Munoz, 2000).
- Our Hybrid method uses flexible allocation based on the Worksharing method in order to reduce the effects of variability.


## Bucket Brigade Method

- Method developed by Bartholdi and Eisenstein that proposes a flexible allocation of work.
- Each worker processes an item from station to station until it is taken over (preempted) by a downstream worker.
- When preempted, the worker walks back and takes over the item of the upstream worker and starts to work downstream again.
- The operators are sequenced from slowest to fastest.
- Work content spontaneously allocates, creating an equilibrium.
- Workers are not explicitly limited to a set of stations.


## Hybrid Method

- Method based on Worksharing (McClain, 2000) systems that use flexible allocation of work and the use of variable control buffers.
- The method defines work zones and each operator has primary responsibility over a workstation but shares responsibility on the work elements in the neighboring workstations.
- Buffers are placed between workstations and along with the work zones, define the amount of work each operator must perform.
- Workers perform the elements of their assigned workstation and if the buffer is full, they start with the neighboring elements until finished or preempted and start the backward phase. Go back to the start of the assigned station and take a part form the buffer, if empty, preempt the upstream operator.


## Methods/Operator Replacement

Traditional Line Balancing Method


## Bucket Brigade Method



Modified Work Sharing Method


## Objectives and Characteristics of MWS

- Avoid blockage observed in BB when assembly speeds of operators is similar.
- Operational Rules:
- Complete as many operations as possible
- If there is space available in buffer leave part
- If not, continue working in the operations of the next station
- Take next part first from the buffer and if no parts in the buffer from previous operator

Phase I

## Methodology

| Develop |
| :---: | :---: | :---: |
| MWS |
| System |$~ H$| Determine |
| :---: |
| Measures of |
| Performance |$~ \longrightarrow$| Define LC |
| :---: |
| and Tenure |
| Modeling |


| Develop analytical and |
| :--- |
| simulation models to obtain |
| values of selected response |
| variable (Throughput) | $\rightarrow$

## Cross validate simulation and analytical models



## Methodology

## Develop six Operators/ six station simulation models



## Objectives of Phase I and II

- Phase I (three-operator, three-stations)
- Develop small instance analytical models of the line designs (Traditional, BB and MWS) that relate throughput to labor turnover and learning behavior, in order to gain insight into the nature of the problem and to provide insight on the behavior of longer lines.
- Develop building blocks of logic to be used in the construction of simulation models for the longer lines of Phase II.
- Cross-validate the simulation results (building blocks of logic) and the analytical models.


## Objectives of Phase I and II

- Phase II (six-operator, six-station)
- Compare the performance of the three production methods in more realistic scenarios.


## Phase I (Analytical Models)

- Assumptions of the analytical models:
- Exponential tenure distribution.
- Exponential processing times.
- After a departure, operators are resequenced to maintain slowest to fastest arrangement.
- Operator speed is a function only of the experience acquired, i.e. parts produced.


## Assembly Methods

| Method | Balanced | Work Allocation | Replacement Policy | Buffers |
| :---: | :---: | :---: | :---: | :---: |
| Traditional | Yes | Fixed | Replace whoever <br> leaves (passive) | Yes |
| BB | No | Dynamic | Slow to Fast <br> (active) | No |
| MWS | No | Dynamic | Slow to Fast <br> (active) | Yes |

## Traditional Method

- Consider a 2-operator traditional line where $\mu_{i}$ is the speed of operator $i$.


Model of 2-Operator Traditional Balanced Line

## Bucket Brigade Method

Where $\mu_{i}$ is the speed of operator $i$


Transition Diagram for the Two-operator Two-phase Bucket Brigades Model

## Bucket Brigade Method

- In the previous model, throughput is defined by the following relationship:

$$
\begin{gathered}
T H=\mu_{2}\left(\frac{1}{2} \frac{\left(\mu_{2}^{2}+3 \mu_{1} \mu_{2}+\mu_{1}^{2}\right) \mu_{2}^{2}}{\mu_{2}^{4}+4 \mu_{1} \mu_{2}^{3}+5 \mu_{1}^{2} \mu_{2}^{2}+3 \mu_{1}^{3} \mu_{2}+\mu_{1}^{4}}+\frac{\mu_{1} \mu_{2}^{2}}{\mu_{2}^{3}+3 \mu_{1} \mu_{2}^{2}+2 \mu_{1}^{2} \mu_{2}+\mu_{1}^{3}}\right. \\
\left.+\frac{\left(\mu_{1}^{2}+3 \mu_{1} \mu_{2}+3 \mu_{2}^{2}\right) \mu_{1}^{2}}{\mu_{2}^{4}+4 \mu_{1} \mu_{2}^{3}+5 \mu_{1}^{2} \mu_{2}^{2}+3 \mu_{1}^{3} \mu_{2}+\mu_{1}^{4}}\right)
\end{gathered}
$$

