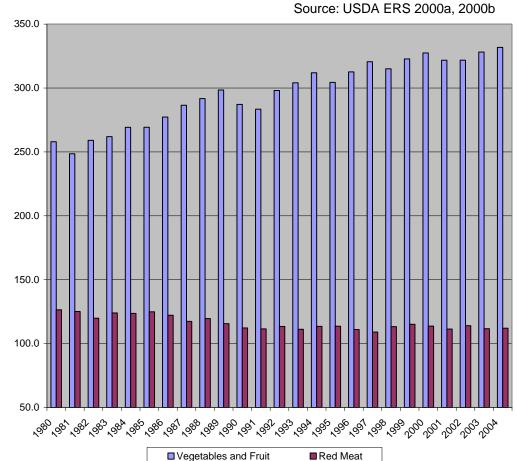
Development of Planning Tools for the Supply Chain of Fresh Produce

Omar Ahumada, J. Rene Villalobos Dept. of Industrial Engineering Arizona State University November, 2007


Agenda

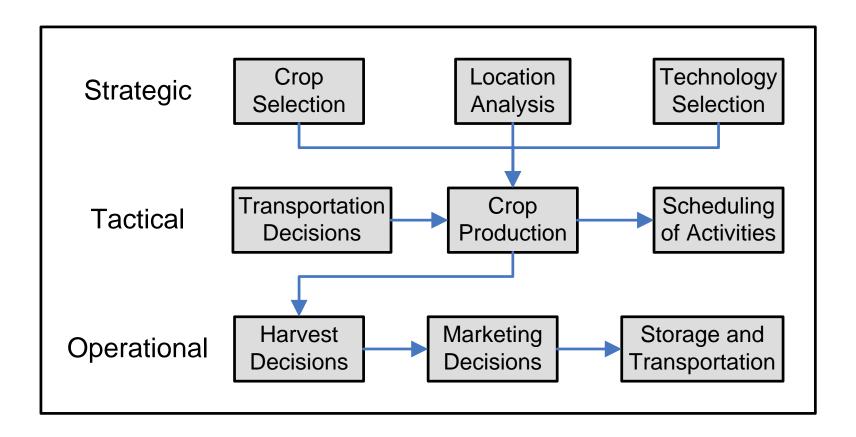
- Background
- Problem Description
- Related Literature
- Project Objectives
- Models Developed
- Tactical model
- Experiments

Background

- The market for fresh fruits and vegetables generates around 80 Billion Dollars in income annually.
- Consumption of fresh produce has increased 30% over the last 30 years.
- Demand is driven by demographic changes and health concerns.
- Produce industry has high logistical costs.
- Increased vertical and horizontal coordination

Background

- Consolidation in the industry is changing the balance of power.
- Retailers require a year long supply of fresh products, which strains production and distribution.
- Retail companies, have pushed the producers to expand their activities in the supply chain and do more value added activities such as:
 - Packing and branding
 - Storage and distributing
 - New product development
- Producers (grower/shipper) now need the use of better tools to deal with their production and logistical complexities


Description of the Problem

Fresh agricultural planning:

- High production costs
- High labor requirements
- Uncertain production
- Limited shelf life
- Risky Market
 - Price unknown
 - Variable demand
- Decisions are taken before any knowledge of the demand, price and production.

