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Abstract—Data outsourcing is a promising technical paradigm to facilitate cost-effective real-time data storage, processing, and

dissemination. In data outsourcing, a data owner proactively pushes a streamof data records to a third-party cloud server for storage, which

in turn processes various types of queries from end users on the data owner’s behalf. However, the popular outsourcedmulti-version key-

value stores pose a critical security challenge that a third-party cloud server cannot be fully trusted to return both authentic and fresh data in

response to end users’ queries. Although several recent attempts have beenmade onauthenticating data freshness in outsourced key-value

stores, they either incur excessively high communication cost or can only offer very limited real-time guarantee. To fill this gap, this article

introduces KV-Fresh, a novel freshness authentication scheme for outsourced key-value stores that offers strong real-time guarantee for

both point query and range query. KV-Fresh is designed based on a novel data structure, LinkedKey SpanMerkle HashTree, which enables

highly efficient freshness proof by embedding chaining relationship among records generated at different time. Extensive simulation studies

using a synthetic dataset generated from real data confirm the efficacy and efficiency of KV-Fresh.

Index Terms—Freshness authentication, data outsourcing, multi-version key-value store
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1 INTRODUCTION

DATA outsourcing is a promising technical paradigm to
facilitate cost-effective real-time data storage, process-

ing, and dissemination of real-time data stream. In such a
system, a data owner proactively pushes one or multiple
high-volume data streams generated by distributed data
sources to a third-party cloud server for storage and
backup, which in turn processes various types of queries
from many end users on the data owner’s behalf. Doing so
can relieve the data owner from cumbersome management
work and result in significant saving in operation cost. Data
outsourcing can also provide a more efficient query process-
ing service for end users because of the higher availability
and elasticity offered by cloud service providers.

This paper considers a data outsourcing system with a
multi-version key-value store [1], [2] to store, analyze and
access the large volume of unstructured data streams. A key-

value store is a non-SQL database storing a collection of data
records, each ofwhich is a key-value pair that can be efficiently
retrieved using the key. In a multi-version key-value store, the
data value of a record has multiple versions, each of which is
an updated value received at a different time. Key-value stores
outperform traditional relationship database with higher scal-
ability, simpler designs, and higher availability. Key-value
stores and other non-SQL databases have gained increasing
popularity in recent years, such as MongoDB, Amazon Dyna-
moDB, Azure Cosmos DB, and so on. The market of non-SQL
database is expected to reach 4.2 billion by 2020 [3].

Despite offering many advantages, data outsourcing also
poses critical security challenges in that cloud service pro-
viders cannot be fully trusted to faithfully provide query
results to end users based on authentic and up-to-date data for
various reasons. First, a compromised cloud servermay return
forged data in response to end users’ queries to mislead users
into making incorrect decisions. For example, a cloud service
providermay intentionally delete data or return forged data in
favor of the businesses with financial interests [4]. Second, a
cloud service provider may provide authentic but stale data,
which is more subtle and difficult to detect. For example, a
cloud service provider may purposefully drop some data for
saving storage cost. Such misbehavior is particularly economi-
cally appealing if the data is of large volume and subjected to
frequent update. In comparison to the first attack, this attack
can also lead to bad decisions by end users but is more subtle
and difficult to detect. These situations call for sound authenti-
cation techniques to ensure both authenticity and freshness of
any query result returned by the cloud service provider.

Despite many efforts on authenticating outsourced query
processing [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
authenticating data freshness poses unique challenges and
has thus far received very limited attention. Common to
existing solutions [16], [17], [18], [19], [20] is to divide the
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time into intervals and let the data owner generate a crypto-
graphic proof for every key with no update in every inter-
val. On receiving a point query, the cloud server is required
to return the most recent value for the queried key along
with a freshness proof. While such approaches allow end
users to verify the freshness of query results, the size of
freshness proof is linear to the number of the intervals after
the most recent update and thus inversely proportional to
the length of the interval. As a result, existing solutions [16],
[17], [18], [19], [20] either suffer from excessively high com-
munication cost or can only support limited real-time guar-
antee. For example, the state-of-art solution [20] can only
support interval size in minutes. Moreover, none of the
existing solutions [16], [17], [18], [19], [20] can support effi-
cient range queries. While a range query can be imple-
mented by multiple point queries, doing so would incur a
communication cost proportional to the number of keys in
the queried range. There is thus a pressing need to develop
efficient mechanisms for freshness authentication with
strong real-time guarantee while supporting both point and
range queries.

In this paper, we tackle this open challenge by introduc-
ing KV-Fresh, a novel freshness authentication mechanism
for outsourced multi-version key-value store supporting
both point query and range query. We observe that the key
to simultaneously achieve strong real-time guarantee and
communication efficiency is to break the linear dependence
between the size of freshness proof and the number of inter-
vals after the latest update. Based on this observation, we
introduce a novel data structure that embeds chaining rela-
tionship among updates in different intervals to realize effi-
cient freshness proof. Built upon this novel data structure,
KV-Fresh allows the cloud server to prove the freshness of
query results by returning information for only a small
number of intervals while skipping potentially many inter-
vals in between. Our contributions in this paper can be sum-
marized as follows.

� We identify a key limitation of existing solutions on
freshness authentication that they either suffer from
excessively high communication cost or can only
support limited real-time guarantee.

� We propose a novel data structure that allows highly
efficient proof of no update over a large of number
of intervals.

� We introduce KV-Fresh, a novel freshness authenti-
cation mechanism for outsourced multi-version key-
value stores that provides stronger real-time guaran-
tee with low communication cost for both point
query and range query.

� We confirm the high efficiency of KV-Fresh via
extensive simulation studies using a synthetic data-
set generated from a real dataset. In particular, our
simulation results show that KV-Fresh reduces the
communication cost by up to 99.6% for proving data
freshness and achieves up to nine times higher
throughput in comparison with the state-of-art solu-
tion INCBM-TREE [20].

The rest of the paper is structured as follows. Section 2 dis-
cusses the related work. Section 3 presents the system and
adversary models and design goals. Section 4 introduces a

novel data structure, LKS-MHT and proposes an efficient
freshness authentication mechanism, KV-Fresh built upon
LKS-MHT.We evaluate the performance of KV-Fresh in Sec-
tion 5 and finally conclude this paper in Section 6.

2 RELATED WORK

Our work is mostly related to authenticating data freshness
and existing solutions can be generally classified into two
categories. The first category relies on the data owner to
construct and maintain a proper data digest such as a Mer-
kle hash tree or its variants at the cloud server. In each inter-
val, the data owner sends an updated data digest to the
cloud server by recomputing the root of the Merkle hash
tree and sign its root, which would require the data owner
either maintain a full copy of the local data [16], [18], [21] or
download records [17], [22]. The second category [23], [24],
[25] detects the cloud server’s misbehavior through offline
audit, which cannot guarantee data freshness in real-time.
To authenticate data freshness in real time, Yang et al. intro-
duced a design based on trusted computing hardware [19].
In [20], Tang et al. introduced INCBM-TREE, a data struc-
ture based on the Bloom filter and multi-level key-ordered
Merkle hash tree. INCBM-TREE can only support relaxed
real-time freshness check at the granularity of minute-based
intervals, as the size of the freshness proof is inversely pro-
portional to the interval length. Our work is mostly related
to [20] and enables freshness verification at much smaller
time granularity.

Our work is also related to authenticating outsourced
query processing, where a data owner outsources its dataset
to a third party service provider which in turns answers
data queries from end users on the data owner’s behalf. Sig-
nificant efforts have been devoted to ensuring query integ-
rity and completeness, i.e., the query result contains all the
intact data records satisfying a query. Various types of
queries have been studied, including relational queries [5],
[6], [7], [26], [27], [28], [29], range queries [8], [9], [30], top-k
queries [13], [14], [15], [31], [32], skyline queries [10], [11],
[12], [33], kNN queries [34], [35], [36], shortest-path queries
[37], etc. None of these works consider the freshness of
returned data records, and they are thus inapplicable to the
problem addressed in this paper.

Our work is also loosely related to the lines of research
on verifiable database (VDB) and secure storage outsourc-
ing. VDB seeks to provide a resource-limited data owner
the capability of storing a large database on a cloud server,
retrieving and updating any data record in a verifiable way.
Benabbas et al. [38] presented the first VDB scheme based
on verifiable delegation of polynomials, which cannot sup-
port public verification, i.e., only the data owner can verify
the proof returned by the cloud server. More recently, vec-
tor commitment and its variants [39], [40], [41], [42], [43]
were proposed to support efficient public verification. In
secure storage outsourcing, a data owner outsources the
storage of a large database to an untrusted cloud server and
can verify that the server possesses the original data without
any tampering. For example, Ateniese et al. [44] presented a
Provable Data Possession (PDP) scheme to prove the integ-
rity and ownership of clients’ data without downloading
data. As another example, Erway et al. [45] extended the
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PDP model and proposed dynamic PDP to support prov-
able updates of stored data. Moreover, Zhu et al. [46] intro-
duced a cooperative PDP scheme to support verifiable
cooperative storage over multiple cloud servers. None of
these schemes can be directly applied to freshness authenti-
cation as any user other than the data owner can detect
whether cloud server returns authentic but stale data
records.

