Logistics Analysis of the Port of Guaymas in the Supply Chain of Regional Companies

Research Team:

Agenda

- Overview
 - Current Condition
 - Problem
- Activities & Results
 - Methodology
 - Data Overview
 - Results
- Findings
- Future work

Overview: Port Location/Influence Zone

* Key Factors and Players in the Design of the Multimodal Corridor, TEKNES, 2006

Overview: Current conditions

- Guaymas is the main port of the Mexican state of Sonora, and one of the biggest Mexican port of the Pacific, and the biggest port in the Mar de Cortez.
- There's still no formal containers service at the Port since there is not a container terminal.
- Industries within the port's influence zone may not be getting an efficient container service for their import/export operations with the Far East countries.
- The ports of Long Beach/LA and Ensenada are commonly used to send/receive containers.
- Port capacity: 175k TEUs/year (Logistics Capacity Study of the Guaymas-Tucson Corridor, Arizona State University, 2006)

Overview: Problem

- The underlying objective is to determine under what scenarios the companies of Sonora would benefit from a regular container service in the Port of Guaymas started a regular container service.
- A secondary objective is to determine the container market for a potential shipping line to schedule a regular stop at Guaymas
 - Extrapolate the potential demand that companies in Sonora might have of the Port of Guaymas based on the results from the previous analysis.
- Use the study as a marketing tool for the Guaymas Port and the region.

Methodology

1. Data gathering:

- 1. Identify representative products characteristics and current logistics networks used by the representative industry.
- 2. Map observed variability from logistics and transportation methods currently used by industry.
- 3. Identify volumes of shipments.
- 2. Propose and Develop a Port Comparison Framework:
 - 1. Provide an economic cost model for route and transportation method comparison.
 - 2. Input observed data into proposed model.
 - 3. Comparison based on different scenarios (part profile and receiving port segment variability)

Methodology

3. Extrapolate results:

- 1. Provide to a specific representative company the proposed economic model for a support on logistics decisions (i.e. identify potential savings like inventory costs).
- 2. Obtain from the proposed comparison a reference on variability needed by Guaymas Port to potentially integrate its operations to industry's Supply Chain.

Data: Influence Zone S.C.

- General sea shipments with destinations within the Port of Guaymas influence zone (Jan, 2006 to July, 2009):
 - Origin
 - Destination (within the Zone)
 - Weight
 - Transit Times
 - Product Description
- Influence Zone's industry
 - Economic Activity
 - Companies Profiles
 - Operations

Data: Local Industry Shipments

- Shipments from Asia (Air/Sea) to a specific representative maquiladora company within Guaymas' influence zone (Jan, 2008 to July, 2009):
 - Transportation Mode
 - Approximated Transportation Costs
 - Origins
 - Weight
 - Transit Times
 - Product Description
 - Product Costs
 - Product Demands
 - Inventory Levels

Guaymas IZ Bound Containers

Sea shipments with Destinations within Guaymas Hinterland - US Ports 2008

Aprox TEU* (Total)

Aprox TEU* (from Asia)

0

33,350

Shipments Profiling

- Shipping Commodities from Asia with Destinations within Guaymas Hinterland - 2008
 - General Shipments

#	Commodity	%
1	AUTOMOTIVE	18%
2	ELECTRONIC COMPONENTS	15%
3	COMPUTER PARTS	8%
4	ELECTRICAL PARTS	7%
5	ASSEMBLY PARTS	6%
6	PLASTIC DISPOSABLE	6%
7	ELECTRONICS	5%
8	HOUSEHOLD ACCS	5%
9	HARDWARE	4%
10	METAL PARTS	4%
11	CABLE	4%
12	MACHINE AND MACHINE ACCS	3%
13	AUDIO	3%
14	PLASTIC GOODS	3%
15	LEATHER	2%
16	TEXTILE FIBRES	2%
17	CHEMICAL PRODUCTS	1%
18	SECURITY SYSTEMS PARTS	1%
19	FURNITURE	1%
20	ELECTRICAL APPLIANCES	1%
	TOTAL	100%

Representative Industry Shipments

#	Commodity	%
1	SHIELD METAL	32%
2	PCB's	27%
3	INTEGRATED CIRCUITS	26%
4	CONECTORS	8%
5	HOUSINGS	5%
6	PASIVES	1%
7	PERIPHERALS	1%
8	BATTERIES	1%
9	ELECTRONIC MODULES	1%
	Total	100%

Results: Center of Gravity (Shipments)

*Used for: Shipment Analysis and Possible Routing

Results: Port Variability (SHA - Long Beach)

- Goodness of fit
 - Data points: 52
 - Estimates: MLE
 - Accuracy of fit: 0.0003
 - Level of sign.: 0.05

- Fitted Distribution:
 - Erlang Dist.
 - Minimum: 11
 - M: 3
 - Beta: 0.999981
 - Mean: 14

- Service Levels
 - P(X<D)</th>S.L.DD Mean0.9000590%16.3232.3230.9500195%17.2963.2960.9900399%19.415.41

Results: Total Landed Costs & Variability

Suggested Total Landed Cost for Analysis:

 Δ (Transportation Costs + Variability Costs)

Cost Components

(D/Q) * S	+Order:
R * D	+Transportation:
(ICDT)/365	+In transit Inventory:
(IC'Q)/2	+Regular Stock:
(D * Q) k*s' _d E(z)	+Stock Out:
$IC * s'_t$	+Safety Stock:

* Savings

Conclusions: General Port

- During research, it was found that of the consulted sources (companies, ports authorities, freight forwarders, etc), very few have actual information on variability, and up to now, none have a continuous systematic monitoring of it.
- There's enough volume of containers moving from and to the Port's influence zone to start operations as a regional port.
- With the analysis framework being developed, the Port Administration will be able to estimate the Service Level required to compete with other ports that currently cover the influence zone.

Conclusions: Participating Companies

- Logistics decisions regarding the choice of ports should consider the characteristics of the product –for example: cost, demand and weight.
- The observed variability in certain routes and/or ports' operations should be considered in the total landed cost calculation, and as a metric to port performance.
- Most companies rely on the service provided by LB/LA, but the capacity, environmental and cost issues currently being experienced in this port greatly affect the logistic cost for companies.
- We have developed a framework for analysis and we intend to create a tool that will aid decision making in this regard, being able to compare different ports in terms of total landed cost –dollars.

Future Work

- An extrapolation of the results of the representative companies, to estimate a volume based on the number of similar companies inside the influence zone is being worked.
 - The results may work as a marketing tool for the Port.
 - A potential share needs to be established.
- Port saturation analysis data gathering and statistics analysis on port variability, including Mexican ports operations.
- Total Landed Costs for the regions' industry can be further analyzed to determine more accurate models that integrate transportation variability.