Description of the Problem

Description of the Problem

Planting Periods

Harvesting Periods

																На	arve	est k	oy w	veek	Σ.													
		Ν	love	mbe	er	D	ece	emb	er		Jan	uary	/	ŀ	Febi	ruar	у		Ма	rch			Ap	oril			M	ay			Ju	ne		
Date of Plant	Production	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	%
15-Aug	1,662			5	5	10	10	10	10	9	9	8	8	8	8																			100
30-Aug	1,828					5	5	10	10	10	10	9	9	8	8	8	8																	100
14-Sep	2,373					5	5	6	10	10	10	10	10	9	9	8	8																	100
29-Sep	2,564							5	5	10	10	10	10	9	9	8	8	8	8															100
14-Oct	2,698									5	5	10	10	10	10	9	9	8	8	8	8													100
29-Oct	2,684											5	5	10	10	10	10	9	9	8	8	8	8											100
13-Nov	2,896													5	5	10	10	10	10	9	9	8	8	8	8									100
28-Nov	2,837															5	5	10	10	10	10	9	9	8	8	8	8							100
13-Dec	2,337															5	5	10	10	10	10	9	9	8	8	8	8							100
28-Dec	2,183																	5	6	10	20	22	10	8	7	6	6							100
12-Jan	1,794																			4	5	10	15	22	10	9	9	8	8					100
27-Jan	1,385																					7	7	13	13	18	18	9	9	4	2			100
11-Feb	1,200																					7	7	21	21	15	15	5	4	3	2			100
26-Feb	948																							6	6	16	17	12	12	8	8	8	7	100

Related Literature

- Van Berlo (1992): Integrated model for crop planning in the field and production at a plant, with deterministic assumptions.
- Caixeta-Filho et. al. (2002) Optimization of production and trade of lily flowers (Tactical plan).
- Darby et. al. (2000): Stochastic programming approach for production planning with risk aversion, but not an integrated model.
- Entrup et. al. (2005) Linear program for production planning with shelf life integrated in the objective function.

Contribution to the literature

- 1. Designing integrated models that deal with production, harvesting and distribution decisions
- 2. Incorporation of stochastic features to the integrated planning model
- 3. Development of operational models focused in fresh agricultural products.

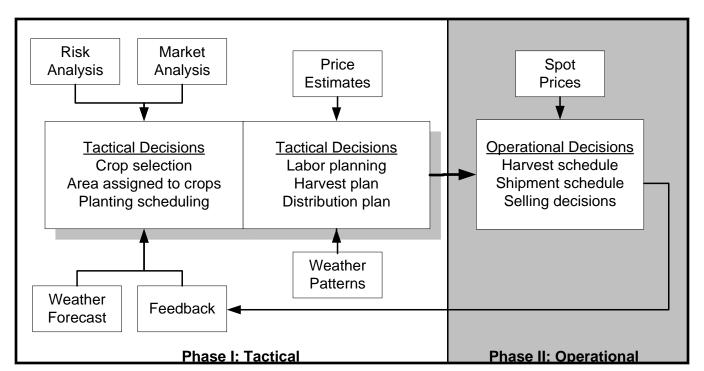
Objectives of the Project

Objective:

Provide vertically integrated producers of highly perishable products, such as fresh fruits and vegetables, with adequate tools to perform their seasonal planning.

Activities:

- Develop a tactical level supply chain planning tool designed for grower/shippers.
- Include shelf life restrictions and/or objectives in the tactical planning model.
- Include uncertainty in the decision planning to account for the characteristics of crop production.
- Develop an operational model to render harvesting and distribution plans.

