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Abstract—The use of smart devices such as smartphones,

tablets, and laptops skyrocketed in the last decade. These devices

enable ubiquitous applications for entertainment, communica-

tion, productivity, and healthcare but also introduce big concern

about user privacy and data security. In addition to various au-

thentication techniques, automatic and immediate device locking

based on user leaving detection is an indispensable way to secure

the devices. Current user leaving detection techniques mainly

rely on acoustic ranging and do not work well in environments

with multiple moving objects. In this paper, we present mmLock,

a system that enables faster and more accurate user leaving

detection in dynamic environments. mmLock uses a mmWave

FMCW radar to capture the user’s 3D mesh and detects the

leaving gesture from the 3D human mesh data with a hybrid

PointNet-LSTM model. Based on explainable user point clouds,

mmLock is more robust than existing gesture recognition systems

which can only identify the raw signal patterns. We implement

and evaluate mmLock with a commercial off-the-shelf (COTS)

TI mmWave radar in multiple environments and scenarios. We

train the PointNet-LSTM model out of over 1 TB mmWave signal

data and achieve 100% true-positive rate in most scenarios.

I. INTRODUCTION

Smart devices, such as smartphones, tablets, and laptops,
flooded into the market in the past decade. The number of
mobile devices operating worldwide is expected to reach 18.22
billion in 2025, twice over the world population [1]. Smart de-
vices greatly improved our life quality but also introduced big
concern regarding user privacy and data security. According to
Asurion’s report, 8.7 million smartphones were lost or stolen in
2021—that’s more than 24,000 phones each day [2]. The 2021
Data Breach Report from Verizon shows that personal data of
80% of the victims and bank data of 7% of the victims were
compromised because of device loss and theft [3]. Therefore,
it is critical to secure smart devices and prevent illegal access
to the data and system operations therein.

The most common defense against device losses/thefts and
the related data theft is to set a password on the smart device.
However, the time window for a password-protected device
going from the unlocked mode to the locked mode may be
long enough for a capable attacker to access all the sensitive
information on the lost/stolen device. For example, the auto-
lock options on iOS 15 include time windows from 30 s to
NEVER. Many users choose a longer time period or even
NEVER for convenience. Other one-time authentication tech-
niques based on physical or behavior biometric information

such as fingerprints and faces have similar issues. The second
method is to authenticate users continuously when they are
using the device based on passively collected sensor data
from the device [4], [5]. However, continuous authentication
can only detect the attackers after they have used the device
for a while, providing the attackers opportunities to access
private data.

The third mechanism is more appealing, i.e., to lock the
device immediately once the user has left. Existing systems
[6], [7] in this category rely on acoustic ranging techniques
to detect the user leaving gesture. However, these techniques
require the line-of-sight (LOS) channel between the user and
device, which may not be available all the time because the
LOS channel could be easily blocked by surrounding objects.
In addition, it has been shown that such systems cannot
differentiate the correct leaving user from other moving objects
simply due to the limited number of on-device microphones.

New-generation networking systems, such as 5G/6G cel-
lular and future Wi-Fi networks, are envisioned to connect
billions of heterogeneous smart devices and enable high-
speed and low-latency communications using millimeter wave
(mmWave) technologies. Qualcomm already has mmWave
communication modules on their Snapdragon 5G chipset [8]
and 802.11ad Wi-Fi chipset [9]. With the frequency of up
to 100 GHz, the wavelength of mmWave signals can be as
short as 3 mm about 1

20 of the traditional 5 GHz Wi-Fi
wavelength. The high frequency and short wavelength bring
extraordinary sensing resolution for promising applications
on autonomous driving [10], non-contact health monitoring
[11], [12], material detection [13], vibration sensing [14], etc.
However, the research on security applications of mmWave
sensing is still very much in its infancy.

In this paper, we propose to detect the user leaving gesture
by combining the mmWave and MIMO techniques. We aim to
identify the leaving gesture immediately at the beginning of
the leaving process to reduce any data leak risk. Meanwhile,
we want to apply our method to more scenarios even when
LOS channels might be blocked during the leaving process. A
naive idea is to follow existing gesture recognition techniques
and extract the user leaving gesture/pattern by analyzing RSSI
[15]–[17] or CSI [18]–[20] data. However, pattern extraction
in such techniques strongly depends on subject (i.e., the user)
orientation therefore posing high training overhead to users.
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Fig. 1: System overview of mmLock. IF: Intermediate Frequency.

Similarly, models trained from such techniques are highly
user- or scenario-dependent thus are unfriendly to new users
and domains. Not to mention that the models lack explainabil-
ity hindering further development and improvement.