3 PROBLEM FORMULATION

In this section, we introduce our system and adversary
models and design goals.

3.1 System Model

We consider a data outsourcing system consisting of three
parties: a data owner, a third-party cloud server, and many
end users. The data owner outsources a multi-version key-
value store to the cloud server, which in turn answers data
queries from end users on the data owner’s behalf.

The data owner maintains the key-value store at the
cloud server by proactively pushing data updates to the
cloud server as they become available. We assume that the
keys can be ordered and denote by K ¼ f1; . . .; jKjg the key
space. The key-value store consists of a collection of data
records, each of which contains a unique key k 2 K and a
data value that can have multiple versions received over
different time. Each version corresponds to an update in the
form of ðk; v; tÞ, where k is the key, v is the update value,
and t is the timestamp indicating the time at which the
update is issued.

Users access data records in the key-value store through
the cloud server’s GET API that supports both point query
and range query. Specifically, a point query is represented
as Qðk; tqÞ, where k is the queried key and tq is an optional
parameter indicating the point of time up to which the data
record is requested. On receiving query Qðk; tqÞ, the cloud
server needs to return the most recent data record for key k
as of tq. Moreover, a range query is modeled by Qð½l; r�; tqÞ,
where 1 � l < r � jKj and ½l; r� denotes the range of keys
being queried. On receiving query Qð½l; r�; tqÞ, the cloud
server needs to return the most recent data records for every
key k 2 ½l; r� as of tq. It is easy to see that point query is a spe-
cial case of range query where l ¼ r. For both point queries
and range queries, the absence of the optional parameter tq
indicates that the user is asking for the most recent data
record for a specific key or the most up-to-date records for a
set of keys belonging to the key range as of now.

3.2 Adversary Model

We assume that the data owner is trusted to faithfully per-
form all system operations. In contrast, the cloud server can-
not be fully trusted and may launch the following two
attacks. First, the cloud server may return forged or tam-
pered data records that do not belong to the data owner’s
dataset. Second, the cloud server may return authentic but
stale data records in response to the user’s point or range
query.

We assume that the communication channels between the
data owner and the cloud server aswell as between the cloud
server and users are secured using standard techniques, e.g.,

TLS [47]. In addition, we also assume that the data owner
cannot predict the keys that the user will query in advance.

3.3 Design Goals

Strict freshness verification—also referred to as real-time
freshness check in [20]—requires the cloud server to not
only push authenticated data updates to the cloud sever as
soon as there are available but also constantly inform the
cloud server even if there is no update, which would result
in prohibitive processing and communication cost. As in
the state-of-art solution in [20], we seek to achieve relaxed
real-time freshness verification. Specifically, we assume that
time is divided into intervals of equal length, which means
that the data owner pushes authenticated data updates to
the cloud server on the interval basis. To ease the presenta-
tion, we assume that in every interval, every data object k 2
K has either no or just one new updated value. Note that
our proposed mechanism can be easily adopted to support
multiple updated values in one interval.

In view of the aforementioned two attacks, we aim to
design a freshness authentication mechanism to allow a
user to verify whether the query result returned by the
cloud server satisfies the following two conditions.

� Query-result integrity: for each queried key k, the
returned data value v is indeed an updated value
from the data owner and has not been tampered
with.

� Query-result freshness: for each queried key k, there is
no update in any interval that starts after t and ends
before or exactly at tq.

In other words, we aim to achieve relaxed real-time
freshness verification because it cannot guarantee no update
for key k in the interval that encloses tq. The smaller the
interval size, the stronger the real-time guarantee, and vice
versa. We aim to support strong real-time guarantee with
millisecond-based interval and low communication and
computation costs. In particular, the mechanism should
incur low update cost between the data owner and the
cloud server as well as low communication and computa-
tion cost for proving data freshness.

4 KV-FRESH

In this section, we first introduce two strawman approaches
for freshness authentication followed by an overview of
KV-Fresh. We then introduce a novel data structure that
underpins KV-Fresh and its construction. Finally, we detail
the design of KV-Fresh.

4.1 Two Strawman Approaches

We first introduce two strawman approaches to enable
query-result integrity and freshness verification.

Strawman Approach 1. The first approach adopts a similar
idea [16], [18], [21], which lets the data owner maintain the
most recent update for every key and build a Merkle hash
tree over all data records in every interval, some of which
are updated in the current interval and the rest are copied
from the previous interval. The data owner pushes the Mer-
kle hash tree to the cloud server. With the Merkle hash tree
constructed for every interval, the cloud server can prove
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the integrity and freshness of the query result. This
approach incurs low communication cost for proving data
freshness but excessively high update cost between the data
owner and cloud server, as the data owner has to transmit
information for every key even if many have no update in
the short interval. In particular, the update cost between the
data owner and the cloud server is linear to the size of the
key space.

Strawman Approach 2. The second approach is to let the
cloud server construct a Key-Ordered Merkle Hash Tree
(KOMT) for every interval over only keys with update,
where the absence of a key implicitly indicates that the most
recent update for this key happened in one of the previous
intervals. Given a batch of key-value records, the data
owner sorts the records according to their keys and builds a
Merkle hash tree over the sorted list. Doing so can minimize
the communication cost between the data owner and the
cloud server due to fewer leaf nodes in each KOMT. How-
ever, it still incurs high communication cost for proving
data freshness if each key is updated infrequently, as the
cloud server needs to prove that there is no update in possi-
bly many intervals after the most recent update. More
importantly, the number of intervals after the most recent
update is inversely proportional to the size of interval,
which means that strong real-time guarantee, i.e., small
interval size, would incur significant communication cost
for proving data freshness. INCBM-TREE [20] can be
viewed as a variant of Strawman Approach 2.

4.2 Overview of KV-Fresh

KV-Fresh is designed to strike a good balance between the
update cost between data owner and cloud service provider
and the size of freshness proof by taking the advantages of
both strawman approaches. In particular, Strawman
Approach 1 achieves small freshness proof size by copying
the most recent value of every key to the Merkle hash tree
constructed in each interval. Doing so allows the cloud
server to prove data freshness using only the Merkle hash
tree constructed for the current interval. On the other hand,
Strawman Approach 2 achieves low update cost between
the data owner and the cloud server by greatly reducing the
number of leaf nodes of the Merkle hash tree constructed
for every interval. KV-Fresh realizes efficient freshness
authentication with strong real-time guarantee by simulta-
neously maintaining a small Merkle hash tree size while
realizing efficient proof of no update in possibly many inter-
vals after the most recent update. Fig. 1 shows a comparison
of KV-Fresh and the two strawman approaches in terms of
the proof size and update cost.

KV-Fresh is built upon Linked Key Span Merkle Hash Tree
(LKS-MHT), a novel data structure to achieve small Merkle
hash tree size in every interval while allowing efficient proof
of no update in possibly many intervals. The key idea behind
the LKS-MHT is to bundle adjacent keys with no update in
one interval as a key block to limit the number of leaf nodes
and reduce the update cost between data owner and cloud
server in comparison with Strawman Approach 1. To enable
efficient proof of no update over multiple intervals, each key
block embeds the index of an earlier interval if none of the
key in the block has received any update after the earlier

interval, which allows the cloud server to skip potentially
many intervals in between in the freshness proof. LKS-MHT
can effectively break the linear dependence between the
freshness proof size and the number of intervals with no
update and thus significantly reduce the size of freshness
proof in comparisonwith StrawmanApproach 2.

Under KV-Fresh, the data owner constructs one LKS-
MHT in every interval, which contains information for
every key in the key space, either an updated value received
in the current interval or an index of an earlier interval, for
which the LKS-MHT contains the most recent update or the
index of another earlier interval. The data owner signs the
LKS-MHT and pushes the LKS-MHT along with its signa-
ture to the cloud server. On receiving a query from the end
user, the cloud server returns a list of LKS-MHT leaf nodes
containing the queried key. The chaining relationship
embedded in the returned leaf nodes allows the user the
verify both the integrity and freshness of the query result.
In what follows, we first introduce LKS-MHT and its con-
struction and then detail the operations of KV-Fresh.

4.3 LKS-MHT:Linked Key Span Merkle Hash Tree

We now introduce LKS-MHT, the data structure that under-
pins KV-Fresh. An LKS-MHT Ti is a binary tree constructed
for each interval i with ui leaf nodes Li;1; . . .; Li;ui . Every leaf
node Li;j; 1 � j � ui; consists of the following fields.

1) A key block Ki;j ¼ ½li;j; ri;j� with li;j; ri;j 2 K and li;j �
ri;j. If li;j ¼ ri;j, thenKi;j represents a single key li;j.