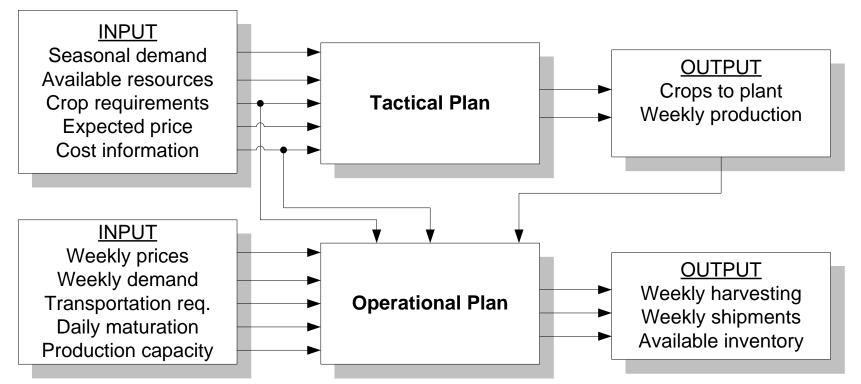

Models Being Developed

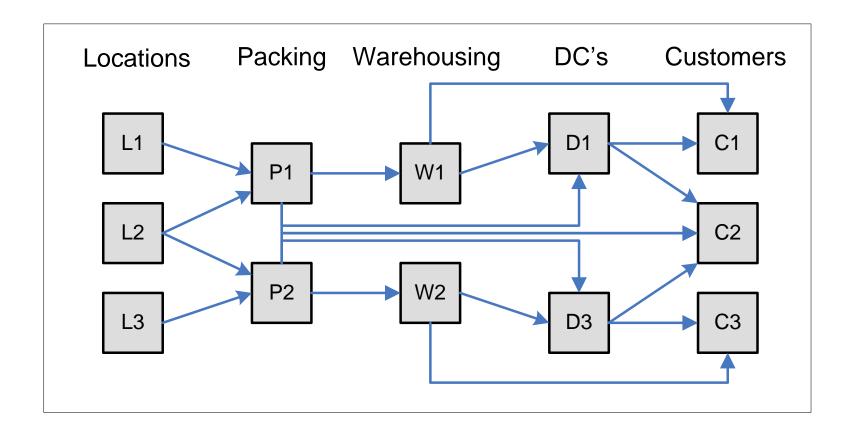
Tactical Model

- How much and when to plant
- Land assigned to each crop
- When to harvest and sale
- Transportation decisions

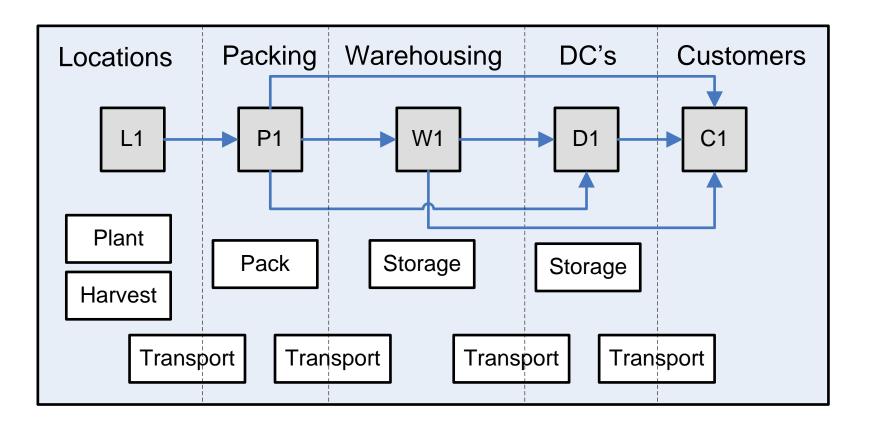
Operational Model

- Harvest schedule
- Schedule of shipments
- Storage and selling decisions
- Transportation decisions




Models Being Developed

Model interaction


- Use tactical model a few times in the season (multiple planting dates).
- Use the operational model every week during the season harvesting season.
- Use estimated costs of harvest and transportation from operational model in tactical planning

Objective:

$$Max = \sum_{tki} (\sum_{f} SC_{tkfi} + \sum_{h} \sum_{w} SW_{htkwi} + \sum_{h} \sum_{d} SD_{htkdi}) \cdot price_{tki} + \sum_{hj} K_{hj}Psalv_{j}$$

$$= \sum_{pjl} Plant_{pjl}Cplant_{jl} - \sum_{pjl} X_{pjl}LabP_{j}CLabor - \sum_{phjl} Harvest_{phjl}LabH_{k}CLabor - \sum_{tf} Opf_{tf}CLabor - \sum_{fhk}Pack_{hfk}Ccase_{k}$$