## MWS Method

|  |  | $\begin{aligned} & \text { 男 } \\ & \hline 8 \end{aligned}$ | $\begin{aligned} & \mathbf{8} \\ & 8 \end{aligned}$ | $\stackrel{m}{<}$ | $\frac{2}{2}$ | $\begin{aligned} & \mathrm{m} \\ & \mathbb{Q} \end{aligned}$ | K | $\begin{aligned} & \text { m } \\ & \text { Ny } \end{aligned}$ | $\begin{aligned} & 6 \\ & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & \text { Pip } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 6 } \\ & \text { 㽞 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{NO} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$ | $\begin{aligned} & 6 \\ & \times \mathbf{x} \end{aligned}$ | $\begin{aligned} & \text { min } \\ & \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { M } \\ & \hline 10 \times 2 \end{aligned}$ | $\begin{aligned} & \text { M } \\ & \text { 品 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { m } \\ & \underset{x}{x} \\ & \hline \end{aligned}$ | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | AOB | $-\mu 1-$ $\mu 2$ | $\mu 2$ | $\mu 1$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | AOA | $\mu 2$ | $\begin{array}{\|l\|} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  | $\mu 1$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | A1B | $\mu 2$ |  | $\begin{array}{\|l\|} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  | $\mu 1$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | A1A |  |  | $\mu 2$ | $\begin{array}{\|l\|} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  | $\mu 1$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | A2B |  |  | $\mu 2$ |  | $\begin{aligned} & -\mu 1- \\ & \mu 2 \end{aligned}$ |  | $\mu 1$ |  |  |  |  |  |  |  |  |  |  |  |
| 6 | A2A |  |  |  |  | $\mu 2$ | $\begin{aligned} & -\mu 1- \\ & \mu 2 \\ & \hline \end{aligned}$ |  | $\mu 1$ |  |  |  |  |  |  |  |  |  |  |
| 7 | A3B |  |  |  |  | $\mu 2$ |  | $\begin{array}{\|l\|} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  | $\mu 1$ |  |  |  |  |  |  |  |  |  |
| 8 | A3A |  |  |  |  |  |  | $\mu 2$ | $\begin{array}{\|l\|} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  | $\mu 1$ |  |  |  |  |  |  |  |  |
| 9 | B3B |  |  |  |  |  |  |  |  | $\begin{array}{\|l\|} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  | $\mu 2$ | $\mu 1$ |  |  |  |  |  |  |
| 10 | B3A |  |  |  |  |  |  |  |  | $\mu 2$ | $\begin{array}{\|l\|} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  |  | $\mu 1$ |  |  |  |  |  |
| 11 | B2B |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l} \hline-\mu 1- \\ \mu 2 \end{array}$ |  |  | $\mu 2$ | $\mu 1$ |  |  |  |
| 12 | X3B |  |  |  |  | $\mu 2$ |  |  |  |  |  |  | －$\mu 2$ |  |  |  |  |  |  |
| 13 | X3A |  |  |  |  |  |  |  |  |  |  |  | $\mu 2$ | $-\mu 2$ |  |  |  |  |  |
| 14 | B1B |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  | $\mu 2$ | $\mu 1$ |  |
| 15 | X2B |  |  | $\mu 2$ |  |  |  |  |  |  |  |  |  |  |  | $-\mu 2$ |  |  |  |
| 16 | B0B | $\mu 2$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l\|} \hline-\mu 1- \\ \mu 2 \\ \hline \end{array}$ |  | $\mu 1$ |
| 17 | X1B | $\mu 2$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $-\mu 2$ |  |
| 18 | XOB |  | $\mu 2$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $-\mu 2$ |