2.a) An interval index gi;j 2 f0; . . .; i� 1g that indicates
that there is no update for any key in Ki;j from inter-
val gi;j þ 1 to i. In other words, the information about
the most recent update for each key in Ki;j can be
found in interval gi;j or earlier.

2.b) Or an updated key value vik along with timestamp tik,
if Ki;j represents a single key k (i.e., k ¼ li;j ¼ ri;j)
which receives an update in interval i.

Given Li;1; . . .; Li;ui , the LKS-MHT is constructed similar
to the traditional Merkle hash tree. In particular, we first cal-
culate hi;j ¼ HðLi;jÞ for all 1 � j � ui, where Hð�Þ denotes a
cryptographic hash function such as SHA-256. We then
computes every internal node as the hash of the concatena-
tion of its two children. Note that if the number of leaf nodes
is not a perfect power of two, some dummy leaf nodes need
be introduced.

Fig. 2 shows an example of the LKS-MHT constructed for
an interval i with the key space K ¼ f1; . . .; 8g. The first leaf
node corresponds to key Ki;1 ¼ 1 with the updated value vi1

Fig. 1. Comparison of Strawman Approach 1, Strawman Approach 2 and
KV-Fresh.
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and timestamp ti1 received in interval i; the second leaf node
corresponds to a key block Ki;2 ¼ ½2; 4� and an interval
index 3, meaning that the most recent information for keys
in [2,4] can be found in interval 3 or earlier; the third leaf
node corresponds a key block Ki;3 ¼ ½5; 7� and an interval
index 2, meaning that the most recent information about
any key in [5,7] can be found in interval 2 or earlier; and the
last leaf node corresponds to key Ki;1 ¼ 8 with updated
value vi8 and timestamp ti8.

To see howLKS-MHT can be used to realize efficient fresh-
ness authentication, consider Fig. 3 as an example, where
eight LKS-MHTs T1; . . .; T8 are constructed for intervals 1 to 8
over key space K ¼ f1; 2; 3; 4g. Assume that the user issues a
GET query as Qð2; tqÞ, where tq is the end of interval 8. Since
the most recent update for key 2 is v32 received in interval 3,
the cloud server needs to prove that there has been no update
in intervals 4 to 8. To do so, the cloud server only needs to
return the first leaf node in LKS-MHT T8, which is a key block
[1,2] and embeds an interval index 6, the second leaf node in
LKS-MHT T6, which is a key block [2,3] and embeds an inter-
val index 3, and the second leaf node in LKS-MHT T3, which
is a single key 2with updated value v32. As we can see, there is
no need for the cloud server to return any information about
intervals 4, 5, and 7.

In the next two subsections, we introduce how to con-
struct the LKS-MHT for the first interval and the subsequent
intervals, respectively.

4.4 LKS-MHT Construction in the First Interval

Wefirst showhow to construct LKS-MHT Ti for the first inter-
val i ði ¼ 1Þ. Denote byK1 � K the subset of keys that receive
updates in the first interval. Without loss of generality, sup-
pose K1 ¼ fk1;1; k1;2; . . .; k1;�1g, where �1 ¼ jK1j and k1;1 <
k1;2 < . . . < k1;�1 . We can see that the �1 keys, K1 ¼
fk1;1; k1;2; . . .; k1;�1g, split the whole key space K ¼ f1; . . .;Kg
into �1 þ 1 key blockswithout update,B1 ¼ ½1; k1;1 � 1�,B2 ¼
½k1;1 þ 1; k1;2 � 1�; . . .; B�1þ1 ¼ ½k1;�1 þ 1;K�. For simplicity,
we assume that none of these key blocks are empty, from
whichwe can form ui ¼ 2�1 þ 1 key blocks fK1;jguij¼1, where

K1;j ¼
Bðjþ1Þ=2; if j is odd,

k1;j=2; if j is even,

(

for all 1 � j � ui: We then create one leaf node L1;j for each
key blockK1;j, where

L1;j ¼
hBðjþ1Þ=2; 0i; if j is odd,

hk1;j=2; v1kj=2 ; t1kj=2i; if j is even.

(

4.5 LKS-MHT Construction in Subsequent Intervals

We now discuss how to construct LKS-MHT Ti for the sub-
sequent interval i ði � 2Þ, for which the key question is to
determine the set of key blocks with corresponding interval
index. Let Ki ¼ fki;1; ki;2; . . .; ki;�ig be the subset of keys that
have received updates in the subsequent interval i, where
�i ¼ jKij and ki;1 < ki;2 < . . . < ki;�i . For every subsequent
interval i, the leaf nodes of Ti are determined jointly by the
leaf nodes of Ti�1 and Ki in two steps: (1) constructing a set
of candidate leaf nodes and (2) determining the leaf nodes.

Candidate Leaf Nodes. First, we can obtain a set of candi-
date leaf nodes based on Li�1;1; . . .; Li�1;ui�1 , and Ki. Con-
sider as an example a leaf node Li�1;j with key block
Ki�1;j ¼ ½li�1;j; ri�1;j� and interval index gi�1;j < i. Assume
that jKi�1;jj � 2. If no key in Ki�1;j receives any update in
interval i, we create one candidate leaf node the same as
Li�1;j. Otherwise, we split Ki�1;j into multiple non-overlap-
ping key blocks and create one candidate leaf node from
each of them. Each candidate leaf node either contains a key
with update in interval i or a key block with no update that
inherits the interval index gi�1;j from Li�1;j. For example, if
a single key k 2 Ki�1;j is updated in interval i and li�1;j <
k < ri�1;j; we can split Ki�1;j into three smaller candidate
blocks and create three candidate leaf nodes: the first one
with key block ½li�1;j; k� 1� and the same interval index
gi�1;j, the second one with a single key k an updated value
vik, and timestamp tik; and the third one with key block ½kþ
1; ri�1;j� and the same interval index gi�1;j. We summarize
the general procedure for constructing a list of candidate
leaf nodes in Algorithm 2 in Appendix A of the supplement
file, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TDSC.2022.3172380.

Leaf Nodes. We now determine the leaf nodes for Ti from
the candidate leaf nodes, for which the key is to merge
some adjacent candidate leaf nodes into one to maintain a
small number of leaf nodes. Without merging, the number
of leaf nodes would increase monotonically at every interval
and eventually reach jKj, resulting in excessive update cost
between the data owner and the cloud server as in Straw-
man Approach 1.

Under what condition can adjacent candidate leaf nodes be
merged? We observe that multiple adjacent candidate leaf
nodes can be merged into one if none of the keys in the cor-
responding key blocks is updated in interval i. Specifically,
for a group of adjacent candidate leaf nodes Ci;j; . . .; Ci;jþs
for some s � 1, if none of the keys in their respective key

Fig. 2. An example of LKS-MHT.

Fig. 3. Illustration of LKS-MHT-based freshness authentication.
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blocks
S jþs

x¼jKi;x have received any update in interval i,
then we can merge key blocks Ki;j; . . .; Ki;s into one and cre-
ate a new leaf node as h S jþs

x¼jKi;x; i� 1i, which indicates
that the most recent information about any key in

S jþs
x¼jKi;x

can be found in Ti�1 or earlier.
Which adjacent candidate leaf nodes should be merged? A

plausible answer is to merge every group of consecutive
candidate leaf nodes into one to minimize the number of
leaf nodes and thus the update cost between the data owner
and the cloud server. However, doing so would increase the
size of freshness proof, as the cloud server needs to return
information for more intervals. Fig. 4 shows an example of
blindly merging all possible leaf nodes for 8 LKS-MHTs.
Assume that the end user issues a GET query as Qð2; tqÞ,
where tq is at the end of interval 8. The cloud server needs
to return the first leaf node of T8, which is a key block [1,3]
and embeds an interval index 7; the first leaf node in LKS-
MHT T7, which is a key block [1,2] and embeds an interval
index 6; the second leaf node of T6, which is a key block
[2,4] and embeds an interval index 5; the first leaf node in
LKS-MHT T5, which is a key block [1,3] and embeds an
interval index 3, and the second leaf node of T2 which is a
single key 2 with the updated value v32. In comparison with
the previous example shown in Fig. 3, the cloud server
needs to return two more leaf nodes.

We first observe that some merging decisions can be
made based on whether related keys have updates in the
two intervals. Let Ci ¼ hCi;1; . . .; Ci;fii be the list of candidate
leaf nodes output by Algorithm 2, where fi is the number of
candidate leaf nodes. We define bj as the decision variable
such that bj ¼ 1 if Ci;j and Ci;jþ1 are merged into one and 0
otherwise for all 1 � j � fi � 1. We find that bj can be pre-
determined in the following two cases.

� Case 1: If either Ci;j or Ci;jþ1 corresponds to a single
key that has received an update in interval i, then
bj ¼ 0, as the corresponding leaf node needs to
record the update value and thus cannot be merged
with the other.