$$= \sum_{tkfi} SC_{tkfi} (\sum_{r} TC_{tkfir}CT_{fir}) - \sum_{htkwi} SW_{htkwi} (\sum_{r} TW_{tkwir}CTW_{wir}) - \sum_{htkdi} SD_{htkdi} (\sum_{r} TD_{tkdir}CTD_{dir})$$

$$= \sum_{htkfw} SPW_{htkfw} (\sum_{r} TPW_{tkfwr}CTPW_{fwr}) - \sum_{htkfd} SPD_{htkwi} (\sum_{r} TPD_{tkfdr}CTPD_{fdr}) - \sum_{htkwd} SWD_{htkwd} (\sum_{r} TWD_{tkwdr}CTWD_{wdr})$$

$$= \sum_{tkw} Invw_{tkw}Chw_{kw} - \sum_{tkd} Invd_{tkd}Chd_{kd} - \sum_{tkw} Z_{tkw} Pavg_{tk}$$

$$= Marvest_{htk} Pavg_{tk}$$

$$= Marvest_{htk} Pavg_{tk}$$

$$= Marvest_{htk} Pavg_{tk}$$

Decision Variables:

 $\begin{array}{l} Plant_{pjl} : \text{Area to plant of crop } j, \text{ in period } p \text{ at location } / \\ Harvest_{phjl} : \text{Harvest (pounds) of crop j in period } h \text{ and planted in period } p \text{ from location } / \\ Pack_{hkf} : \text{Quantity of product } k \text{ packed at facility } f \text{ in period } h \\ SW_{htkwi} : \text{Quantity of product } k \text{ in period } h \text{ shipped from warehouse } w \text{ to customer } i \text{ in period } t \\ SC_{tkfi} : \text{Quantity of product } k \text{ to ship directly to customer } i \text{ from facility } f \text{ in period } t \\ SD_{htkdi} : \text{Quantity of product } k \text{ in period } h \text{ to ship to DC } d \text{ from facility } f \text{ in period } t \\ TC_{tkfir} : \text{Transportation mode } r \text{ selected for transporting product } k \text{ from } f \text{ to } i \text{ at time } t\{0,1\} \\ \end{array}$

Experiments

J	Т	TP	ΤН	Ι	L	Ρ	W	D	K	Η	Row	Col	Non	Time
2	30	8	16	3	2	2	2	2	8	З	47,090	53,964	171,390	54
2	40	20	26	3	2	2	2	2	8	3	109,361	118,745	360,368	200

Factors

- Crops (J)
- Locations (L)
- Customers (I)
- Plants (P)
- DC's (D)
- Transportation mode (H)

- Time periods (T) in Weeks
- Time Production (TP)
- Time Harvest (TH)
- Warehouses (W)
- Products (K)

Results

- We have gathered information from a medium size grower with a 1,000 acres of fresh produce.
- The crops are tomatoes and bell peppers
- Before the cropping season the model provides the time and quantity to plant of each crop per week.
- The model also provides an estimate of the harvesting requirements during the harvesting season.
- For marketing decisions: the model indicates which customers to supply and the markets to target, based on prices and transportation costs.
- Finally the model select the best transportation mode based on the shelf life and delivery restrictions.

Future Research

- Use the structure of the model: sparse matrix in a multicommodity MIP to solve the basic problem faster.
- Include stochastic features to the tactical planning model and use the faster running algorithms developed for the deterministic model.
- Develop operational models based on the tactical plan, but changing the time period from weeks to days.
- Consider other objective functions that are closer to the growers, such as risk-based performance.
- With the use of stochastic programming, we can later consider several production and distribution plans based in their risk, probabilities and benefits.