To conquer the above challenges, we design mmLock (il-
lustrated in Figure 1) which uses a mmWave radar to capture
the user leaving gesture. One key novelty is that we explore
new radar imaging techniques to generate high-quality 3D
mesh of the leaving user, which is much more intuitive and
explainable than the signal patterns from other sources (e.g.,
RSSI and CSI). Specifically, the radar in mmLock senses
the user activity using the frequency-modulated continuous
wave (FMCW) technique which achieves high range resolution
and has no “blind spot” problem at short range. Our radar
emits FMCW chirps and extracts range, velocity, and angle
information of the points on the user body which reflect
received signals. Utilizing the above information, mmLock is
able to construct point clouds in the 3D space where our target
user can be clearly represented by the human meshes.

After building the 3D human meshes for a user, the next
step for mmLock is to detect the user leaving gesture from the
time-series point clouds. mmLock first determines the pose
in each point cloud and detects a potential leaving gesture
by looking at all poses extracted from point clouds. Note
that existing CNN models for pose estimation still suffer
from the same drawbacks of gesture recognition techniques:
orientation-, user-, and domain-dependence. Therefore, we opt
for PointNet [21], a point set classification backbone that
can generate invariant spatial features from point clouds of
the same body pose but with different transformations like
permutations, rotations, and translations. Having obtained the
pose in each point cloud, mmLock further uses a LSTM
network to extract the temporal features and detect the leaving
gesture from all poses in the time series. We emphasize that
mmLock re-trains a high-quality feature extractor on top of
PointNet using a large set of static poses. As a result, mmLock
can seamlessly obtain spatial feature vectors for LSTM model
training and user leaving detection. Our system is also able to
extract and continuously identify the point cloud of the target
user in scenarios with attackers.

We design additional measures to reduce the impact of low-
quality or irrelevant data on our PointNet-LSTM model. On
the one hand, we propose to filter out low-quality frames based
on signal strength in the generated range heatmap. On the other
hand, we use clustering techniques to remove noise-like points

and only extract the point cloud corresponding to the target
user for training and detection purpose. In our experiments,
we end up using less than 50% of all collected data.

We prototype the entire mmLock system on a commercial
off-the-shelf (COTS) TI mmWave radar IWR6843ISK-ODS
and thoroughly evaluate its efficacy in user leaving detection.
Our experiments involve 16 people consisting of 11 male and 5
female college students and generate over 1 TB mmWave data
in total. Through extensive experiments, mmLock is shown to
achieve 100% true-positive rate in most of scenarios covering
different departing gestures, speed, etc., and low false-positive
rate even with nearby attackers.

The rest of the paper is organized as follows. Section II
introduces the overview of mmLock. Section IV describes
point cloud generation. Section V preprocesses the range
heatmap and point cloud. Section VI introduces our PointNet-
LSTM model. Section VII details the system implementation
and evaluation. Section VIII briefs the related work. Section
IX concludes the paper.

II. SYSTEM OVERVIEW

Figure 1 illustrates the system overview of mmLock which
uses a mmWave radar to capture the user leaving gesture.
mmLock is straightforward in that it uses the radar to obtain
the user’s point cloud and uses a PointNet-LSTM model to
detect the leaving gesture from the input point clouds. The
details are as follows. The radar emits FMCW chirp signals
and captures the signal reflections from the user body. Then the
radar mixes the transmitted and received signals and generates
the Intermediate Frequency (IF) signals. After that, the system
performs a Fast Fourier Transform (FFT) on the IF signals
and outputs a range heatmap corresponding to the distances
of surrounding objects. In our experiments, some frames in the
range heatmap do not contain useful information to create the
point cloud of the target. Therefore, we first preprocess the
range heatmap and only extract good frames for later point
cloud generation. Provided the range heatmap, we can further
compute information including the velocity and the angle of
the objects and use them to generate the point clouds. After
that, we remove the noise-like points in the point clouds and
obtain the cluster of points corresponding to the target user.

The next step is to detect the leaving gesture in the 3D point
clouds which are 3D meshes of the user. In particular, we
use a hybrid PointNet-LSTM model where PointNet captures
spatial features of each point cloud (i.e., the user) and LSTM
extracts temporal features in the point clouds characterizing
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the user activity. To reduce the training complexity, we first
pretrain the PointNet model using static poses that are relevant
to leaving gestures. Then we use the pretrained PointNet to
extract spatial features from each point cloud for training the
LSTM-based detection model. Once the models are trained,
we can use the PointNet-LSTM model to detect if there is a
user leaving gesture in the input time-series point clouds.

III. THREAT MODEL

We assume that the attacker either finds the lost device or
steals it from the device owner. The attacker tries to keep the
device and also access the victim’s sensitive information there.
We aim to ascertain that the device has been locked before in
the possession of the attacker. No attempt is made to prevent
the attacker from cracking the password or wiping out the
device for complete reinstallation.

IV. POINT CLOUD GENERATION

In this section, we introduce how to generate point clouds
in mmLock. The transmission antennas of our radar first emit
FMCW chirps. The signals are then reflected by each part (i.e.,
point) of the user body and finally received by the receiving
antennas of the radar. We can extract information such as
range, velocity, and angle of each point from the signals and
obtain its 3D coordinate based on such information. All the
points extracted from the user body by the radar can constitute
a 3D point cloud representing the user. We can imagine that
the time-series point clouds of the user can be used to detect
the leaving gesture.

