Case Study: Introduction

Rodrigo Ulloa - Sárbith Aguilar - Xaimarie Hernández - Adnan Abdullahi - Leroy Vargis - Raghav Jeevendra

Case Study Outline

- Problem to Solve
- Initial Case Study Parameters
- Proposed Methodology
- Case Study Overview
- Case Study Inputs

Problem to Solve

- Mismatch Between Supply and Demand
- Not enough Information
- Lack of Tools for Decision-Making
- Little Knowledge of Market Opportunities
- Small Level of Coordination
- Small Value Captured by Growers for their Products

Initial Case Study Parameters

• Coverage: Arizona and New Mexico

• Initial Basket of Products:

Tomatoes - Green Beans Lettuce - Bell Pepper

Proposed Methodology

- Identify Market Opportunities
- Assess Production Potential
 - Climate Conditions
 - Production and Logistics Costs
- Obtain High-Level Production Plan
- Deploy the Opportunity to Specific Agents

Case Study Overview

STATE UNIVERSITY

Arizona State University

Opportunity Identification	Region Assessment	Yield and Price Estimates	Generate a Plan	Analyze and Deploy Decisions
Market Intelligence	Where can it be produced?	Consider climate conditions to estimate	Run optimization models to determine:	Analyze the plan
Trends Identification		yields	- Where to produce?	Identify partnership candidates:
Prices and Volumes	Are there enough growers?	Obtain price estimates	- When to plant? - When to harvest?	- Growers
Prediction	9.0.000	for the opportunity	- How to articulate the	- Transportation
	Is the required logistics		logistics?	- Logistics
ls the opportunity capturable?	available?	Consider complementary	 How to allocate resources/investment? 	- Consumers
	Are the resources	producing regions		Negotiation and
	available (capital)?			Coordination

Case Study Inputs

5 Locations: Phoenix, AZ Tucson, AZ Albuquerque, NM Las Cruces, NM Santa Fe, NM

4 Initial Crops:

Tomatoes Lettuce Green Beans Bell Peppers Market Opportunity:

Two identified opportunities: **Celery** and **Cauliflower**

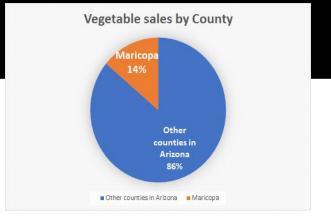
Case Study: Introduction

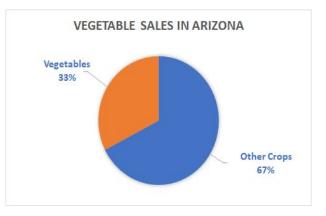
Rodrigo Ulloa - Sárbith Aguilar - Xaimarie Hernández - Adnan Abdullahi - Leroy Vargis - Raghav Jeevendra

Opportunity Identification

• Initial Set of Products:

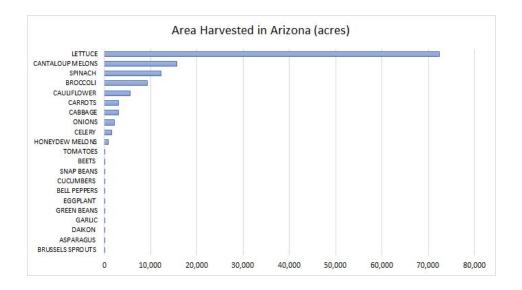
Tomatoes - Green Beans - Lettuce - Bell Peppers


Why did we selected this? Add information (Imports, Prices, etc.)


Add historical production

Adnan's

- Vegetables take up a sizeable share of the crop production Market in Arizona
- Vegetables grossed at \$1,009,125,000 making up 33% of Total Crop sales in Arizona (NASS 2017)
- Vegetables are a logical choice due to the huge share of the market they occupy
- Vegetables sold in Maricopa makes up 14% of total Vegetable sales in Arizona (NASS 2017)

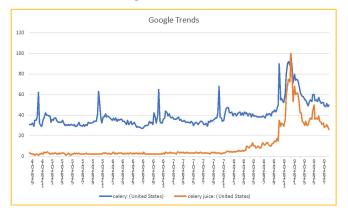


ADNAN'S

Lettuce recorded a total of 72,411 Acres(NASS 2017)

Interestingly not all the initial FFAR crops are harvested heavily

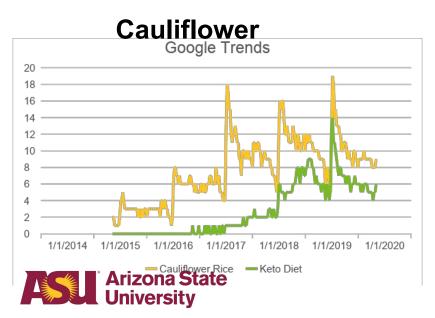
Perhaps price of the produce also influenced selection?

