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Abstract—Massive videos are released every day particularly
through video-focused social media apps such as TikTok. This
trend has fostered the quick emergence of video retrieval systems,
which provide cloud-based services to retrieve similar videos
using machine learning techniques. Adversarial example (AE)
attacks have been shown to be effective on such systems by
perturbing an unaltered video subtly to induce false retrieval
results. Such AE attacks can be easily detected because the
adversarial perturbations are all over pixels and frames. In
this paper, we propose DUO, a stealthy targeted black-box AE
attack which uses DUal search Over frame-pixel to generate
sparse perturbations and improve stealthiness. DUO is motivated
by two observations: only “key frames” in a video decide
model predictions, and different pixels and frames contribute
far differently to AEs. We implement DUO into a sequential
attack pipeline consisting of two components (i.e., SparseTransfer
and SparseQuery) built upon such intuitions. In particular, DUO
uses SparseTransfer to generate initial perturbations and then
SparseQuery to further rectify them. Extensive evaluations on
two popular datasets confirm the higher efficacy and stealthiness
of DUO over existing AE attacks on video retrieval systems. In
particular, we show that DUO achieves higher precision while
significantly reducing adversarial perturbations by more than
×100 than the state-of-the-art AE attack.
Index Terms—sparse targeted adversarial example attack,

video retrieval system, black-box attack, stealthiness

I. INTRODUCTION

Videos have become one of the most important media with

the quick rise of video-focused social networks apps like

Instagram and TikTok. Popular apps covering entertainment,

advertisement, and communications are generating a huge

amount of video data daily. Major statistics show that about

500 hours of videos were uploaded to YouTube every minute

in July 2021,1 and the Zoom annual meeting minutes had ex-

ceeded 3.3 trillion by the third quarter of 2021.2 Consequently,

it is imperative to efficiently search and retrieve videos of

interest efficiently from an ever-growing large database.

Recent years have witnessed the quick emergence of cloud-

based video retrieval services exploring deep neural networks

(DNN) [1]. As shown in Figure 1, upon receiving a query

video from an end user, the DNN-based video retrieval system

converts it into the feature space spanned by temporal and spa-

tial features, locates videos in various distributed data nodes

1https://www.omnicoreagency.com/youtube-statistics/
2https://backlinko.com/zoom-users

L2L2

Fig. 1. Overview of a DNN-based video retrieval system.

that are close to it in the feature space, and output them as

the retrieval result. Popular models for video retrieval include

reverse search [1], [2], video comparison retrieval [3], [4],

face video retrieval [5], [6], etc. Unfortunately, recent studies

have shown that these DNN-based systems are vulnerable to

adversarial example (AE) attacks [7]–[12] where the attacker

can fool the victim system to output wrong retrieval results by

adding subtle perturbations to a query video. Existing defense

mechanisms [13], [14] can detect certain query accounts with

“adversarial behavior”, but the adversary can easily evade such

detection by using different query accounts which are fairly

easy to create/purchase. AE attacks thus remain a severe threat

to DNN-based video retrieval systems.

AE attacks on DNN-based video retrieval systems can

be classified into untargeted attacks in which retrieval re-
sults include arbitrary videos except for the correct ones

and targeted attacks in which retrieval results are specific
videos of the attacker’s choice. In this paper, we focus on

the more challenging targeted attacks, while our method can

be easily extended to launch untargeted attacks as well.

Apparently, incorrect retrieval results would severely harm the

video retrieval systems in the long run. For instance, popular

social media platforms supporting user-generated content may

explore video retrieval services to automatically check if each

submitted video is indeed original instead of modified from

existing online videos. A malicious user can then launch the

AE attack to submit and publish plagiarized videos for which

no matching videos are returned by video retrieval systems
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to the querying social media platform. As a related example

in copyright protection, a video owner may check whether

her/his videos are protected by retrieving the top-k results

from the database for each video and confirming whether

there are very similar (even exactly the same) ones among the

results. In this case, the adversary can bypass such copyright

violation detection by publishing an adversarial example for a

copyrighted video that is not included in the retrieval results

to the video owner.
There are some existing attacks on DNN-based video

retrieval systems such as transfer-based and query-based

schemes [15]–[17]. These attacks assume a black-box attack

scenario in which the attacker has no information about the

structure and parameters of the target DNN model and suffer

from some key drawbacks. Foremost, these attacks add dense
perturbations to an original video, which make the synthesized