� Case 2: If neither Ci;j nor Ci;jþ1 each correspond to a
single key that has received an update in interval i�
1, i.e., jKi;jj ¼ jKi;jþ1j ¼ 1 and gi;j ¼ gi;jþ1 ¼ i� 1,
then we should merge them into one, i.e., bj ¼ 1.
Doing so can reduce the number of leaf nodeswithout
increasing freshness proof size, because the cloud
server needs to return the leaf node for at least one
interval after themost recent update in interval i� 1.

Based on the above observations, we define three index
sets asF ¼ f1; . . .;fi � 1g;F0 ¼ fjjj 2 F; Ki;j 2 Ki _Ki;jþ1 2
Kig and F1 ¼ fjjj 2 F; jKi;jj ¼ jKi;jþ1j ¼ 1; gi;j ¼ gi;jþ1 ¼
i� 1g, where F0 and F1 correspond to the first and second
cases, respectively. In other words, bj ¼ 0 for all j 2 F0 and
bj ¼ 1 for all j 2 F1. We further note that if we set bj ¼ 1 for
all j 2 F nF0, i.e., merging every possible pair of candidate
leaf nodes, then it would take jFj � jF0jmerging operations
and the number of remaining leaf nodes is given by

fi � ðjFj � jF0jÞ ¼ fi � ðfi � 1� jF0jÞ
¼ jF0j þ 1 :

Therefore, the minimum number of leaf nodes that Ti can
have is jF0j þ 1.

We make the remaining merging decisions through an
optimization approach. In what follows, we introduce two
optimization problem formulations with different objective
functions and present their solutions.

4.5.1 Formulation 1: Expected Freshness Proof

Size Minimization

Our first formulation aims to minimize the expected size of
freshness proof under the constraint of the maximum num-
ber of leaf nodes. We observe that the size of freshness proof
is linear to the number of intervals for which the cloud
server needs to return a leaf node in response to a point
query. Let hk;i and hk;i�1 denote the numbers of leaf nodes
the cloud server needs to return in response to queries Q ¼
ðk; iÞ and Q ¼ ðk; i� 1Þ, respectively, for all k 2 K. Also let
pk be the probability of each key k being queried, whereP

k2K pk ¼ 1. If every key is equally likely being queried, we
then have pk ¼ 1=jKj for all k 2 K. Let ~hk ¼ hk;i � hk;i�1
for all k 2 K. The expected number of leaf nodes that the
cloud server needs to return for freshness proof is given by

EðhiÞ ¼
X
k2K

pkhk;i

¼
X
k2K

pkhk;i�1 þ
X
k2K

pk~hk ; (1)

where Eð�Þ denotes expectation. Since merging decisions in
interval i have no impact on the first term

P
k2K pkhk;i�1,

minimizing EðhiÞ is equivalent to minimizing
P

k2K pk~hk.
Next, we analyze the relationship between decision vari-

ables b1; . . .; bfi�1 and
P

k2K pk~hk. First, we observe that
~hk ¼ 1 if key k belongs to a candidate leaf node being
merged with another adjacent one and 0 otherwise. Let F0 ¼
F n ðF0

S
F1Þ and fbjjj 2 F0g be the remaining decision

variables that need be determined. Further denote by F01 ¼
fbj ¼ 1jj 2 F0g and F00 ¼ fbj ¼ 0jj 2 F0g the subsets of deci-
sion variables set to one and zero, respectively. Given F01
and F1, a candidate leaf node Ci;j is merged with another
one if either j� 1 or j 2 F01

S
F1. Let P ¼ fjjj� 1 2

F01
S

F1 _ j 2 F01
S

F1 ^ j 2 Fg. We haveX
k2K

pk~hk ¼
X
j2P

X
k2Ki;j

pk;

whereKi;j is the key block of Ci;j.
Let fðF01Þ ¼

P
j2P
P

k2Ki;j
pk. We formulate the merging

decisions as the following programming problem.

Fig. 4. An example of LKS-MHTs constructed under maximummerging.
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minimize fðF01Þ
subject to F01 � F0;

fi � jF1

[
F01j � maxðt; jF0j þ 1Þ;

bj ¼ 0; 8j 2 F0

[
F00;

bj ¼ 1; 8j 2 F1

[
F01; (2)

where fi � jF1

S
F01j is the number of leaf nodes after

jF1

S
F01j merging operations, and t is a system parameter

that limits the number of leaf nodes for every LKS-MHT
and usually set to be the larger the expected number of
updates in each interval. Also note that parameter t serves
as an upper bound for the number of LKS-MHT leaf nodes
in every interval as the average number of keys with update
in each interval is inversely proportional to the size of the
interval.

We now introduce an efficient greedy algorithm to solve
the above optimization problem with guaranteed approxi-
mation ratio. We can see that the objective function f :
2F
0 ! R is a set function, and the following theorem charac-

terizes its properties.

Theorem 1. The objective function fð�Þ in Eq. (2) is non-nega-
tive, submodular, and monotone.

We give the proof in Appendix B of the supplement file,
available online.

A well known result is that for any objective func-
tion that is non-negative, submodular, and monotone, a
greedy algorithm that iteratively selects the local opti-
mal element at every step can output a solution with
guaranteed approximation ratio of 1� 1=e, and no
polynomial-time algorithm can achieve a better guaran-
tee unless P ¼ NP [48].

Algorithm 1.Minimizing Expected Proof Size

Input: Candidate leaf nodes Ci;1; . . .; Ci;fi , F, F0, F1, and t

Output: F01 and F00
1: ui  fi � jF1j;
2: F01  ;;
3: F0  F n ðF0

S
F1Þ;

4: while ui > maxðt; jF0j þ 1Þ do
5: j	 ¼ argminj2F0fðF0

S fjgÞ;
6: F01  F01

S fj	g;
7: F0  F0 n fj	g;
8: ui  ui � 1;
9: end
10: F00  F0 nF01;
11: return F01 and F00;

We now detail the greedy algorithm for the merging
decision in Algorithm 1. We first initialize the number of
leaf nodes ui to fi � jF1j, i.e., fi candidate nodes after jF1j
merging operations (Line 1). We then initialize F01 to empty
set and the set of remaining decision variables F0 to F n
ðF0

S
F1Þ. We then iteratively make the remaining merging

decisions (Lines 4 to 9). In each iteration, we find j	 2 F0

with the smallest fðF0 S fj	gÞ and move j	 from F0 to F01.
This process continuous until the number of leaf nodes ui
reaches maxðt; jF0j þ 1Þ. Finally, F01 and F00 ¼ F0 nF01 are
output for constructing the leaf nodes for LKS-MHT Ti.

4.5.2 Formulation 2: Minimizing Maximal Size of

Freshness Proof

Our second formulation seeks to minimize the maximal
freshness proof size among all keys, i.e., maxk2Kfhk;ig,
under the constraint of the maximal number of leaf nodes.
Note that this would require the data owner to keep track of
fhk;ijk 2 Kg. Again let hk;i and hk;i�1 be the number of leaf
nodes that need be returned in response to queries Q ¼
ðk; iÞ and Q ¼ ðk; i� 1Þ, respectively, for all k 2 K. Recall
that Ki � K is the subset of keys that receive an update in
interval i. It follows that hk;i ¼ 1 for all k 2 Ki. Since hk;i � 1
for all k 2 K, we have

max
k2K
fhk;ig ¼ max

k2KnKi
fhk;ig: (3)

Let C�i ¼ fCi;jjKi;j

TKi ¼ ;g, i.e., Ci;j contains no key
that receives an update in interval i. For every candidate
leaf node Ci;j 2 C�i , denote its maximum freshness proof
size in response to Q ¼ ðk; i� 1Þ and Q ¼ ðk; iÞ by mi�1;j ¼
maxk2Ki;j

fhk;i�1g and mi;j ¼ maxk2Ki;j
fhk;ig, respectively. It

follows that

max
k2KnKi

fhk;ig ¼ max
Ci;j2C�i

fmi;jg

¼ max
Ci;j2C�i

fmi�1;j þ~mjg; (4)

where~mj ¼ mi;j �mi�1;j for all Ci;j 2 C�i .
We now analyze the relationship between decision varia-

bles b1; . . .; bfi�1 and maxCi;j2C�i fmi�1;j þ~mjg. Similar to
Formulation 1, ~mj ¼ 1 if the candidate leaf node Ci;j is
merged with another and 0 otherwise.