Transition Matrix for a Two－operator，Two－phase MWS Model

## Optimal Policies



Bucket Brigades vs. Traditional

## Optimal Policies



Hybrid vs. Traditional

## 15 $\begin{aligned} & \text { ArIZONA STATE } \\ & \text { UNIVERSITY }\end{aligned}$



Expected Throughput for 3-Operator Line (Operator 1 Speed = 1.0 parts/time unit)

## Arizona State UNIVERSITY



Expected Throughput for 3-Operator Line (Operator 1 Speed = 0.2 parts/time unit)

## Models with Operator Learning

Objective:

- Determine the effect that the learning curves of the operators have on a serial assembly line.
Assumptions:
- Operators learn according to a Log-linear model.
- Operators learn until they reach full rate, denoted by $T_{\infty}$ after which the speed becomes constant.
- Operator speed is a function only of the acquired experience, i.e. parts produced.


## The Learning Process

- New operators experience a learning process as their tasks are reinforced through repetition.
- The graphical representation of learning by doing is called a learning curve model.
- Log-linear model

$$
T_{n}=\frac{T_{1}}{n^{m}}
$$

$T_{n}=$ Time to produce the $n^{\text {th }}$ part
$T_{1}=$ Time to produce the first part of a batch
$n=$ number of parts produced
$m=$ learning coefficient

## Throughput:

## A Function of Learning

- $\Uparrow$ Experience $(n) \quad \Downarrow \operatorname{Process} \operatorname{Time}\left(T_{n}\right) \Rightarrow \Uparrow$ Line Throughput
- From production theory we know: $r_{e}=1 / t_{e}$
- In a similar way, and from the Log-linear definition: $1 / T_{n}=$ rate or speed at which the $n^{\text {th }}$ part is produced, which we denoted as:

$$
\gamma_{i}(n)=\frac{n^{m}}{T_{1}}
$$

Consequently, the $T H$ of the line as a function of the experience of the operators is obtained by substituting the static speeds $\mu_{i}$ with the dynamic definition of speed $\gamma_{i}(n)$

## Throughput:

## A Function of Learning

- The substitution of this new expression for the rate or speed of the operator in previous expressions for throughput renders a new characterization of the output of the line as a function of the experience of the operators.
- As an example consider a 3-operator model, where the experience of operators 1,2 and 3 is 0,3500 and 10500 parts respectively. The task learning factor is $m=0.14$ and the time to produce the first part is $T_{1}=40.0 \mathrm{~min}$.
- The resulting throughput graph follows:


## Throughput:

 A Function of Learning

Expected Throughput as a Function of the Learning Process

## Serial Line Learning Curve (Analytical Models)



Expected Throughput as a Function of the Learning Process

Results from Simulation (6 operators)


## Serial Line Learning Curve (Analytical Models)

- Results
- Representation of the TH of a serial line as a function of the experience (i.e. parts produced) of the operators.
- Implications
- The Traditional method is the most affected by the introduction of new operators.
- Dynamic allocation methods absorb better the variability introduced by new operators.


## Learning and Optimal Policy

Traditional Vs. Bucket Brigade ( $\mathrm{m}=.322$ )

Traditional Vs. Modified Work Sharing ( $\mathrm{m}=.322$ )

Traditional



## Cases Studied with Analytical Models

| Turnover rate (month) | $\begin{gathered} T_{1} \\ (\mathrm{~min}) \\ \hline \end{gathered}$ | $\begin{aligned} & T_{\infty} \\ & (\min ) \\ & \hline \end{aligned}$ | Learning <br> Factor ( $m$ ) | MTBD <br> (days) | Mean Time <br> Between <br> Departures |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6\% | 40.0 | 10.0 | 0.14 | 120.37 |  |
|  |  |  | 0.322 |  |  |
|  |  |  | 0.514 |  |  |
| 6\% | 90.0 | 10.0 | 0.14 | 120.37 |  |
|  |  |  | 0.322 |  |  |
|  |  |  | 0.514 |  |  |
| 12\% | 40.0 | 10.0 | 0.14 | 60.19 |  |
|  |  |  | 0.322 |  |  |
|  |  |  | 0.514 |  |  |
| 12\% | 90.0 | 10.0 | 0.14 | 60.19 |  |
|  |  |  | 0.322 |  |  |
|  |  |  | 0.514 |  |  |

## Results/Insight from Analytical Models

6\% Turnover



## Results/Insight from Analytical Models

## 12\% Turnover




## Conclusions from Analytical Models

- Lower learning factors ( $\mathrm{m}=0.14$ ), the MWS method clearly performs the best.
- Moderate to high learning factors ( $\mathrm{m}=0.322,0.514$ ) we recommend also the MWS method, although the traditional method generates higher yields in some instances.
- MWS method surpasses the Traditional method in all instances when buffer capacity is of 20 parts or less.
- Dynamic allocation methods (i.e. Bucket Brigades and MWS) are an attractive alternative to absorb the variability of turnover.
- Promote WIP control
- Promote discipline over the production line.