A. IF Signal Generation
The mmWave radar used in mmLock is TI IWR6843ISK-

ODS which is able to capture most of the user body at short
range due to its wide field-of-view (FoV) in both horizontal
and elevation planes. As shown in Figure 2b, the radar consists
of three transmission antennas and four receiving ones. Each
transmission antenna can emit frequency-modulated continu-
ous wave (FMCW) chirps which sweeps frequency from 60
GHz to 64 GHz. The transmitted signal (denoted by S(t)) can
be written as:

S(t) = ej(2⇡fct+⇡ B
Tc

t2), (1)

where fc is the starting frequency, B is the bandwidth, and Tc

is the duration of each chirp. The current frequency of S(t) is
f = fc+

B
Tc
t as illustrated in Figure 2a. As introduced above,

the transmitted signal will be reflected by all objects around the
radar including the user while the receiving antennas receive
the reflected signal, i.e., a delayed FMCW chirp. Hence, the
received signal (denoted by R(t)) can be derived as:

R(t) = ej(2⇡fc(t�td)+⇡ B
Tc

(t�td)
2), (2)

where td is the round-trip delay. Then the radar uses a
frequency mixer to combine the transmitted and received
signals, i.e., S(t) and R(t), and generate the intermediate
frequency (IF) signal (denoted by SIF (t)) as

SIF (t) = S(t)�R(t) = ej(fIF t+�IF ), (3)

where fIF is the frequency of SIF (t) and equals the frequency
difference of S(t) and R(t). Similarly, �IF is the phase of
SIF (t) and equals the phase difference of S(t) and R(t).

B. Point Localization
We now extract information such as range, velocity, and

angle of the target object from the IF signal, i.e., SIF (t), to
localize points in the 3D space. The intuition behind is that
signal reflections from different distances generate different
frequency components in SIF (t), so we can perform a Range-
FFT on SIF (t) to separate reflections from different objects.
Distance. For a specific frequency component f in SIF (t),
we can calculate the distance between the radar and the object
reflecting the signal as R =

cfTc

2B , where c is the speed of light.
Velocity. To differentiate between static and moving objects,
we can apply another FFT operation on the chirps to measure
the phase change of SIF (t) and calculate the velocity of the
object. In mmLock, we use Doppler-FFT for such purpose,
which is effective for removing reflections from static objects
such as tables and chairs. Specifically, mmLock uses Doppler-
FFT to generate a 2D heatmap and selects prominent pixels
corresponding to the points on a potential moving object from
the heatmap. The velocity of these points can be calculated as
v =

�!
4⇡Tc

, where ! is the phase change between two adjacent
chirps and � is the wavelength of the signal.
Angle. To determine the coordinate of the candidate points in
the 3D space, we need to know the angles of the incoming
reflections in both horizontal and elevation planes. For that
purpose, the third FFT operation (i.e., Angle-FFT) is applied
to the chirps received by different receiving antennas to
measure the phase difference. Assume that wx is the phase
difference between adjacent antennas in the horizontal plane.
The azimuth ✓ can be calculated as ✓ = sin�1

(
�!x
2⇡d ), where d

is the distance between two adjacent antennas. In our radar, d
equals �

2 , so ✓ = sin�1
(
!x
⇡ ). Similarly, we can compute the

elevation as � = sin�1
(
!z
⇡ ), where wz is the phase difference

between two adjacent antennas in the elevation plane.
3D coordinate. Combining the above information, the 3D
coordinate of a point (x, y, z) on an object can be calculated as
x = Rcos(�)sin(✓), y =

p
R2 � x2 � z2, and z = Rsin(�).

C. Multiple-Input Multiple-Output (MIMO)
As shown in Section IV-B, angle estimations in both hor-

izontal and elevation planes are critical in generating high-
quality point clouds, which in turn depend on angle resolution.
Note that the angle resolution of a mmWave radar can be
derived as ✓res =

�
N⇥d , where N and d are the number

of receiving antennas and the distance between two adjacent
antennas, respectively. The radar used in mmLock has two
receiving antennas in each plane with a distance of �

2 from
each other. Therefore, ✓res in each plane is 1 rad (about
57.32�). To improve the angle resolution without adding more
physical antennas, we use the TDM-MIMO (Time Division
Multiplexing Multiple-Input Multiple-Output) technique in
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Fig. 3: The raw point cloud of a leaving user

mmLock which enables multiple antennas to transmit alter-
natively. Specifically, we assign three time slots to every loop
showed in Figure 2a and each of the three antennas transmits
one FMCW chirp in a time slot. As each chirp is received
by all the four receiving antennas, in effect we can simulate
12 virtual antennas using only three transmission antennas
and four receiving ones, illustrated in Figure 2c. As a result,
we can use four rather than two antennas in each plane for
angle estimation, thus improving estimation performance. For
example, we can use virtual antennas 1, 4, 5, and 8 to calculate
the azimuth ✓ and use virtual antennas 8, 7, 12, and 11 to
calculate the elevation �. According to [22], antennas marked
in blue are ⇡ out of phase with respect to other antennas
marked in gray, so we apply a ⇡ phase inversion before
calculating ✓ and �. By using the TDM-MIMO technique,
we improve the angle resolution to 1

2 rad (about 28.66�) in
both horizontal and elevation planes.