Again let F0 ¼ F n ðF0

S
F1Þ and fbjjj 2 F0g be the

remaining decision variables that need be determined. Also
letF01 ¼ fbj ¼ 1jj 2 F0g andF00 ¼ fbj ¼ 0jj 2 F0g be the sub-
sets of decision variables set to one and zero, respectively.
Given F01 and F1, a candidate leaf node Ci;j is merged with
another one if either j� 1 or j 2 F01

S
F1. Let P ¼ fjjj� 1 2

F01
S

F1 _ j 2 F01
S

F1 ^ j 2 Fg. We have

max
Ci;j2C�i

fmi;jg ¼ maxðfmi�1;j þ 1gj2P; fmi�1;jgj2FnPÞ: (5)

Let gðF01Þ ¼ maxðfmi�1;j þ 1gj2P; fmi�1;jgj2FnPÞ. We for-
mulate the remaining merging decisions as the following
optimization problem.

minimize gðF01Þ
subject to F01 � F0;

fi � jF1

[
F01j � maxðt; jF0j þ 1Þ;

bj ¼ 0; 8j 2 F0

[
F00;

bj ¼ 1; 8j 2 F1

[
F01: (6)

The following theorem shows that the objective function
gð�Þ is also non-negative, submodular, and monotone.

Theorem 2. The objective function gð�Þ in Eq. (6) is non-nega-
tive, submodular, and monotone.

We give the proof in Appendix C of the supplement file,
available online.

HU ETAL.: FRESHNESS AUTHENTICATION FOR OUTSOURCED MULTI-VERSION KEY-VALUE STORES 2077

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2024 at 20:35:33 UTC from IEEE Xplore.  Restrictions apply. 



The above optimization problem can be solved with an
efficient greedy algorithm. While choosing the local optimal
with the smallest gð�Þ can lead to an efficient greedy algo-
rithm with guaranteed approximation ratio as in the first
formulation, we notice that there may be multiple choices
with the same minimal gð�Þ in each step. We therefore fur-
ther prioritize the merging decision that involves the new
candidate leaf nodes with the smallest key block size. We
detail the procedure for making the merging decisions in
Algorithm 3 in Appendix D of the supplement file, available
online.

4.6 Point Query Processing

We now detail the procedure of KV-Fresh for point queries,
which consists of three phases: update preprocessing, query
processing, and query-result verification. We assume that the
data owner has a public/private key pair that supports
batch verification of digital signatures such as RSA [49].

Update Preprocessing. Assume that the data owner receives
data records fhvik; tikijk 2 Kig in each interval i for i ¼ 1; 2; . . ..
At the end of each interval i, the data owner generates the leaf
nodes Li;1; . . .; Li;ui according to the procedures presented in
Section 4.4 if i ¼ 1 or Section 4.5 otherwise. The data owner
then constructs an LKS-MHT Ti over Li;1; . . .; Li;ui . Let pk ¼
ðn; eÞ and sk ¼ ðdÞ be the data owner’s RSA public/private
key pair andRi the root of Ti. The data owner computes

si ¼ HðijjRiÞd modn: (7)

Finally, the data owner sends all the leaf nodes Li;1; . . .; Li;ui

and its signature si to the cloud server, whereby the cloud
server can compute all the intermediate nodes and root of
Ti.

Note that if no key receives any update in interval i, the
data owner can simply resign the root of the LKS-HMT Ti�1,
i.e., Ri�1, in concatenation with the new interval index i as
in Eq. (7) and sends the signature to the cloud server, which
results in an update cost of Oð1Þ.

Query Processing. Assume that a data user issues a point
query Qðk; tqÞ asking for the most recent data record for key
k as of the end of interval q1. Also assume that vik is the most
recent update for key k received at time tik in interval i,
where i � q1.

The cloud server constructs the query result in a recur-
sive fashion. Specifically, the cloud server first finds the leaf
node Lq1;j1 in LKS-MHT Tq1 such that k 2 Kq1;j1 . There are
two cases. First, if i ¼ q1, then we have Lq1;j1 ¼ hk; vik; tiki,
i.e., Lq1;j1 contains the most recent value for key k. Second, if
i < q1, then we have Lq1;j1 ¼ hKq1;j1 ; gq1;j1

i, i.e., Lq1;j1 points
to an earlier interval gq1;j1 , and the cloud server continues to
check LKS-MHT Lq2 . In general, for every x ¼ 1; 2; . . .; the
cloud server finds the leaf node Lqx;jx in LKS-MHT Tqx such
that k 2 Kqx;jx . It follows that Lqx;jx ¼ hk; vik; tiki if qx ¼ i and
hKqx;jx ; gqx;jxi otherwise. The cloud server returns

Rx ¼ hqx; Lqx;jx ;AðRqx jLqx;jxÞ; sqxi; (8)

where Rqx is the root of LKS-MHT Tqx , and AðRqx jLqx;jxÞ is
the set of internal nodes in Tqx needed for computing root
Rqx from leaf node Lqx;jx . If qx > i, then the cloud server set
qxþ1 ¼ gqx;jx and repeat the above process until qx ¼ i, i.e.,

the most recent update for key k received in interval i is
found.

Query-Result Verification.Assume that the user has received
the query result in the form of R ¼ hR1; . . .;Rri, where Rx ¼
hqx; Lqx;jx ;AðRqx jLqx;jxÞ; sqxi, for all 1 � x � r. The data user
first verifies the integrity of the query result. Specifically, for
every x ¼ 1; . . .; r, the user first computes Rqx from Lqx;jx

usingAðRqx jLqx;jxÞ. It then verifies all r signatures in batch by
checkingwhether Yr

x¼1
sqx

!e

¼?
Yr
x¼1

HðqxjjRqxÞmodn;

where ðn; eÞ is the data owner’s RSA public key. If so, the
user considers the query result authentic.

The data user then verifies the freshness of the query
result using the interval indexes embedded in the returned
leaf nodes. Assume that q1 > . . . > qs. The user first checks
if qs ¼ q1 because the cloud server should always return the
leaf node for the queried interval q1. If so, the user further
checks whether qxþ1 ¼ gqx;jx for all x ¼ 1; . . .; s� 1. Finally,
the user verifies whether leaf node Lqs;js contains the
updated value vik and timestamp tik. If so, the user considers
the query result fresh.

Theorem 3. KV-Fresh can detect any inauthentic and/or stale
point query result.

We provide the proof in Appendix E of the supplement
file, available online.

4.7 Range Query Processing

We now discuss how to extend the above solution into
range query. A straightforward solution is to convert any
range query into multiple point queries with each corre-
sponding to one unique queried key, which would result in
a proof size approximately linear to the size of query range.
Our key observation is that the point query responses of
adjacent queried keys have large overlap and can be merged
to significantly reduce the communication cost. In what fol-
lows, we detail the procedure of query processing and
query-result verification as the procedure update prepro-
cessing remains the same.

Query Processing. Assume that the cloud server receives a
range query Qð½l; r�; tqÞ asking for the most recent data
record for every key k 2 ½l; r� as of the end of interval q. Also
assume that vk is the most recent update received at time tik
in interval ik, where ik � q for all k 2 ½l; r�Þ.

The cloud server first generates a point query result for
every queried key k 2 ½l; r�. Let Rk ¼ fRk

1; . . .;R
k
rk
g be the

query result for each queried key k 2 ½l; r�, where rk is the
number of partial query results and

Rk
x ¼ hqkx; Lk

qx;jx
;AðRk

qkx
jLk

qx;jx
Þ; sqkxi; (9)

for all 1 � x � rk. It is easy to see that qk1 ¼ q for all l � k � r
as the query result for every queried key must contain the
information about interval q.

Given all the partial query results fRk
xjl � k � r; 1 � x �

rkg, the cloud server constructs the final query result by
eliminates any duplicate leaf nodes. First, the cloud server
sorts fRk

xjl � k � rg first according to interval index qkx and
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then key k such that partial query results for the adjacent
keys and the same interval appear next to each other. The
cloud server then identifies and eliminates any duplicate
partial query results for the same interval. Second, the cloud
server merges all remaining the partial query results into
one for every interval that appears in fRk

xjl � k � rg. Specifi-
cally, let i	 ¼ mink2½l;r�fikg be the earliest interval with the
most recent update for any queried key. For every interval
j 2 ½i	; q� with at least one partial query result, the cloud
server constructs an aggregated partial query result as fol-
lows. Let K½l;r�j 2 ½l; r� be the subset of keys that have partial
query results for interval j. For each k 2 K½l;r�, let its partial
query result for interval j be

Rk ¼ hj; Lk
j ;AðRkjLk

j Þ; sji; (10)

where we omit a part of the subscript to simplify the nota-
tion. We can see that fLk

jgk2½l;r� is a subset of LKS-MHT Tj’s
leaf nodes. The cloud server constructs an aggregate query
result for interval j as

R
½l;r�
j ¼ hj; fLk

j jk 2 K½l;r�j g;AðRkjfLk
j jk 2 K½l;r�j gÞ; sji; (11)

where AðRkjfLk
j jk 2 K½l;r�j gÞ is the union of the subsets of

internal nodes of LKS-MHT Tj needed to compute the root

Rk from Lk
j for all k 2 K½l;r�.

Query-Result Verification. The verification of a range
query result is essentially the same as verifying multiple
point query results. In particular, the only difference
between the query processing in the two cases is that the
cloud server eliminates the duplicated information among
multiple point query results, so all the information needed
for verifying the integrity and freshness of individual point
query results are included in the range query result. We
omit the details here due to space limitation.

