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 A feature in our context is usually a prominent or distinctive

characteristic that can be extracted from a digital image of an

SMD component.

 Each feature acts as a function whose domain is the digital

image and whose range is the real line.

 In our case we have six features: Energy (E), Correlation (C),

Diffusion (D), Fenergy (F), Blob (B) and Texture (T).

Feature Definition
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Problem Statement

 The lack of flexibility, combined with the rapid
introduction and retirement of electronic products, has
deterred equipment manufacturers and the electronic
assembly industry from investing in the development of
AVI systems more convenient for process
improvement.

 It is necessary to build AVI systems that are more
easily adaptable to new electronic products.

 AVI Systems should not be rendered obsolete by
minimum changes in component technology or
change of product designs.
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Envisioned Reconfigurable Environment

 In order to achieve the objective of developing self-
reconfigurable AVI systems we need to decompose
the overall problem into simpler sub-problems. The
modules of this reconfigurable environment are:

1. An Automated Feature Generation and 
Optimization Module

2. A Decision Module 

3. A Feature Selection Module

4. An Inspection Performance Assessment 
Module

5. An Inspection Refinement Module 



San Francisco, 2005

1. Feature Generation and Optimization Module

 The objective of this module is to generate

without (or minimal) human intervention the

features to be used to inspect the new

component/product.

 Once that the potential inspection features

have been generated; the next step is to

optimize them to render the best individual

discrimination possible.
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1.1 Feature Generation

We are planning to start from traditional approaches for
feature generation by basing our development on
features that have:
 Common characteristics

 Computationally inexpensive and simple enough to
accommodate new components by just changing their
parameters.
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1.2 Individual Feature Parameters Optimization

• The objective is to set the parameters of each feature
independently such that the discrimination between the
defective and non-defective populations is maximized.

• We will explore a heuristic-iterative approach to search
for good levels of discrimination between the
populations.
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2. Decision Module

The objective is to have a classifier easy

to use with a great power of discrimination

between the populations.

The characteristics should be

Easily expandable and changeable to include

other features in addition to the pre-existing

ones.

The robustness of the features used in the

classifier.
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2.2 Quadratic Classification Function

The QCF assigns a vector observation under consideration to the most
likely of two populations (in our case denoted as π0, “non-defective”
and π1, “defective”).
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2.3 Training Sample Size Determination

Analytical determination of the minimum

number of training sample required to ensure

statistical reliability in the parameter estimation.

Some of the approaches are,

Specify the desired width of a confidence interval

and determine the sample size that achieves that

goal.

Bayesian approach can be used where we optimize

some utility function.

Another approach involving the power of a test of

hypothesis.
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3. Feature Selection Module

The goal of this module is to automatically
select a subset of features among the
larger set of features known to provide the
greatest level of discrimination.

The problem of feature selection is as follows:

“Given a set of p features, select a subset of
size m that leads to the smallest classification
error; given the existing time constraints”.
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Example of Feature Selection

Rank Features MER 

1 Correlation 0.0125 

2 Diffusion 0.0196 

3 Energy 0.0392 

4 Fenergy 0.0819 

5 Texture 0.2847 

6 Blob 0.3719 

  

Features Energy Correlation  Diffusion  Fenergy  Blob  Texture 

Energy 1.00 0.84 0.90 0.83 0.52 0.50 

Correlation  0.84 1.00 0.93 0.82 0.42 0.53 

Diffusion  0.90 0.93 1.00 0.83 0.49 0.55 

Fenergy  0.83 0.82 0.83 1.00 0.33 0.53 

Blob  0.52 0.42 0.49 0.33 1.00 0.27 

Texture 0.50 0.53 0.55 0.53 0.27 1.00 

Table - MER for each Feature

Table - Cross-Correlation between Features
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Stepwise Discriminant Analysis (SDA)

 In order to expedite the feature selection process, we
explored the use of Multivariate Stepwise Discriminant
methods such as:

 Wilks’Λ

 Mahalanobis Distance

 Unexplained Variance

 Smallest Distance

 Rao’s V

.
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4. Inspection Performance Assessment Module

The objective of the Inspection Performance

Assessment Module is to measure the

performance of the AVI system

In the training phase.

In the inspection phase.