D. Preliminary Point Cloud

Figure 3 shows a raw point cloud captured behind a leaving
user with the TI IWR6843ISK-ODS radar by combing points
of five adjacent frames. In the experiment, the user initially sat
on the chair about 1.5 m away from the radar. Then, the user
stood up, turned around, and finally left the radar. We use Flat
Top window for all the point clouds in the paper because it
has minimal scalloping loss in the frequency domain which is

desirable for amplitude measurements of sinusoidal frequency
components. We can clearly see the head, arms, and legs of the
user and some noise-like points in the generated point clouds.
One observation is that that signal reflections from the trunk
are much stronger than random reflections in the environment
and reflections from other parts of the user body (e.g., hands).
The figure suggests that we can detect the leaving gesture as
we can see how the point cloud of the user moves in the 3D
space.

V. DATA PREPROCESSING

In this section, we discuss preprocessing the range heatmap
and the point clouds.

A. Range Heatmap Preprocessing
Figure 4 illustrates a range heatmap generated from the IF

signals. We collected the reflection signals when the user was
about 2.3 meters away from the radar and remained static. We
can see that the radar was able to capture the user for some
frames (showed in red pixels) but missed for a few frames
(showed in blue pixels). We conjecture that the blue range
bins do not contain any useful information about the user and
thus the corresponding point clouds should not be used for
detecting user leaving. Therefore, we aim to extract only the
useful frames and filter out the others. We achieve such a goal
by calculating the sum of signal strengths in all range bins of
a frame and filter out those with lower signal strength. In our
experiments, we notice that we only keep 33% of all frames
for point cloud generation and user leaving detection.

B. Point Cloud Preprocessing
We describe how we implement point cloud generation

here. For one selected pixel in a Doppler heatmap, we can
use the TDM-MIMO technique and generate four points
in the 3D space for it. Specifically, we first calculate two
azimuth angles from virtual arrays {1, 4, 5, 8} and {2, 3, 6, 7},
respectively. Similarly, we calculate two elevation angles from
antenna arrays {5, 6, 9, 10} and {8, 7, 12, 11}, respectively.
Hence we generate four points from two azimuth angles and
two elevation angles by following Section IV-B. Assume 300
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Fig. 5: The clusters of points in Figure 3 generated by
DBSCAN. The cluster of green points on the right represents

the user.

pixels are selected from one Doppler heatmap, we thus have
300 ⇥ 4 = 1, 200 points from a single frame. Considering
that such a point cloud is usually sparse, we further combine
the point clouds from five adjacent frames together. Hence we
end up with 6, 000 points in the cloud, which we will use for
detecting user leaving.

Intuitively, due to wireless reflection, scattering, and refrac-
tion in the environment, the generated point cloud is too noisy
and calls for de-noising. Our de-noising proceeds in two steps.
First, we simply use clustering techniques to group points de-
pending on mutual distance. Then we compute the total energy
strength in each cluster and filter out those under a certain
threshold. In our implementation, we use DBSCAN [23] to
apply clustering. With a maximum neighboring distance of 35
cm and a minimum cluster size of 200, DBSCAN outputs the
corresponding clusters in Figure 5 provided the point cloud in
Figure 3 as the input. By further computing the total energy
strengths, we can obtain the target cluster consisting of green
points, which indeed corresponds to the user in our experi-
ment. The last step of preprocessing point clouds is to match
the size of an arbitrary cluster to be the one requested from
our PointNet-LSTM model. We achieve this in mmLock by
either random downsizing (i.e., we remove points randomly)
if there are extra points or upsampling using Agglomerative
Hierarchical Clustering (AHC) if otherwise. Finally, all pre-
processed point clouds, i.e., all extracted clusters, are in the
same size of 2,048 points.

LSTM

PointNet

LSTM

PointNet

LSTM

PointNet

LSTMLSTMLSTM

Fully 
connectedDropout

m1 m2 mK

Result

Fig. 6: Network architecture of our point cloud classifier

VI. LEAVING GESTURE DETECTION

We first consider leaving gesture detection in environments
with only one legitimate user and then discuss how to deal
with the attackers.

A. Leaving Gesture Detection via Point Cloud Classification

We assume that the leaving gesture generates K point
clouds mk, k 2 [1,K]. Our system, mmLock, uses a hybrid
model illustrated in Figure 6 to detect the user leaving gesture.
In short, mmLock uses PointNet [21] to generate the spatial
features of each input point cloud, e.g., mk. Providing the
spatial features of all mk, k 2 [1,K], mmLock further uses a
stacked LSTM network to extract temporal features from the
spatial features and compute the final prediction, which would
be 0 or 1.