Theorem 4. KV-Fresh can detect any inauthentic and/or stale
range query result.

The proof is provided in Appendix F of the supplement
file, available online.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of KV-Fresh via
extensive simulation studies using a real dataset.

5.1 Dataset

We create a synthetic dataset from a TrueFax real-time cur-
rency conversion dataset [50] that includes tick-by-tick his-
torical conversion rates for 16 major currency pairs with
fractional pip spreads in millisecond detail. For our pur-
pose, we take the currency conversion rate from EUR to
USD from 12:00 am (GMT), January 2nd, 2019 to 03:46:40
pm (GMT) January 3rd, 2019. We divide the time period
into 10,000 segments of 10 seconds. We treat the segment
indexes as keys and the conversion rates as the updates.
Our synthetic dataset consists 10,000 keys for a period of 10
seconds, and on average 131.55 keys receive updates for
every 10 ms.

5.2 Simulation Settings

We implement a prototype of KV-Fresh in Python and
deploy it on three desktops connected by 100 Mbps links,
which act as the data owner, cloud server, and the user,
respectively. Each desktop has a i7-6700 CPU, 16GB RAM
and 64-bit Win10 operating system. We adopt the SHA-256
for the cryptographic hash function and the RSA for digital
signature. Table 1 summarizes our default settings unless
mentioned otherwise.

For point query, we compare KV-Fresh with the state-of-
art solution INCBM-TREE [20] as well as the Strawman
Approach 1 and Strawman Approach 2 introduced in Sec-
tion 4.1 using four performance metrics: (1) update cost
which is number of extra bits per second transmitted from
the data owner to cloud server, i.e., additional communica-
tion cost between the data owner and cloud server, (2) proof
size which is the number of extra bits needed for proving
the integrity and freshness for a query result, i.e., additional
communication cost between the cloud server and user, (3)
throughput which is the number of queries processed by the
cloud server per second, and (4) verification timewhich is the
time needed for verifying a returned query result by the
user. While the throughput and verification time may vary
across different platforms, our goal is to provide a fair com-
parison among the four schemes under the same setting.

5.3 Simulation Results for Point Queries

We now report our simulation results for point queries
where every point in the following figures represents the
average over 10,000 runs each with a distinct random seed.
We refer to the two formulations discussed in Sections 4.5.1
and 4.5.2 as KV-Fresh-1 and KV-Fresh-2, respectively.

5.3.1 The Impact of Interval Size

Fig. 5a compares the update cost under Strawman-1, Straw-
man-2, INCBM-TREE, KV-Fresh-1 and KV-Fresh-2 with
interval size varying from 10 s to 1 ms, respectively. As we
can see, the update cost per second increases as the interval
sizes decreases under all mechanisms. This is expected, as
the number of intervals is inversely proportional to the
interval size. Among the five mechanisms, Strawman-1 has
the highest update cost when the interval size is smaller
than 1 s, as the data owner needs to send the most recent
key-value record for every key in every interval. Strawman-
2 and INCBM-TREE have the lowest update cost, as the
data owner only sends keys with updates under both mech-
anisms. The update costs of KV-Fresh-1 and KV-Fresh-2 fall
in the middle and increase much slower than that of Straw-
man-1. This is anticipated, as both KV-Fresh-1 and KV-

TABLE 1
Default Simulation Settings

Para. Val. Description.

� 10 ms The interval size
jKj 10,000 The number of keys
m 1,000 The number of intervals
t 1024 The maximal number of key blocks
jHð�Þj 256 The length of hash
jsij 1024 The length of data owner’s signature
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Fresh-2 require the data owner to send only updated key-
value records and key block information with no update for
every interval. Moreover, when the interval size is 1 ms,
both KV-Fresh-1 and KV-Fresh-2 incur an update cost of
approximately 108 bits per second. In other words, a 100-
Mbps link between the data owner and the cloud server suf-
fices to support a key space of 10,000 keys, which makes
KV-Fresh very practical.

Fig. 5b shows the impact of interval size on the proof size
of Strawman-1, Strawman-2, INCBM-TREE, KV-Fresh-1,
and KV-Fresh-2. The proof size of Strawman-1 is not
affected by the interval size and stays at 4460 bits. The proof
sizes of the other four mechanisms all increase as the inter-
val size decreases. Among the them, the proof sizes of
Strawman-2 and INCBM-TREE grow the fastest and are
approximately inversely proportional to the interval size.
The reason is that the data owner needs to prove that there
is no update in every interval after the most recent update
under the both mechanisms. While INCBM-TREE employs
a Bloom filter for efficient proof of no update, every Bloom
filter covers only a constant number of intervals. In contrast,
the proof sizes under KV-Fresh-1 and KV-Fresh-2 grow
much slower as the interval size decreases, because both
KV-Fresh-1 and KV-Fresh-2 allow the cloud server to skip
potentially many intervals in the freshness proof. We can
also see that the proof size of KV-Fresh-1 is slight lower
than that of KV-Fresh-2, which is anticipated as KV-Fresh-1
aims to minimizing the expected size of freshness proof and
the proof size in Fig. 5b is the average over 10,000 runs. In
addition, we can see that KV-Fresh outperforms INCBM-
TREE by a large margin when the interval size is small. For
example, when the interval size is 1 ms, the proof sizes
under KV-Fresh-1 and KV-Fresh-2 are approximately 90 Kb
and 115 Kb, respectively, which are less than 0.4% and 0.5%
of the 22.9 Mb under INCBM-TREE, respectively.

Fig. 5c compares the throughput under Strawman-1,
Strawman-2, INCBM-TREE, KV-Fresh-1, and KV-Fresh-2.
We can see that the throughput under Strawman-1 is the
highest and not affected by the change in interval size.
Among the other four, the throughput of Strawman-2 is the
smallest, followed by INCBM-TREE. The reason is that the
smaller the interval size, the more intervals after the most
recent update on average, the more intervals the cloud
server needs to process under Strawman-2 and INCBM-
TREE, and vice versa. In contrast, the throughput of KV-
Fresh-1 and KV-Fresh-2 initially decline as the interval size
decreases from 10 s to 10 ms and then become stable or
decrease slightly as the interval size decreases from 10 ms
to 1 ms. The reason for the initial decline is that when the

interval size is large, most of the keys have updates in every
interval, and the merging constraint is determined by jF0j
instead of t, which results in excessive merging operations
and more intervals that the cloud server needs to check. As
the interval size further decreases, fewer and fewer keys
have updates in each interval, which result in fewer merg-
ing operations and thus fewer intervals the cloud server
needs to check. Moreover, KV-Fresh-1 outperforms KV-
Fresh-2 with higher average throughput due to its merging
decision policy, which aims to minimizing the expected
proof size. Generally speaking, in comparison with Straw-
man-2 and INCBM-TREE, both KV-Fresh-1 and KV-Fresh-2
have similar throughput when the interval size is large
while outperform Strawman-2 and INCBM-TREE by large
margins when the interval size is small. For example, when
the interval size is 1 ms, KV-Fresh-1 achieves 9.05 and 41.75
times higher throughput than INCBM-TREE and Straw-
man-2, respectively.

Fig. 5d compares the verification cost of the five mecha-
nisms under different interval sizes. As we can see, the veri-
fication cost of Strawman-1 remains at 0.6357ms and is not
affected by the change in interval size. The verification cost
increases as the interval size decreases under all the other
four mechanisms. Among them, KV-Fresh-1 and KV-Fresh-
2 both outperform INCBM-TREE and Strawman-2 by large
margins. The reason is that fewer leaf nodes need be
returned under either KV-Fresh-1 or KV-Fresh-1 than both
INCBM-TREE and Strawman-2. For example, when interval
size is 1 ms, it takes 0.86 ms and 0.96 ms to verify a query
result under KV-Fresh-1 and KV-Fresh-2, respectively,
while Strawman-2 and INCBM-TREE require 11.96 ms and
6.84 ms, respectively. These results demonstrate the signifi-
cant advantages of KV-Fresh over other two mechanisms.

5.3.2 The Impact of the Number of Keys

Figs. 6a, 6b, 6c, and 6d compare the performance of KV-
Fresh-1, KV-Fresh-2, Strawman-1, Strawman-2 and INCBM-
TREE with jKj, i.e., the total number of keys, varying from
100 to 50,000. As we can see from Fig. 6a, the update costs of
all schemes increase as the number of keys increase, which
is anticipated. Moreover, the update cost of KV-Fresh-1 and
KV-Fresh-2 are lower than that of Strawman-1 by a larger
margin but higher than that of Strawman-2 and INCBM-
TREE. More importantly, even when the jKj is 50,000, the
update costs of KV-Fresh-1 and KV-Fresh-2 are both
approximately 3:9
 107 bits per second, which is very prac-
tical for 10-ms interval. From Fig. 6b, we can see that the
proof sizes under all mechanisms increase as jKj increases,

Fig. 5. Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with interval size varying from 10s to 1ms.
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as a larger jKj leads to a deeper MHT. Moreover, as jKj
increases from 100 to 50,000, the proof sizes under KV-
Fresh-1 and KV-Fresh-2 are always significantly smaller
than those under Strawman-2 and INCBM-TREE. Similarly,
Figs. 6c and 6d show that both KV-Fresh-1 and KV-Fresh-2
achieve much higher throughput and lower verification
cost than Strawman-2 and INCBM-TREE because fewer leaf
nodes need be returned under KV-Fresh-1 and KV-Fresh-2
than the other two.