Related Literature

			P	annin	ig Scope	,					Decisio	n Variables
Applications	S	Т	0	SL	Α	DM	Р	Η	D	Ι	SCM	Other
Widodo et. al. (2006)		Х	Х	Х	Ν	SC	Х			Х	2	
Caixeta-Filho (2006)		Х			Y/N	Planner		Х			2	
Ferrer et. al. (2005)		Х	Х	Х	Y/N	Planner		Х			1	Labor and routing
Kazaz (2004)		Х		Х	Y/N	Planner	Х	Х			1	Purchase from other source
Allen and Schuster (2004)	Х				Y/Y	Planner	Х	Х			1	Capacity planning
Rantala (2004)	Х	Х			Y/N	SC	Х		Х	Х	2	Open/close facilities
Itoh et. al. (2003)		Х			Ν	Farmer	Х				1	_
Caixeta-Filho et. al. (2002)		Х	Х		Y/Y	Farmer	Х	Х			1	
Berge et. al. (2000)	Х	Х			Y/N	Advisor	Х				1	Technology selection
Darby-Dowman et. al. (2000)		Х			Y/N	Farmer	Х	Х			1	Capacity decisions
Romero (2000)		Х			Ν	Planner	Х				1	
Leutscher et. al. (1999)		Х	Х		Ν	Farmer	Х				1	Operational policies
Stokes et. al. (1997)		Х			Y/N	Farmer	Х				1	Selling or retain
Aleotti et. al. (1997)	Х	Х			Y/N	Farmer		Х	Х	Х	1	Preservation technology
Miller et. al. (1997)			Х		Y/N	Planner		Х		Х	1	
Hammer (1994)		Х			Y/N	Farmer	Х				1	Variety selection
Purcell et. al. (1993)		Х			Y/N	Advisor	Х				1	-
Van Berlo (1993)	Х	Х			Y/N	Farmer	Х	Х		Х	2	Processing schedule
Annevelink (1992)			Х		Ν	Farmer	Х				1	Spatial location
Saedt et. al. (1991)		Х	Х		Y/Y	Farmer					1	Transition planning

S: Strategic

T: Tactical

O: Operational

A: Application of the models

DM: Decision maker for which the model is designed.

P: Production variables/decisions

H: Harvesting variables/decisions

D: Distribution variables/decisions

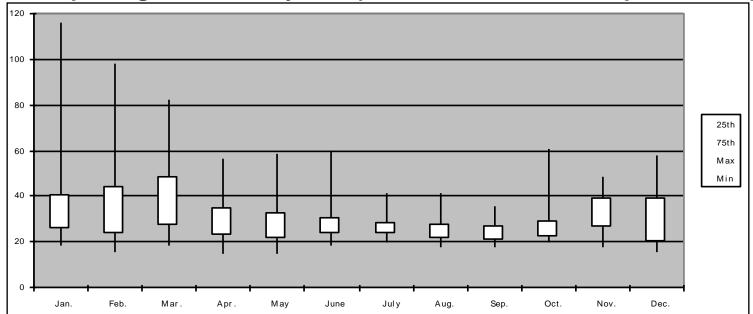
I: Inventory variables/decisions

SCM: Echelons of the supply chain

References

- U.S. Department of Agriculture, economic Research Service (ERS) (2004a). Fruits and vegetables per capita consumption.
- USDA ERS (2004b) Read meat per capita consumption.
- Cook, R. (2001) The U.S. Produce Industry: An Industry in Transition, Chapter 2 in Postharvest Technology of Horticultural Crops, Adel A. Kader (eds.), University of California Division of Agriculture and Natural Resources, Publication 3311, 2001, pp.5-30.