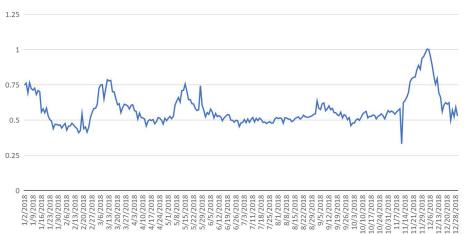


Opportunity Identification

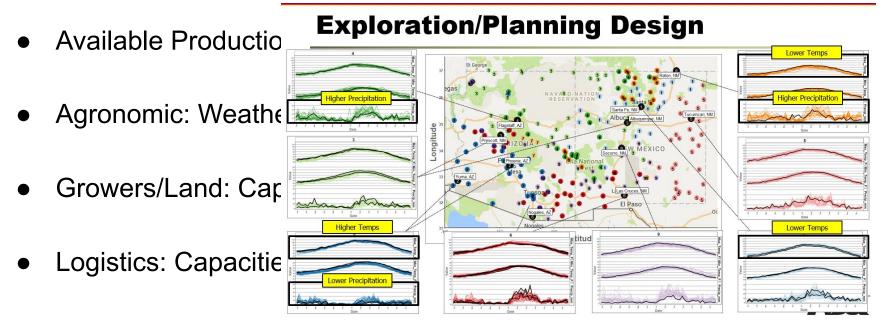
• Opportunity:

Celery

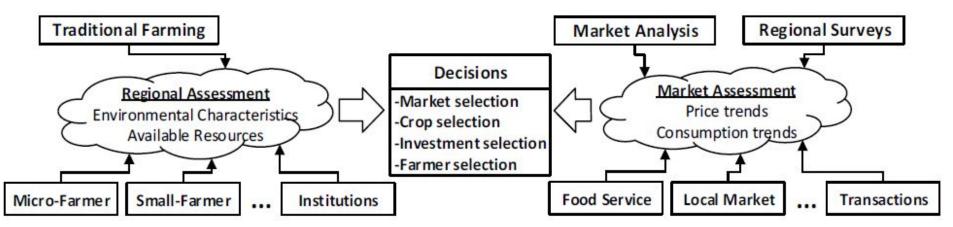

Arizona State University



Xaimarie

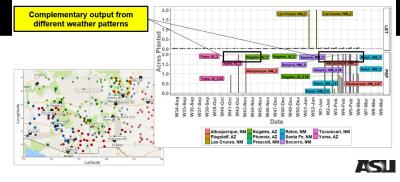

• Opportunity:

Cauliflower Price 2018

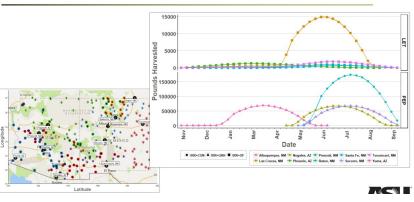

Information Collection

Strategic Planning Stage

• Run Optimization Models:



Results

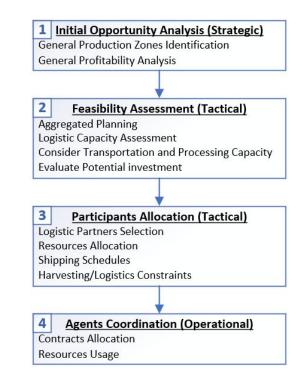


- Planting Schedule:
- Harvesting Schedule:

Results: Harvesting Schedule

• Costs Distribution:

Compatibility


- Red represents • pairs that are not compatible
- Yellow represents • pairs that are compatible

pairs that are not compatible		Cauliflower	Tomatoes
 Yellow represents pairs that are compatible 	Celery		
	Lettuce		
	G	Green beans	Cauliflower
		Tomatoes	Green beans
	Cucumber		
	Tomatoes		
Arizo Unive	na State ersity	Bell peppers	Cauliflower

Common name	Storage temperature (°C)	Relative humidity (%)	Ethylene production rate	Ethylene sensitivity
Tomatoes	10 to 13	90 to 95	Very low	High
Bell pepper	7 to 10	95 to 98	low	Low
Lettuce	0	98 to 100	Very low	High
Cucumber	10 to 12	85 to 90	Low	High
Green beans	4 to 7	95	Low	Moderate
Celery	0	98 to 100	Very low	Moderate
Cauliflower	0	95 to 98	Very low	High

Next Steps

- Feasibility Analysis
- Partners Identification & Allocation
- Agents Coordination (Contracts)
- Articulation and Monitoring

Case Study in AZ and NM

Rodrigo Ulloa - Sárbith Aguilar

Case Study Outline

- Opportunity Identification
- Information Collection
- Strategic Planning Stage
- Results
- Next Steps

Why do we need these Inputs?

- Implement the input into the planning tools that have been developed throughout the years
- Use this information to provide growers with critical decisions

PRODUCTION

- Product Demand
- Hectares to Plant
 - Amount to plant per crop
- Quality demanded
- Cost of technology