5.3.3 The Impact of t

Figs. 7a, 7b, 7c, and 7d show the performance of KV-Fresh-1
and KV-Fresh-2 with t varying from 256 to 8192, where the
performance of Strawman-1, Strawman-2 and INCBM-
TREE are not affected by t and only plotted for reference.
Generally speaking, the larger t, the higher the update cost,
the smaller proof size, the higher throughput, the smaller
verification cost for both KV-Fresh-1 and KV-Fresh-2, and
vice versa. In addition, the update cost, proof size, through-
put, and verification cost under KV-Fresh-1 and KV-Fresh-2
are almost always between those under Strawman-1 and
those under Strawman-2 and INCBM-TREE, which is
expected. While KV-Fresh-1 and KV-Fresh-2 incur higher
update cost than Strawman-2 and INCBM-TREE, they incur
much lower communication cost between the cloud server

and the user and smaller verification cost at the user. More-
over, while update only happens between the data owner
and the cloud server, the cloud server needs to serve poten-
tially many users at the same time.

5.4 ComparisonBetweenKV-Fresh-1 andKV-Fresh-2

Figs. 8a and 8c compare the performance of KV-Fresh-1 and
KV-Fresh-2 with interval size varying from 10 s to 1 ms,
where KV-Fresh-1 (Avg.) and KV-Fresh-2 (Avg.) represent
the average results of 10,000 runs and KV-Fresh-1 (Worst)
and KV-Fresh-2 (Worst) represent the worst case among the
10,000 runs under KV-Fresh-1 and KV-Fresh-2, respectively.
As we can see from Fig. 8a, as the interval size decreases,
both the average and the largest proof sizes increase under
both KV-Fresh-1 and KV-Fresh-2, which is expected. More
importantly, KV-Fresh-1 achieves smaller average proof
size but larger proof size under the worst case. The reason
is that KV-Fresh-1 and KV-Fresh-2 are designed to mini-
mize the expected and maximum proof sizes, respectively.
Fig. 8b shows that as the interval size increases, both the
average and maximum proof sizes initially decrease fol-
lowed by stable or decrease slightly due to the same reason
in Fig. 5c. We also observe that KV-Fresh-1 achieves higher
average throughout but lower worst-case throughput than
KV-Fresh-2. From Fig. 8c, we can see that KV-Fresh-2 incurs

Fig. 6. Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with jKj varying from 100 to 50,000.

Fig. 7. Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE with t varying from 256 to 10,000.

Fig. 8. Comparison of KV-Fresh-1 and KV-Fresh-2 with interval size varying from 10s to 1ms.
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a slightly higher average verification cost than KV-Fresh-1
for the same reason. More importantly, the worst-case veri-
fication cost under KV-Fresh-2 is significantly lower than
that of KV-Fresh-1. Moreover, we can see that the gap
between the average and worst-case verification costs grows
as the interval size decreases. The reason is that when the
interval size is large, many keys receive updates in each
interval on average and the terminal condition for merging
is mainly determined by t, so there are very few merging
opportunities to demonstrate the difference between KV-
Fresh-1 and KV-Fresh-2. As the interval size decreases, the
terminal condition is gradually determined by t, and differ-
ent merging decision have large impact on the average and
worst-case verification costs, which leads to the increased
gap between the two mechanisms.

Figs. 9a and 9c compare the average and worst-case per-
formance of KV-Fresh-1 and KV-Fresh-2 with jKj varying
from 100 to 50,000. Generally speaking, the larger jKj, the
larger proof size, the lower throughout and the higher veri-
fication cost for both the average and worst-case under the
two mechanisms. Moreover, KV-Fresh-1 outperforms KV-
Fresh-2 in terms of average proof size, throughout and
verification cost, while KV-Fresh-2 has better worst-case
performance. In addition, we can see from Fig. 9c that the
gap between the average and the worst-case performance
increases as jKj increase from 100 to 50,000. For example,
the difference between KV-Fresh-1 (Avg.) and KV-Fresh-1
(Worst) grows from 0.84 ms to 5.1 ms when the jKj increases
from 5,000 to 50,000.

5.5 Simulation Results for Range Queries

Since INCBM-TREE [20] is not directly applicable to range
queries, we compare KV-Fresh with a baseline solution,
referred to as KV-Fresh-baseline, which processes a range
query as multiple independent point as in KV-Fresh. For

the performance evaluation, we still use the metrics proof
size, throughput, and verification time but omit the metric
update cost as they share the same update preprocessing
procedure.

Fig. 10a shows the impact of the size of query range on the
proof size under KV-Fresh-1, KV-Fresh-2, KV-Fresh-1-base-
line, and KV-Fresh-2-baseline. We can see that the proof size
increases as the number of queried keys increases under all
four mechanisms, which is expected. Moreover, both KV-
Fresh-1 and KV-Fresh-2 incur a much smaller size of proof
than corresponding KV-Fresh-1-baseline and KV-Fresh-2-
baseline. For example, when the number of queried keys is
10, KV-Fresh-1 and KV-Fresh-2 reduce the proof size of KV-
Fresh-1-baseline and KV-Fresh-2-baseline by 72% and 74:9%,
respectively. As another example, when the number of que-
ried keys is 100, KV-Fresh-1 andKV-Fresh-2 reduce the proof
size of KV-Fresh-1-baseline and KV-Fresh-2-baseline by 84%
and 88% times, respectively. The reason is that the two base-
line solutions treat a range query as multiple independent
point queries for which the query results have large overlap.
In contrast, both KV-Fresh-1 and KV-Fresh-2 eliminate such
redundancy in the query result, resulting in significant
reduction in the freshness proof size and thus higher com-
munication and computation efficiency.

Fig. 10b compares the throughput of KV-Fresh-1, KV-
Fresh-2, KV-Fresh-1-baseline, and KV-Fresh-2-baseline with
the number of queried keys varying from 1 to 100. We can
see that the throughput under all four mechanisms
decreases as the number of queried keys increase, which is
expected as it takes longer time to process a range query
with a larger query range size. Moreover, both KV-Fresh-1
and KV-Fresh-2 outperform corresponding KV-Fresh-1-
baseline and KV-Fresh-2-baseline, especially when the size
of query range is large, as they both treat a range query as a
whole instead of multiple independent point queries. For
example, when the size of query range is 100, KV-Fresh-1

Fig. 9. Comparison of KV-Fresh-1 and KV-Fresh-2 with jKj varying from 100 to 50,000.

Fig. 10. Comparison of KV-Fresh-1 and KV-Fresh-2 with the size of query range varying from 1 to 100.
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can process 522 range queries in one second, while KV-
Fresh-1-baseline can only process 149 range queries.

Fig. 10c shows the verification cost of KV-Fresh-1, KV-
Fresh-2, KV-Fresh-1-baseline, and KV-Fresh-2-baseline with
different sizes of query range. We can see that the verifica-
tion cost of the all mechanisms sharply increase as the num-
ber of queried keys increases. Similar to Figs. 10a and 10b,
both KV-Fresh-1 and KV-Fresh-2 outperform corresponding
KV-Fresh-1-baseline and KV-Fresh-2-baseline in terms of
verification cost, which is expected. These results further
confirm the high efficiency of KV-Fresh in processing range
queries.

6 CONCLUSION

In this paper, we have presented the design and evaluation
of KV-Fresh, a novel freshness authentication scheme for
outsourced multi-version key-value stores. Specifically, KV-
Fresh is built upon LKS-MHT, a novel data structure that
allows efficient proof of no update over a potentially large
number of intervals. We also propose two merging decision
to fulfill the LKS-MHT construction. KV-Fresh supports
both point query and range query. Extensive simulation
studies confirm that KV-Fresh can always simultaneously
achieve strong real-time guarantee and high communica-
tion efficiency.

REFERENCES

[1] P. Felber et al., “On the support of versioning in distributed key-
value stores,” in Proc. IEEE 33rd Int. Symp. Reliable Distrib. Syst.,
2014, pp. 95–104.

[2] S. Bhattacherjee and A. Deshpande, “RStore: A distributed multi-
version document store,” in Proc. IEEE 34th Int. Conf. Data Eng.,
2018, pp. 389–400.