We use PointNet in mmLock simply because it is a good
fit for our user leaving detection. On the one hand, Point-
Net works consistently regardless of whether the input vec-
tor/sample is permuted or altered with linear transformations
such as rotation and translation. On the other hand, PointNet
extracts local as well as global features. The two items are
critical for user leaving detection because we do not have
control of the ordering, orientation, rotation, etc. of the input
point cloud while we require spatial features to provide more
activity information to LSTM network.

Assume that the spatial feature vector generated by PointNet
is sk, where k 2 {1, 2, ...,K} is the index of point clouds.
Then, we send sk, k 2 {1, 2, ...,K} to the LSTM network
to extract the temporal features. As illustrated in Figure 6,
there are 2 ⇥K LSTM units in the LSTM network, each of
which consists of a cell, an input gate, an output gate, and a
forget gate. We pass the cell state ct and hidden state vector
ht between adjacent LSTM units and update ct, ht in one unit
using the following Equation:
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ft = �g(Wfxt + Ufht�1 + bf ),

it = �g(Wixt + Uiht�1 + bi),

ot = �g(Woxt + Uoht�1 + bo),

c̃ = �c(Wcxt + Ucht�1 + bc),

ct = ft � ct�1 + it � c̃,

ht = ot � �h(ct),

(4)

where xt is the input vector for the LSTM unit at step t, W and
U are weight matrixes, b is the model bias, h is the hidden state
vector of the first or second layer of the LSTM network, �g is
the sigmoid activation function, �c and �h are the hyperbolic
tangent functions, � is the Hadamard product, and f , i, o, c
represent forget, input, update, and output gates, respectively.
The temporal feature vector is passed to a fully connected layer
FC1, a dropout layer DO1, another fully connected layer FC2,
and another dropout layer DO2. Finally, the prediction result
can be obtained as the class corresponding to max(r) from
below:

r = (DO2 � FC2 �DO1 � FC1 � LSTM � LSTM)(sk), (5)

where � denotes the function composition. For example, (g �
f)(x) represents g(f(x)).

B. Leaving Detection in Scenarios with Attackers

Our basic system in VI-A considers only one legitimate user
around the device. In this section, we focus on how to detect
the leaving gesture of the legitimate user when there exist
other moving objects including attackers. Figure 7 illustrates
two point clusters representing the legitimate user in the green
bounding box and an attacker in the brown bounding box,
respectively. The point cloud of the legitimate user is much
more clear as he is moving away (Recall we rely on detecting
moving objects to generate point clouds). In most cases, the
two clusters can be separated easily while the challenge is to
associate the clusters in adjacent frames so that the system can
track the gesture of our target user continuously. In mmLock,
we achieve this based on two metrics of the clusters: center
and center of mass. In particular, we calculate the center
of a cluster by averaging the coordinates of all its points.
This is, (cx, cy, cz) =

Pn
i=1(xi,yi,zi)

n , where (xi, yi, zi) is the
coordinate of the ith point in the cluster. Following that we
compute the center of mass of a cluster as (cmx, cmy, cmz) =Pn

i=1 pi(xi,yi,zi)
Psum

, where pi is the signal strength of the ith point
and psum is the sum of energy of all the points in the cluster.
The system associates clusters in two neighboring frames by
the closest center and center of mass because the object can
only move a small distance during such a period.

In the case When the attacker comes very close to the
legitimate user, the two clusters may merge with each other
and are thus regarded as one cluster by DBSCAN. The merged
cluster may lead to a false positive or negative in mmLock.
We observe that most of the points in two close clusters do not
overlap with each other and just merge into a larger cluster.

Fig. 7: Point clusters of an environment with an attacker

TI DCA1000EVM
RX TX

TI IWR6843ISK-ODS

X

Y

Z

Fig. 8: Testbed and environmental setup

That is, the dramatically increased size of a cluster indicates
the merging of two clusters. The system separates them by
checking point coordinates of previous frames.

VII. IMPLEMENTATION AND EVALUATION

A. Testbeds

mmWave Testbed. The mmWave radar used in our paper
is the Texas Instruments IWR6843ISK-ODS which is a com-
mercial and portable mmWave sensing board as illustrated in
Figure 8. The radar operates in a frequency band from 60 GHz
to 64 GHz with a 4 mm wavelength. It has three transmitting
antennas and four receiving antennas and can cover a sensing
FoV of 120° in the E-plane and 120° in the H-plane. We also
use the DCA1000EVM board for realtime data capture and
streaming from the mmWave radar. We configure the radar to
sample 63 frames per second with 24 chirp loops per frame in
the training phase to generate more point clouds and sample 33
frames per second with 18 chirp loops per frame in the testing
phase. Each chirp consists of 578 data samples. The above
configuration supports a maximum detectable range of 15 m
with 3.9 cm resolution and a maximum detectable velocity of
2 m/s with 0.27 m/s resolution.
Computing Environment. We generate the point cloud data
and train the deep learning model using a custom-built server
in the paper. The server has a AMD 5950x 3.4G CPU, a
NVIDIA 3090 GPU consisting of 24 GB VRAM, and 128
GB 3600 MHz DDR4 RAM.
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Fig. 9: Training results of PointNet