## Phase I (Simulation Models)

- Assumptions of the simulation models:
- Weibull tenure distribution.
- Gamma processing times
- After a departure, operators are resequenced to maintain slowest to fastest arrangement.
- Operator speed is a function only of the experience acquired, i.e. parts produced


## ANOVA Results

| Source | Sum of Squares | Df | Mean Square | F-Ratio | $\boldsymbol{P}$-Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | 9455.418 | 26 | 363.6699 | 13802.59 | $<0.0001$ |
| MAIN EFFECTS |  |  |  |  |  |
| A: Method | 153.8074 | 2 | 76.9037 | 2918.773 | $<0.0001$ |
| B: Learning Curve | 8384.673 | 2 | 4192.336 | 159114.3 | $<0.0001$ |
| C: Turnover Rate | 258.3055 | 2 | 129.1528 | 4901.813 | $<0.0001$ |
| INTERACTIONS |  |  |  |  |  |
| AB | 426.7892 | 4 | 106.6973 | 4049.548 | $<0.0001$ |
| AC | 1.323152 | 4 | 0.330788 | 12.55459 | $<0.0001$ |
| BC | 334.9436 | 4 | 83.7359 | 3178.08 | $<0.0001$ |
| ABC | 3.762818 | 8 | 0.470352 | 17.85157 | $<0.0001$ |
| PURE ERROR | 13.01589 | 494 | 0.026348 |  |  |
| TOTAL | 9468.434 | 520 |  |  |  |
| (CORRECTED) |  |  |  |  |  |

## Comparison Results



| Case |  | T/80/0 | T/85/0 | T/90/0 | M/80/0 | M/85/0 | M/90/0 | B/80/0 | B/85/0 | B/90/0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AVTH | 1693.9 | 1693.9 | 1693.9 | 1677.18 | 1677.18 | 1677.18 | 1672.64 | 1672.64 | 1672.64 |
| T/80/0 | 1693.9 |  | NSD | NSD | S | S | S | S | S | S |
| T/85/0 | 1693.9 | NSD |  | NSD | S | S | S | S | S | S |
| T/90/0 | 1693.9 | NSD | NSD |  | S | S | S | S | S | S |
| M/80/0 | 1677.18 | S | S | S |  | NSD | NSD | S | S | S |
| M/85/0 | 1677.18 | S | S | S | NSD |  | NSD | S | S | S |
| M/90/0 | 1677.18 | S | S | S | NSD | NSD |  | S | S | S |
| B/80/0 | 1672.64 | S | S | S | S | S | S |  | NSD | NSD |
| B/85/0 | 1672.64 | S | S | S | S | S | S | NSD |  | NSD |
| B/90/0 | 1672.64 | S | S | S | S | S | S | NSD | NSD |  |


| Case |  | $\mathrm{T} / 80 / 6$ | $\mathrm{~T} / \mathbf{5 5 / 6}$ | $\mathrm{T} / 90 / 6$ | $\mathrm{~B} / \mathbf{8 0 / 6}$ | $\mathrm{B} / \mathbf{5 5 / 6}$ | $\mathrm{B} / 90 / 6$ | $\mathrm{M} / 80 / 6$ | $\mathrm{M} / \mathbf{8 5 / 6}$ | $\mathrm{M} / 90 / 6$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TH | 354.9 | 104.9 | 42.8 | 694.2 | 159.8 | 52.4 | 661.6 | 160.7 | 53.7 |
| $\mathrm{~T} / 80 / 6$ | 354.9 |  | S | S | S | S | S | S | S | S |
| $\mathrm{~T} / 85 / 6$ | 104.9 | S |  | S | S | S | S | S | S | S |
| $\mathrm{~T} / 90 / 6$ | 42.8 | S | S |  | S | S | S | S | S | S |
| $\mathrm{~B} / 80 / 6$ | 694.2 | S | S | S |  | S | S | NSD | S | S |
| $\mathrm{B} / 85 / 6$ | 159.8 | S | S | S | S |  | S | S | NSD | S |
| $\mathrm{B} / 90 / 6$ | 52.4 | S | S | S | S | S |  | S | S | NSD |
| $\mathrm{M} / 80 / 6$ | 661.6 | S | S | S | NSD | S | S |  | S | S |
| $\mathrm{M} / 85 / 6$ | 160.7 | S | S | S | S | NSD | S | S |  | S |
| $\mathrm{M} / 90 / 6$ | 53.7 | S | S | S | S |  | NSD | S | S |  |