Operational Model

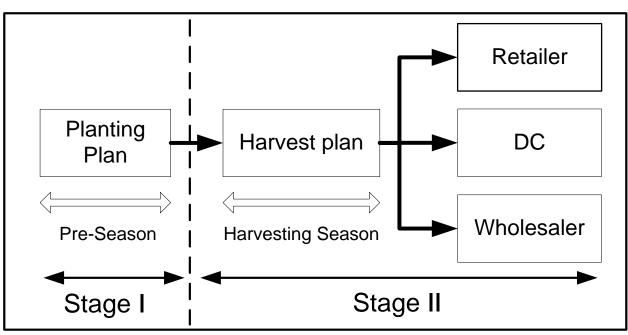

Changes in the Model

- 1. Time periods in days instead of weeks
- 2. Shelf life in the objective function

Stochastic Tactical Model

Tomato pricing data for 25 years (Min, Max, 25th and 75th percentiles)

What we have available to make decisions


- Historical distribution of prices (per week)
- Historical distribution of yields (per week)
- Historical and contracted demand from customers

Stochastic Tactical Model

Two-stage stochastic program

- Based in the original model proposed by Dantzig (1955)
- Overall performance is dependent on
 - First stage decisions
 - Realizations of the stochastic variables
 - Second stage decisions

Scenario Development

Plan for the Preparing Scenarios

- Take advantage of the structure of the problem.
- We will assume that the production has some defined structure according to:
 - Planting date
 - Type of crop
 - Technology used

Date	Production	Week 1	Week 2	Week 3	Week 4
1-Aug	Х	20%	30%	25%	25%

- Determine the joint distribution of prices and production for each week and crop in the season.
- Price and production are not independent.

	Y_1	Y ₂	Y ₃	Y ₄
X ₁				
X ₂				
X ₃				
X ₄				

Solution Approach

Solution space reduction

- Partition into finite number of scenarios
- Importance sampling
- Sampling methods

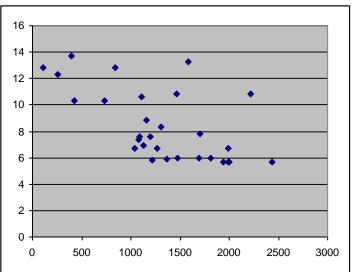
Runtime reduction

- Benders decomposition
- Accelerated bender's decomposition
- Model relaxation
- Solvers that can deal with nonlinear objective functions
- Stochastic decomposition

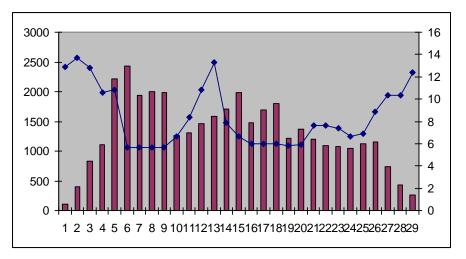
ARIZONA STATE UNIVERSITY

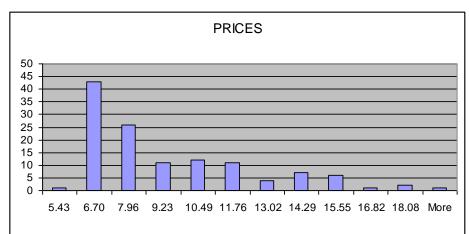
Benefits Obtained from Tactical Model

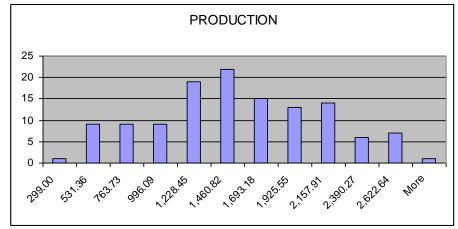
- We plan to model the planting and production decisions for perishable products for an entire season.
- We use current state of OR tools applied to the tactical planning of fresh produce
- The use of stochastic programming allows the planner to consider the risk incurred in their planting decisions.
- With the use of stochastic programming, we can later consider several production and distribution plans based in their risk, probabilities and benefits.



