

Assembly Line Designs for High Turnover Environments

J. Ren é Villalobos and Luis F. Muñoz Department of Industrial Engineering Arizona State University

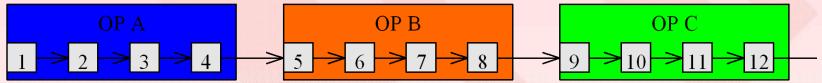
Implications of Labor Turnover

- High labor turnover often cited as a factor for low productivity and competitiveness
- Input costs
 - Replacement costs
 - Training costs
- Output costs
 - Reduction of production per employee

United Technologies Automotive

- Location:
 - Plant 158 is located in Cd. Juarez Mexico
- Product Assembled:
 - Electrical harnesses for the automotive industry
- Principal Clients:
 - GM, Toyota and Nissan amongst others

Self-Balancing Line (Bucket Brigade)


- Recently proposed by Bartholdi and Eisenstein to build more flexible lines
- Each worker carries an item from station to station until interrupted by the subsequent worker
- After the worker has surrendered his part he/she walks back take over the item of his/her predecessor
- Operators sequenced from slowest to fastest
- The assembly line arrives by itself to a point of equilibrium
- No "balancing" of the line is required

Bucket Brigade

Traditional Line Balancing Method

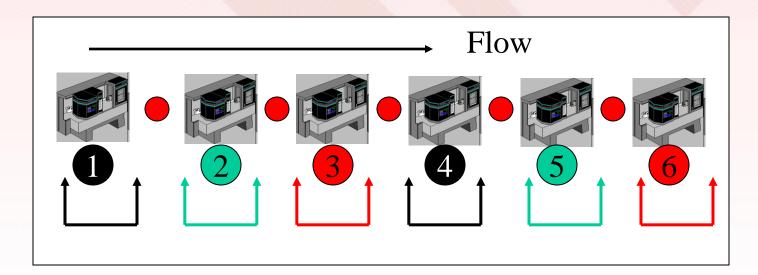
Bucket Brigade Method

0	PA OPB	OP C
1 -> 2 -> 3 ->	$4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8$	$ 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 $

Methodology

- Data collection in the assembly line
- Development of simulation models
 - Current method
 - Bucket brigade
- Revalidation of available results
 - Learning curve
 - Tenure Distribution
 - Assembly time distribution
- Verification and Validation of simulation
- Implementation in a pilot application (Toyota Assembly Line 152)
- Final validation (compare simulation vs. pilot line)

Methods


- Simulation Models:
 - Actual system (experienced operators)
 - Actual system with learning curve/rotation
 - Bucket Brigade (experienced operators)
 - Bucket Brigade with learning curve/rotation

Actual Method

- N Operators among N work stations
- Buffer available between stations
- Operator is idle if station is starved

Assumptions

- Experienced Operators
 - 0% rotation
 - Shift: 6:15-15:20
 - Two 25 min. breaks
 - Run simulation one month30 replications

- Rotation
 - 12% rotation
 - Weibull distribution
 - for operator tenure
 - Shift: 6:15-15:20
 - Two 25 min. breaks
 - One month of warm-

up, 1 year run.

Simulation

Results W/ Experienced Operators

- Actual System
 - 267.33 parts/shift
 - (260-270 reported)
 - Std. Error = .86parts
 - Avg. Op. Util. = 71.52%

- Bucket Brigade
 - 343.37 parts/shift
 - (previous 347.37)
 - Std. Error = 1.03parts
 - Avg. Op. Util. = 91.36 %

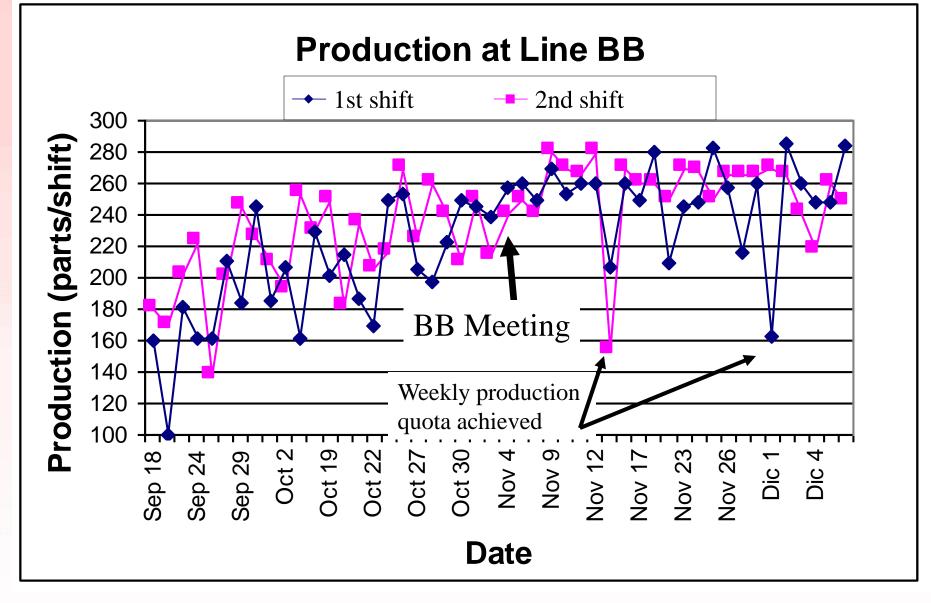
Results with 12% turnover

- Actual System
 - 232.89 parts/shift
 - Std. Error = 9.81 parts
 - Avg. Op. Util. = 71.93 %

- Bucket Brigade
 - 283.54 parts/shift
 - Std. Error = 10.13parts
 - Avg. Op. Util. = 90.95%

Verification and Validation

- The verification of the simulation was performed by calculating throughput with deterministic times and using print statements
- The current system was validated by comparing the throughput of the pilot assembly line vs. the one provided by the simulation



Results Obtained at BB Pilot Line

- Team integration at both shifts
- The weekly production quota being achieved
- Most of the operators prefer to work on the BB line over the pre-existing one
- The group leader prefers BB since it is easier to supervise
- Dramatic reduction of WIP

Operator Comments

- Time goes by faster since the work becomes less monotonous
- We can work as a team!
- It is satisfactory to reach the production goal with good quality
- This method allow us to finish early and to be trained in other areas or machines

Conclusions

- The line reached for the first time ever 300 parts in one shift
- The line consistently reaches and sometimes exceeds the daily production quota even though personnel turnover rate is high.
- Level changes (set up) are quicker since the WIP is lower than with the pre-existing method
- The leader of the line prefers BB since it is easier to supervise the operators and change levels
- The mentality of *teamwork* is enhanced