| Case |  | $\begin{gathered} \hline \text { T/80/ } \\ 12 \\ \hline \end{gathered}$ | $\begin{array}{\|c} \hline \mathrm{T} / 85 / \\ \hline 12 \\ \hline \end{array}$ | $\begin{gathered} \hline \text { T/90/ } \\ 12 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { B/80/ } \\ \hline 12 \\ \hline \end{array}$ | $\begin{gathered} \hline \text { B/85/ } \\ 12 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \mathbf{B} / 90 / \\ 12 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \mathrm{M} / 80 / \\ 12 \\ \hline \end{array}$ | $\begin{gathered} \hline \text { M/85/ } \\ 12 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { M/90/ } \\ \hline 12 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TH | 258.1 | 85.7 | 37.8 | 487.4 | 126.4 | 47.4 | 517.9 | 125.9 | 47.4 |
| T/80/12 | 258.1 |  | S | S | S | S | S | S | S | S |
| T/85/12 | 85.7 | S |  | S | S | S | S | S | S | S |
| T/90/12 | 37.8 | S | S |  | S | S | S | S | S | S |
| B/80/12 | 487.4 | S | S | S |  | S | S | NSD | S | S |
| B/85/12 | 126.4 | S | S | S | S |  | S | S | NSD | S |
| B/90/12 | 47.4 | S | S | S | S | S |  | S | S | NSD |
| M/80/12 | 517.9 | S | S | S | NSD | S | S |  | S | S |
| M/85/12 | 125.9 | S | S | S | S | NSD | S | S |  | S |
| M/90/12 | 47.4 | S | S | S | S | S | NSD | S | S |  |

Results/Insight from Simulation Models

- Both MWS and BB are superior to the Traditional Assembly method (except under no turnover)
- No statistical significant difference between MWS and BB in small instance models


## Phase II (six-station, six-operator models)

- Identical assumptions as in the 3-op., 3-station simulation models


## ANOVA

| Source | Sum of Squares | Df | Mean Square | F-Ratio | $\boldsymbol{P}$-Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN EFFECTS |  |  |  |  |  |
| A: Method | 120338 | 2 | 60169 | 1308.09 | $<0.0001$ |
| B: Learning Curve | 498719 | 2 | 249360 | 5421.14 | $<0.0001$ |
| C: Turnover Rate | 924665 | 2 | 462332 | $1.0 \mathrm{E}+04$ | $<0.0001$ |
| INTERACTIONS |  |  |  |  |  |
| AB | 788 | 4 | 197 | 4.28 | 0.002 |
| AC | 596 | 4 | 149 | 3.24 | 0.013 |
| BC | 249460 | 4 | 62365 | 1355.83 | $<0.0001$ |
| ABC | 402 | 8 | 50 | 1.09 | 0.370 |
| PURE ERROR | 11177 | 243 | 46 |  |  |
| TOTAL (CORRECTED) | 1806145 | 269 |  |  |  |

## Comparison Results



| Case |  | T/80/6 | T/85/6 | T/90/6 | B/80/6 | B/85/6 | B/90/6 | M/80/6 | M/85/6 | M/90/6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AVTH | 576.9 | 521.3 | 430.7 | 619.3 | 560.0 | 459.1 | 626.9 | 570.0 | 468.9 |
| T/80/6 | 576.9 |  | S | S | S | S | S | S | NSD | S |
| T/85/6 | 521.3 | S |  | S | S | S | S | S | S | S |
| T/90/6 | 430.7 | S | S |  | S | S | S | S | S | S |
| B/80/6 | 619.3 | S | S | S |  | S | S | S | S | S |
| B/85/6 | 560.0 | S | S | S | S |  | S | S | S | S |
| B/90/6 | 459.1 | S | S | S | S | S |  | S | S | S |
| M/80/6 | 626.9 | S | S | S | S | S | S |  | S | S |
| M/85/6 | 570.0 | NSD | S | S | S | S | S | S |  | S |
| M/90/6 | 468.9 | S | S | S | S | S | S | S | S |  |