B. Model Training

We divide the PointNet-LSTM model training process into
three steps. First, we pretain PointNet based on static user
poses. After that, we use the pre-trained PointNet model to
extract spatial features from each point cloud of dynamic
gestures. Finally, we use the spatial features train the LSTM
model for user leaving detection.

Unless specifically noticed, our experiments in the paper are
done in a 24

0 ⇥ 24
0 classroom with chairs and tables around.

We install the radar on a monitor stand of 1.2 m height as
illustrated in Figure 8.

1) PointNet Pretrain: The PointNet pretrain involves 16
college students including 11 males and 5 females of different
ages and heights. We design 34 static poses consisting of at
least 14 poses which are related to leaving gesture as illustrated
in Table I. For each static pose, we ask the student to keep the
pose for 24 s and collect 1500 frames which generate about
100 point clouds for the model training.

Since PointNet accepts 2048 3D points, the input dimension
of the PointNet network is 2048 ⇥ 3. The output dimension
of PointNet is the one-hot encoding of 34 ⇥ 1. We use the
categorical cross entropy as the loss and an Adam Optimizer
with a learning rate of 5⇥ 10

�4. To avoid overfitting, we use
an early stopping strategy to monitor val accuracy during the
training process with the patience of 20. The batch size used in
the training is 32. We also use the multi-process acceleration of
4 processes to send data into the GPU and process the results
returned by the GPU. Figure 9 shows the loss and accuracy
trend during the PointNet training process. The classification
accuracy reaches 95% after 100 iterations.

2) LSTM Training: To train the LSTM model, we include 7
college students in the experiments to generate point clouds of
dynamic gestures. We design 5 common leaving gestures and
4 unrelated gestures. Each gesture is repeated for 110 times
in total and generates 30 point clouds. We use 66.7% of the
data as the training dataset and the rest of the data as the
testing dataset.

We first use the pre-trained PointNet to extract spatial
features of the 2048 ⇥ 3 input from each point cloud of the
dynamic gestures in the penultimate layer. Then we pass the
spatial features to the LSTM model which receives features of

Number of iterations

(a) Training loss
Number of iterations

(b) Training accuracy

Fig. 10: Training results of LSTM

30 frames at the same time and outputs the one-hot encoded
0 and 1 representing leaving gestures and unrelated gestures,
respectively. The LSTM model consists of two layers of 100
units, a dense layer of 256 units, a dropout layer of 0.5, another
dense layer of 256 units, another dropout layer of 0.5, and an
output layer of 2 units. The LSTM model also uses categorical
cross entropy as the loss and an Adam Optimizer with a
learning rate of 10�4. To avoid overfitting during training, we
use an early stopping mechanism based on val accuracy with
the patience of 20 and save the best weights. We use a batch
size of 8 and 4 processes to speed up the interaction between
the CPU and GPU. Figure 10 shows the training results of
the LSTM model. The model converges much faster than the
PointNet model and reaches 100% classification accuracy.

C. Evaluation with a Single User
We first evaluate the false negatives and positives of the

system with a single user surrounding the radar in the default
experimental setting. After that, we evaluate the system per-
formance with different departing gestures, initial positions,
leaving angles, radar heights, etc.
False Negatives We conduct leaving detection experiments
with 6 college students in the default experimental setting
illustrated in Figure 8. Initially, the users either sit on a chair
or stand facing the radar in the position showed with the
blue square in 90

� in Figure 12. The users leave the radar in
their usual way and generate 366 leaving samples. Our system
successfully detects all the leaving gestures, which lead to a
true-positive rate of 100% or a false-negative rate of 0%.
False Positives. We evaluate the false-positive rate with the
same group of users in the default experimental setting.
In the experiment, the users perform common non-leaving
gestures and movements in front of the radar such as swinging
back-and-forth, swinging left-and-right, standing up, sitting
down, and gentle exercise. The system falsely recognizes four
gestures as leaving gestures, which lead to a false-positive rate
of 1.67%.
Impact of Departing Gestures. We then evaluate the impact
of different departing gestures on the system performance. In
the experiment, we evaluate 5 different leaving gestures and
perform each gesture 20 times. The first one is our default
gesture in which the user stands up, turns right, and walks
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TABLE I: Static poses used for PointNet pretraining