[3] NoSQLmarket is expected to reach 4.2 billion, globally, by 2020, 2015.
[Online]. Available: https://www.alliedmarketresearch.com/press-
release/NoSQL-market-is-expected-to-reach-4–2-billion-globally-by-
2020-allied-market-research.html

[4] Baidu workers arrested for ‘deleting posts for money’, 2012.
[Online]. Available: https://www.bbc.com/news/technology-
19149185

[5] M. Narasimha and G. Tsudik, “Authentication of outsourced
databases using signature aggregation and chaining,” in Proc.
11th Int. Conf. Database Syst. Adv. Appl., 2006, pp. 420–436.

[6] H. Pang and K.-L. Tan, “Verifying completeness of relational
query answers from online servers,” ACM Trans. Inf. Syst. Secur.,
vol. 11, no. 2, pp. 1–50, 2008.

[7] H. Pang, J. Zhang, and K. Mouratidis, “Scalable verification for
outsourced dynamic databases,” Proc. VLDB Endowment, vol. 2,
no. 1, pp. 802–813, 2009.

[8] Y. Yang, S. Papadopoulos,D. Papadias, andG.Kollios, “Authenticated
indexing for outsourced spatial databases,” VLDB J., vol. 18, no. 3,
pp. 631–648, Jun. 2009.

[9] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-
based services without compromising location privacy,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2012, pp. 301–312.

[10] X. Lin, J. Xu, and H. Hu, “Authentication of location-based skyline
queries,” in Proc. 20th ACM Int. Conf. Inf. Knowl. Manage., 2011,
pp. 1583–1588.

[11] X. Lin, J. Xu, and J. Gu, “Continuous skyline queries with integrity
assurance in outsourced spatial databases,” in Proc. Int. Conf. Web-
Age Inf. Manage., 2012, pp. 114–126.

[12] X. Lin, J. Xu, H. Hu, and W.-C. Lee, “Authenticating location-
based skyline queries in arbitrary subspaces,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 6, pp. 1479–1493, Jun. 2014.

[13] Q. Chen, H. Hu, and J. Xu, “Authenticating top-k queries in loca-
tion-based services with confidentiality,” Proc. VLDB Endowment,
vol. 7, no. 1, pp. 49–60, Sep. 2013.

[14] R. Zhang, Y. Zhang, and C. Zhang, “Secure top-k query process-
ing via untrusted location-based service providers,” in Proc. IEEE
INFOCOM, 2012, pp. 1170–1178.

[15] R. Zhang, J. Sun, Y. Zhang, and C. Zhang, “Secure spatial top-k
query processing via untrusted location-based service providers,”
IEEE Trans. Dependable Secure Comput., vol. 12, no. 1, pp. 111–124,
Jan./Feb. 2015.

[16] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2006, pp. 121–132.

[17] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused
streams: Enabling authentication of sliding window queries on
streams,” in Proc. 33rd Int. Conf. Very Large Data Bases, 2007,
pp. 147–158.

[18] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A scalable
cloud file system with efficient integrity checks,” in Proc. 28th
Annu. Comput. Secur. Appl. Conf., 2012, pp. 229–238.

[19] H.-J. Yang, V. Costan, N. Zeldovich, and S. Devadas, “Authenticated
storage using small trusted hardware,” in Proc. ACMWorkshop Cloud
Comput. Secur.Workshop, 2013, pp. 35–46.

[20] Y. Tang, T. Wang, L. Liu, X. Hu, and J. Jang, “Lightweight authen-
tication of freshness in outsourced key-value stores,” in Proc. 30th
Annu. Comput. Secur. Appl. Conf., 2014, pp. 176–185.

[21] S. Papadopoulos, Y. Yang, and D. Papadias, “CADS: Continuous
authentication on data streams,” in Proc. 33rd Int. Conf. Very Large
Data Bases, 2007, pp. 135–146.

[22] M. T. Goodrich, C. Papamanthou, R. Tamassia, and N. Triando-
poulos, “Athos: Efficient authentication of outsourced file sys-
tems,” in Proc. Inf. Secur. Conf., 2008, pp. 80–96.

[23] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten,
“SPORC: Group collaboration using untrusted cloud resources,”
in Proc. 9th USENIX Conf. Operating Syst. Des. Implementation,
2010, pp. 337–350.

[24] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query proc-
essing,” in Proc. 23rd ACM Symp. Operating Syst. Princ., 2011,
pp. 85–100.

[25] P. Mahajan et al., “Depot: Cloud storage with minimal trust,”
ACM Trans. Comput. Syst., vol. 29, no. 4, pp. 12:1–12:38, Dec. 2011.

[26] M. Narasimha and G. Tsudik, “DSAC: Integrity for outsourced
databases with signature aggregation and chaining,” in Proc. 14th
ACM Int. Conf. Inf. Knowl. Manage., 2005, pp. 235–236.

[27] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and
integrity in outsourced databases,” ACM Trans. Storage, vol. 2,
no. 2, pp. 107–138, May 2006.

[28] A. A. Yavuz, “Immutable authentication and integrity schemes for
outsourced databases,” IEEE Trans. Dependable Secure Comput.,
vol. 15, no. 1, pp. 69–82, Jan./Feb. 2018.

[29] B. Zhang, B. Dong, and W. H. Wang, “Integrity authentication for
SQL query evaluation on outsourced databases: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 33, no. 4, pp. 1601–1618, Apr. 2021.

[30] J. Shi, R. Zhang, and Y. Zhang, “Secure range queries in tiered sen-
sor networks,” in Proc. IEEE INFOCOM, 2009, pp. 945–953.

[31] R. Zhang, J. Shi, Y. Liu, and Y. Zhang, “Verifiable fine-grained
top-k queries in tiered sensor networks,” in Proc. IEEE INFOCOM,
2010, pp. 1–9.

[32] D. Wu, B. Choi, J. Xu, and C. S. Jensen, “Authentication of moving
top-k spatial keyword queries,” IEEE Trans. Knowl. Data Eng.,
vol. 27, no. 4, pp. 922–935, Apr. 2015.

[33] W. Chen, M. Liu, R. Zhang, Y. Zhang, and S. Liu, “Secure out-
sourced skyline query processing via untrusted cloud service
providers,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun.,
2016, pp. 1–9.

[34] M. L. Yiu, E. Lo, and D. Yung, “Authentication of moving kNN
queries,” in Proc. IEEE 27th Int. Conf. Data Eng., 2011, pp. 565–576.

[35] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi, “Spatial query integ-
rity with voronoi neighbors,” IEEE Trans. Knowl. Data Eng.,
vol. 25, no. 4, pp. 863–876, Apr. 2013.

[36] Y. Jing, L. Hu, W.-S. Ku, and C. Shahabi, “Authentication of
k nearest neighbor query on road networks,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 6, pp. 1494–1506, Jun. 2014.

[37] M. L. Yiu, Y. Lin, and K. Mouratidis, “Efficient verification of
shortest path search via authenticated hints,” in Proc. IEEE 26th
Int. Conf. Data Eng., 2010, pp. 237–248.

[38] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in Proc. Annu. Cryptol. Conf.,
2011, pp. 111–131.

HU ETAL.: FRESHNESS AUTHENTICATION FOR OUTSOURCED MULTI-VERSION KEY-VALUE STORES 2083

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2024 at 20:35:33 UTC from IEEE Xplore.  Restrictions apply. 

https://www.alliedmarketresearch.com/press-release/NoSQL-market-is-expected-to-reach-4--2-billion-globally-by-2020-allied-market-research.html
https://www.alliedmarketresearch.com/press-release/NoSQL-market-is-expected-to-reach-4--2-billion-globally-by-2020-allied-market-research.html
https://www.alliedmarketresearch.com/press-release/NoSQL-market-is-expected-to-reach-4--2-billion-globally-by-2020-allied-market-research.html
https://www.bbc.com/news/technology-19149185
https://www.bbc.com/news/technology-19149185


[39] D. Catalano and D. Fiore, “Vector commitments and their
applications,” in Proc. Int. Workshop Public Key Cryptogr., 2013,
pp. 55–72.

[40] X. Chen et al., “Publicly verifiable databases with all efficient
updating operations,” IEEE Trans. Knowl. Data Eng., vol. 33,
no. 12, pp. 3729–3740, Dec. 2021.

[41] M. Miao, J. Ma, X. Huang, and Q. Wang, “Efficient verifiable data-
bases with insertion/deletion operations from delegating polyno-
mial functions,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 2,
pp. 511–520, Feb. 2018.

[42] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “New publicly verifi-
able databases with efficient updates,” IEEE Trans. Dependable
Secure Comput., vol. 12, no. 5, pp. 546–556, Sep./Oct. 2015.

[43] X. Chen, J. Li, J. Weng, J. Ma, andW. Lou, “Verifiable computation
over large database with incremental updates,” IEEE Trans. Com-
put., vol. 65, no. 10, pp. 3184–3195, Oct. 2016.

[44] G. Ateniese et al., “Provable data possession at untrusted stores,” in
Proc. 14th ACMConf. Comput. Commun. Secur., 2007, pp. 598–609.
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