| Case |  | T/80/0 | T/85/0 | T/90/0 | B/80/0 | B/85/0 | B/90/0 | M/80/0 | M/85/0 | M/90/0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AVTH | 625.9 | 625.9 | 625.9 | 668.0 | 668.0 | 668.0 | 672.6 | 672.6 | 672.6 |
| T/80/0 | 625.9 |  | NSD | NSD | S | S | S | S | S | S |
| T/85/0 | 625.9 | NSD |  | NSD | S | S | S | S | S | S |
| T/90/0 | 625.9 | NSD | NSD |  | S | S | S | S | S | S |
| B/80/0 | 668.0 | S | S | S |  | NSD | NSD | S | S | S |
| B/85/0 | 668.0 | S | S | S | NSD |  | NSD | S | S | S |
| B/90/0 | 668.0 | S | S | S | NSD | NSD |  | S | S | S |
| M/80/0 | 672.6 | S | S | S | S | S | S |  | NSD | NSD |
| M/85/0 | 672.6 | S | S | S | S | S | S | NSD |  | NSD |
| M/90/0 | 672.6 | S | S | S | S | S | S | NSD | NSD |  |


| Case |  | $\begin{gathered} \mathrm{T} / 80 \mathrm{o} \\ 12 \end{gathered}$ | $\begin{gathered} \mathrm{T} / 85 / \\ 12 \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{T} / 90 \\ 12 \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{B} / 80 / \\ 12 \end{gathered}$ | $\begin{gathered} \mathrm{B} / 85 / \\ 12 \end{gathered}$ | $\begin{gathered} \mathrm{B} / 90 \\ 12 \end{gathered}$ | $\begin{array}{\|c} \hline \text { M/80/ } \\ 12 \end{array}$ | $\begin{gathered} \hline \text { M/85/ } \\ 12 \end{gathered}$ | $\begin{gathered} \hline \mathbf{M} / 90 / \\ 12 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AVTH | 564.9 | 504.8 | 414.4 | 612.9 | 551.1 | 450.3 | 619.8 | 560.3 | 459.2 |
| T/80/12 | 564.9 |  | S | S | S | S | S | S | NSD | S |
| T/85/12 | 504.8 | S |  | S | S | S | S | S | S | S |
| T/90/12 | 414.4 | S | S |  | S | S | S | S | S | S |
| B/80/12 | 612.9 | S | S | S |  | S | S | S | S | S |
| B/85/12 | 551.1 | S | S | S | S |  | S | S | S | S |
| B/90/12 | 450.3 | S | S | S | S | S |  | S | S | S |
| M/80/1 | 619.8 | S | S | S | S | S | S |  | S | S |
| M/85/1 | 560.3 | NSD | S | S | S | S | S | S |  | S |
| M/90/1 | 459.2 | S | S | S | S | S | S | S | S |  |

## Conclusions

- Assembly line designs based on dynamic work allocation absorb better the variability introduced by new operators.
- The MWS method has the potential of self-adjusting to different levels of labor turnover.
- Generally the MWS method outperforms the BB method and the traditional balanced line under conditions of medium and high labor turnover in longer, more realistic assembly lines.
- In smaller assembly lines, under medium and high labor turnover conditions the BB and MWS tend to perform similarly. When additional sources of variation -other than processing times- are present, such as machine breakdowns, the MWS tends to outperform the BB .
- Further research in the following topics is needed: operational rules, development of detailed design rules, impact of hand-over times


## Weibull Distribution

- Real-world data from Lear Co.
- Provides non-negative numbers



## Learning Curve Selection

De Jong's Model


## Gamma Distribution

- Represents Processing Time
- The variability can be modeled with the mean
- Set $\alpha$ and $\beta$ for
- Mean $=130 \mathrm{sec} . \&$ Var $=30 \mathrm{sec}$. using:

$$
\begin{aligned}
& \alpha=563.33 \\
& \beta=\text { Mean } / \alpha
\end{aligned}
$$

Histogram for O pe rator Process Time


## Gamma Distribution

Gamma Distribution vs. Real Data