Index Pose Description Index Pose Description

1 Upright sitting facing the radar 18 Standing facing right-front
2 Leaning forward in chair 19 Facing left-front and stepping forward with left foot
3 Halfway between sitting and standing up facing the radar 20 Facing left-front and step forward with right foot
4 Standing facing the radar 21 Standing facing left-front
5 cStepping left-front with right foot and turning left a little bit 22 Upright sitting facing the radar and lifting arms
6 Facing left-rear and keeping weight on left foot 23 Keeping pose 22 and turning left
7 cFacing left-rear and stepping forward with left foot 24 Keeping pose 22 and turning right
8 cFacing left-rear and stepping forward with right foot 25 Upright sitting and opening arms
9 cStepping right-front with left foot and turning right a little bit 26 Keeping pose 25 and turning left

10 Facing right-rear and keeping weight on right foot 27 Keeping pose 25 and turning right
11 cFacing right-rear and stepping forward with right foot 28 Keeping pose 1 and turning upper body left
12 cFacing right-rear and stepping forward with left foot 29 Keeping pose 1 and turning upper body right
13 Sitting facing left 30 Upright sitting facing the radar and raising both hands
14 Sitting facing right 31 Upright sitting facing the radar with hands behind head
15 Sitting rear facing 32 Standing facing the radar and stretching hands forward
16 Facing right-front and stepping forward with right foot 33 Standing facing the radar with hands on hips
17 Facing right-front and stepping forward with left foot 34 Standing facing the radar and opening arms

mmWave Radar

User

Fig. 11: Experimental setup
with five leaving angles

mmWave Radar

1.6 m

Fig. 12: Experimental setup
with three departing

positions

away. In the second gesture, the user stands up, turns left, and
walks away. In the third gesture, the user rotates the chair,
stands up, and then walks away. In the fourth gesture, the
user initially stands in front of the table, turns right, and walks
away. In the last gesture, the user initially stands in front of
the table, turns left, and walks away. The system successfully
recognizes all the departing gestures.
Impact of Leaving Angles. We now investigate the impact
of different leaving angles. In the experiment, the user leaves
in 5 different angles from 0

� to 180
� as illustrated in Figure

11. The user performs leaving gestures 20 times in each angle.
The system correctly recognizes leaving gestures in all angles.
Impact of Departing Positions. Each user may leave with
different initial positions. We evaluate three different de-
parting positions showed in blue squares in Figure 12 and
perform leaving gesture 20 times in each position. The sys-
tem correctly recognizes all 60 leaving gestures with three
departing positions.
Impact of Initial Distance. To evaluate the impact of the
initial distance between the user and radar, we perform leaving
gestures with four different distances: 1 m, 1.6 m, 2.1 m, and
3.8 m. The user performs leaving gestures 20 times for each
distance. The system successfully recognizes leaving gestures
in all distances. Therefore, our system can also be used in other

scenarios with larger distances between the device and user.
Impact of Departing Speeds. We evaluate the impact of
user moving speeds, with slow, normal, and fast speeds, corre-
sponding to about 1.1, 1.5, and 2.0 steps/second, respectively.
The user performs leaving gestures 20 times with each speed.
Fortunately, the system correctly recognizes leaving gestures
in all speeds because of the high sampling rate.
Impact of Vertical Positions. We now investigate the impact
of the vertical positions of the mmWave radar. In the experi-
ments, we place the radar in four different heights: 1 m, 1.2
m, 1.4 m, and 1.6 m. The user performs the leaving gesture
20 times for each height. The system can recognize leaving
gestures in all the heights. Therefore, mmLock can be used
for devices placed on tables of different heights.
Impact of Experimental Environments. We evaluate our
system in the lobby and study areas of our university library
with 40 leaving gestures. The lobby is about 30,000 square
feet and contains many tables, chairs and public desktop
computers. During our experiment, there is a lot of noise
from the vending machines, public computers, and students.
In addition, the students walk around without our control. Our
system correctly detects all leaving gestures.

D. Evaluation in Scenarios with Attackers
The above evaluations only consider one legitimate user

who is close to the radar. We now evaluate the system
performance when there is an attacker in the surrounding of the
radar. With the presence of the attacker, mmLock can detect
multiple movement traces and needs to decide which trace is
associated with the target user. For this experiment, we use
the Precision and Recall metrics defined as follows,

Precision =
#TP

#TP+#FP
, Recall =

#TP

#TP+#FN
(6)

where #TP is the number of user departures correctly as-
sociated with the user, #FP is the number of the attacker’s
departures incorrectly associated with the user, and #FN refers
to the number of user departures not associated with the user
by mistake.
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Fig. 13: Experimental setup with nearby attackers. The red
arrows denote the attackers’ leaving directions.
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Fig. 14: Precision and Recall with a nearby attacker

As illustrated in Figure 13, the blue square represents the
legitimate user and the red circles show the positions of the
attackers. For each position from 1 to 4, both the legitimate
user and the attacker perform leaving gestures for 20 times. In
addition, the attacker walks back and forth between position 4
and 2. As a result, we can calculate precision and recall rates
for each position and a false-positive rate for the walking of
the attacker between position 4 and 2.