Although it is relatively “easy” to measure current

performance, projections of future performance

become more complex and less reliable if the

populations are no stable.
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4.1 Classifier Performance Measurements

• We use three non-parametric statistics that measure the level
of discrimination through the Misclassification Error Rate
(MER). These methods are:

– The APER is a biased estimator of the probability of errors as it
is evaluated on the training data.

– The EAER is a nearly unbiased estimate of the expected true
error rate of the population (this statistic is calculated using
cross-validation of size one).

– The IER is an unbiased estimator

of the true error rate because the used

data is independent from the training

data utilized to build the QCF.
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Regression Analysis is used to predict the AVI

performance.

The dependent variable of the equation is the

MER.

 It is necessary to determine the independent

variable. We have explored methods such as

—Wilks' Lambda Value,

—Hotelling-Lawley Trace Value

—Statistical Distance between Populations DA-P

4.2 Prediction of the AVI System
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4.2.1 Wilks' Lambda Value

This is a measure of the difference between

populations of the centroid (vector) of means

on the independent variables.

The smaller the value of lambda, the greater the

difference between the populations.

The likelihood ratio test statistics can be

expressed as;

i

s

i 
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Experimental Results

Statistics MER Wilks Hotelling D1-2 

MER 1.000 0.953 -0.739 -0.745 

Wilks 0.953 1.000 -0.894 -0.901 

Hotelling -0.739 -0.894 1.000 0.983 

DA-P -0.745 -0.901 0.983 1.000 
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5. Inspection Refinement Module 

• The objective is to continuously improve

the performance of the AVI system.

• This module includes a methodology for;

– Eliminating the Noise present in the training

data.

–Joint Optimization of the parameters of the

features used in the inspection.

–Constructing New Features based on the

current performance of the system.
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• The second step of the methodology is the

creation of the function to identify the outliers.

• Some of the methods that we will explore to

create the function to eliminate outliers are

based on the

–Classification Boundary

–Chi-Square Distribution

–Mahalanobis Distance

5. 1 Cluster Formation and Elimination of Outliers
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5.1.3 Mahalanobis Distance 

• This measure standardizes the distance between two
vectors with the inverse of the covariance matrix:

• This test can be used to determine which elements can
be classified as outliers.

• If or ≥ , the element i is considered as an
outlier.
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Experimental Results
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5.2 Multi-Feature Parameters Re-Optimization

• Optimizing a single parameter might not result in the

global maximization of that feature’s response.

• The approach is based on factorial design and multiple

response surface methodologies.
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5.3 Feature Construction

 Feature construction is a process that discovers missing
information about the relationships between features
and augments the space of features by inferring or
creating additional features.

 For example, assuming there are n original features A1,
A2,…, An", after feature construction, we may have the
additional m features An+1, An+2, ... , An+m.

 Another example: a two-dimensional problem (say,
A1=width and A2=length) may be transformed into a
one-dimensional problem (B1 = area) after B1 is
constructed.
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General Overview of Reconfiguration Methodology 

1. Create features for the AVI system.

2. Optimize the features independently.

3. Determine the training sample size.

4. Obtain images with defective and non-defective
components.

5. Apply the predefined features to the images to obtain
the multivariate information.

6. Based on the multivariate information, estimate the
parameters for the defective and non-defective global
populations.

7. Determine the best subset of features for each
component.

8. Estimate the AVI performance in the training stage and
for the functioning in the factory floor.
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General Overview of Reconfiguration Methodology 

9.Create new features to improve the classification
for those components whose performance values
are outside the acceptable level of discrimination.

10.Determine the clusters of components and
eliminate the outliers from them.

11.Optimize the parameters jointly for each subset of
features.

12.Identify those components for which, given the
current set of features, neither global nor local
classification is possible. Term these
components special cases.

13.Create additional features for the classification of
special cases.
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Conclusion
 The resulting development framework will

Significantly shorten the development time for
inspection algorithms.

Minimize the intervention of human developers.

 Improve the AVI systems in two dimensions of
flexibility;

Introduction of new products and

Rapid product changeovers.

 While the envisioned resulting methodology will be of
immediate application in the electronics assembly
industry, its impact goes beyond of this application.

Medical Diagnostic

Solder Paste Inspection

 Inspection of Textile Products