What we have available to make decisions

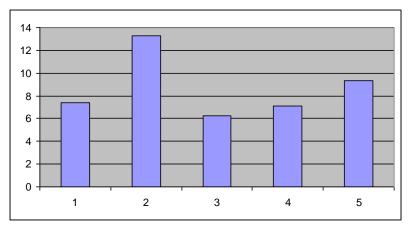

- Available land
- Potential crops (plant date, expected yield, harvest date)
- Labor required for planting, harvesting, etc.
- Packing plants (Capacity, personnel)
- Transportation (Truck, rail, air: cost-time)
- Warehouses (Own, broker, third party)
- Storage restrictions of crops


Scenario Development

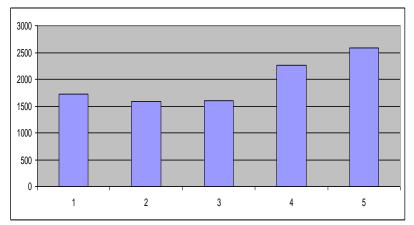


Prices vs Production of Season 2002

Data for Seasons 2001-2005

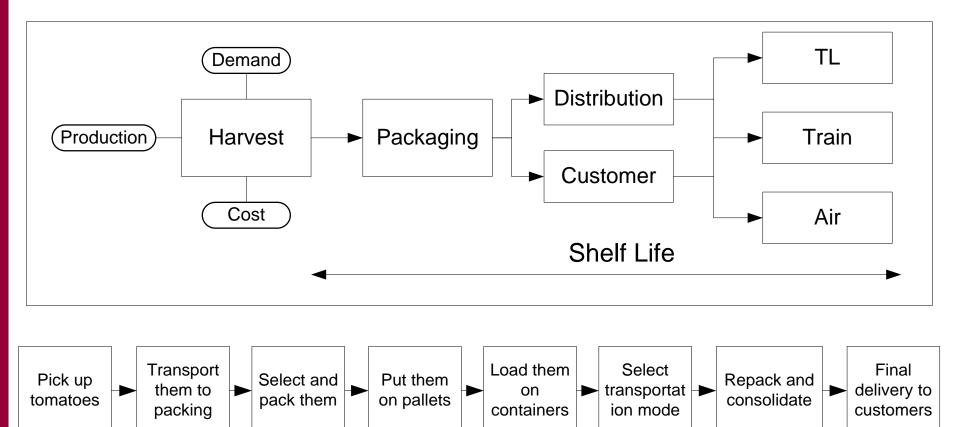

Scenario Development

		Joint Probability											
	PRODUCTION												
PRICE	500	1000	1500	2000	2500	More							
6	-	0.03	0.07	0.11	0.02	-							
8	0.02	0.04	0.13	0.09	0.04	-							
10	0.02	0.02	0.06	0.02	0.02	0.02							
12	-	0.03	0.04	0.01	0.02	-							
14	0.01	0.02	0.02	0.02	0.02	-							
More	0.01	0.02	0.02	0.02	0.01	0.01							


Correlation

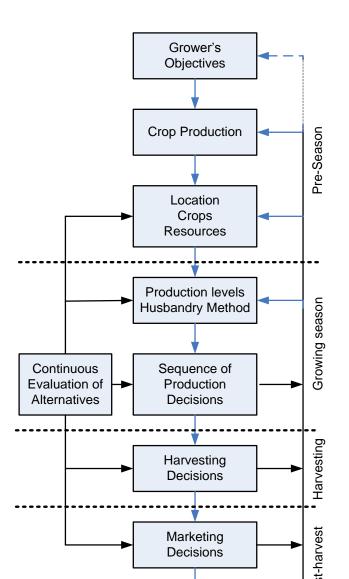
	PRICE	PROD
PRICE	1.00	
PROD	-0.10	1.00

Prices on Week 10



Production on Week 10

Operational Model



Operational Model

What we have available to make decisions

- Fields (Area, variety)
- Crops in the fields (Harvest start, ripeness, yield)
- Labor at harvest
- Packing plants (Capacity, personnel)
- Cooling warehouses (Capacity)
- Transportation (Truck, rail, air)
 - Lead time
 - Cost
 - Equipment: $18' 53' 10'_{-}10'_{-}$