Figure 14 illustrates the precision and recall when there
is an attacker in the positions showed in Figure 13. The
system achieves precision above 90% for all the positions.
In particular, the precision for position 2 and 3 are 91% and
95%, respectively. Three leaving gestures performed by the
attacker are recognized as legitimate user because of incorrect
point cluster association in different frames. The recall rate
for all the four positions are 100% which means no leaving
gestures performed by the legitimate user is missed by the
system. The attacker walking between position 2 and 4 does
not trigger any false positives.

VIII. RELATED WORK

There are three ways to prevent the attackers’ illegal access
to smart devices and the sensitive data therein. The first one
is one-time authentication which has been widely used on
current smart devices to authenticates users when they try to
unlock and use the device. Based on the information used for
authentication, one-time authentication schemes can be clas-
sified into three categories: Something-You-Know, Someone-
You-Are, and Something-You-Have. In Something-You-Know
paradigm, users input PINs or passwords to unlock the device.

The Someone-You-Are paradigm relies on physiological or be-
havioral biometrics which are unique to each person. Common
physical features include fingerprints, retina patterns, and fa-
cial features. Behavioral features consists of keystroke patterns
[24], touching gestures [25], gaits [26], etc. The Something-
You-Have paradigm requires auxiliary hardware (e.g. Signet
Ring [27]) which is possessed only by the legitimate user.
One-time authentication cannot prevent data theft if the user
leaves and forgets to lock the device which may be controlled
by attackers in the unlock mode.

The second method is to authenticate users continuously
when they are using the device [4], [28]. In this way, after
the attacker uses the device for a while, the device can detect
the unauthorized user and log out based passively collected
sensing data in the device. In [4], the user needs to wear a
bracket with a built-in motion sensors to be authenticated by
a laptop while typing. A paper [28] points out attacks on the
technique in [4]. However, continuous authentication can only
detect the attacker after he has used the device for a while.
As a result, the attacker still has a good chance to obtain the
victim’s sensitive data before being logged out. In addition, if
the attacker just watches content (e.g., photos and messages)
on the screen and does not use the device, he would not be
detected by continuous authentication methods at all.

The third mechanism is to lock the device immediately
once the user has left. Existing work [6] [7] in this category
relies on acoustic ranging techniques to detect the user leaving
gesture. But these techniques require line-of-sight between the
device and user in the whole leaving process which may not be
always available because of blocks caused by objects around
the device. In addition, acoustic-based techniques can hardly
differentiate the leaving user from other moving objects due
to the limited number of microphones. mmLock can detect the
leaving gesture faster at the beginning of the leaving process
and identify the target user in environments with multiple
moving objects accurately.

Our system is also related to previous work on gesture
recognition with wireless signals [19], [29]. The most tradi-
tional way is to recognize the gesture based on the received
signal strength indicator (RSSI) which measures the distance
and channel between the transmitter and receiver. Each gesture
may generate a unique signal pattern which can be used for
gesture recognition [15], [16]. Channel state information (CSI)
is a more popular technique used for gesture recognition in
recent years. CSI measures the channel properties and reflects
scattering, fading, and power decay of a communication link.
CSI patterns have been used in many systems and achieve
better performance than RSSI because of its high sensitivity to
human movements [18], [19]. Recent papers reduce training
efforts by extracting environment-independent features [30],
[31]. However, same gestures in different orientations may
generate different signal patterns which is an obstacle for the
applications of above techniques. mmLock constructs the intu-
itive user point cloud first and recognizes the leaving gestures
in the point clouds. Pantomime [32] recognizes hand gestures
based on point clouds generated from mmWave signals. But it

Authorized licensed use limited to: IUPUI. Downloaded on February 20,2024 at 20:46:01 UTC from IEEE Xplore.  Restrictions apply. 



did not provide a solution to extract and continuously identify
the point cloud of the target user in scenarios with multiple
moving objects. In addition, we generate higher resolution full-
body images which support more accurate leaving detection.

Recently, some papers developed imaging systems based
on mmWave signals [33]. [34] generates 3D human meshes
using a deep learning model and relies on the 3D human
model extracted from a sophisticated 3D camera system as
the ground truth. [35] generates 3D point clouds for static
objects using a customized mmWave radar with 6 TX and
8 RX antennas. mmLock generates high-quality point clouds
directly to characterize the user leaving gestures with COTS
mmWave radar and does not rely on vision-assisted training.

IX. CONCLUSION

In this paper, we designed and evaluated mmLock, a user
leaving detection system against data theft based on the TI
mmWave radar. mmLock first generates high-quality point
cloud for the target user and recognizes the leaving gesture
in the point cloud. In contrast to the previous work based on
acoustic ranging, our system is more robust and can identify
the target user in environments with multiple moving objects.
Extensive experiments on TI mmWave radar confirmed the
high efficacy of mmLock with negligible false positives and
negatives.
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