AEs easily perceived and detected. In addition, it is chal-

lenging for transfer-based AE attacks [15] to achieve a high

success rate because they completely rely on a surrogate model

well approximates the victim model, which is very difficult to

attain in practice. Moreover, query-based AE attacks [16], [17]

exhibit low attack efficacy because the high dimensionality of

video data involves too large space to search for an effective

yet undetectable AE.
In this paper, we present DUO, a stealthy AE attack on

DNN-based video retrieval systems based on DUal search
Over frames and pixels for generating sparse perturbations.
The novelty of DUO lies in incorporating two observations

into the formulation and generation of video AEs. First, we

conjecture that only a few frames, i.e., “key frames”, of a given

video play the main role in video retrieval systems. Therefore,

we consider the number of perturbed frames as a design

constraint when formulating AE generation. Second, previous

research confirms that different pixels and frames contribute

differently to altering the prediction of a synthesized AE.

Therefore, we further add the number of perturbed pixels as a

design constraint. By doing so, we can apply sparsification to

perturbations by conditioning the number of perturbed pixels

and frames for synthesized AEs. We implement perturbation

sparsification in a sequential attack pipeline, which consists of

a transfer-based component and a query-based component, de-

noted by SparseTransfer and SparseQuery, respectively. Given

an input video v, SparseTransfer simply computes initial

perturbations conditioned by sparsification, and SparseQuery

further polishes the perturbations and maintains their sparsity

level. We loop over the two and derive the optimal vadv .
Our contributions in this paper are summarized as follows.

• We propose DUO, a stealthy AE attack on popular DNN-

based video retrieval systems. DUO achieves a higher

level of stealthiness than existing attacks by sparsing

adversarial perturbations with dual frame-pixel search. In

addition, it is designed as a targeted AE attack under

the black-box setting. All these factors render DUO a

practical, severe threat to video retrieval services.

• We propose to incorporate perturbation sparsification

into formulating AE generation and derive approximated

solutions using the tooling in [10], [18].

• We extensively evaluate the performance of our DUO

attack on two benchmark datasets (UCF101 [19] and

HMDB51 [20]), over four video retrieval models

(I3D [21], TPN [22], SlowFast [23], and Resnet34 [24]),

and under different selections for system parameters. We

also compare DUO with three state-of-the-art attacks,

including a Vanilla attack, TIMI [25], and HEU [16]).

Our evaluations confirm that DUO consistently achieves

higher precision with much reduced adversarial perturba-

tions than existing attacks. For example, when compared

to TIMI [25], DUO achieves higher precision while

reducing adversarial perturbations by more than ×100.
Finally, we confirm that DUO is more robust against

two popular defenses (feature squeezing [26] and
Noise2Self [27]).

II. RELATED WORK

In this section, we introduce previous research relevant to

our study.

Adversarial attacks on retrieval systems. Adversarial
attacks on image retrieval systems can be divided into two cat-

egories: white-box and black-box attacks. White-box attackers

have the full knowledge of the victim systems. Ref. [28]

proposed an untargeted AE attack that simply maximized the

distance between the original and adversarial images in the

decision space while Refs. [29], [30] designed a targeted attack

that minimized such a distance. Different from previous works,

Ref. [31] proposed a generative adversarial network to directly

synthesize AEs. In contrast, black-box attacks do not have full

access to the model architecture and parameters of the victim

systems and thus are much more challenging. Refs. [11], [15]

were among the early works focusing on such attacks on image

retrieval systems. So far, most research focused on image

retrieval systems while Ref. [32] was the only one exploring

adversarial attacks on video hash retrieval systems to the best

of knowledge. Nonetheless their attack [32] was a white-box

attack and perturbed every frame and every pixel of an original

video, rendering the generated adversarial videos easy to detect

in human eyes. In comparison, we believe that it is important

to further explore stealthy attack under black-box setting due

to its high impact.

Sparse AE attacks on image classifiers. There has been
extensive research on sparse AE attacks under white-box set-

ting in the image domain [33]–[37]. Unlike dense attacks [38],

sparse AE attacks perturbed much less pixels (so-called ‘spar-

sification’) that have a higher impact on predictions in order

to reduce visual perceptibility. Refs. [33]–[37] proposed novel

schemes to select pixels and compute the corresponding pertur-

bation magnitude. Nonetheless these attacks were designed for

image classifiers and under white-box setting while we work

on a more challenging task of designing black-box attacks on

video retrieval systems.

Black-box AE attacks on video classifiers. Black-box
setting urged attackers to opt for query-based schemes on

video classifiers in which the attackers aimed to better the
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generated AEs using prior query results. The key focus along

this research path is to improve query efficiency (i.e., reduce

the number of queries) by properly exploiting “prior knowl-

edge” before launching an attack [16], [39]–[41]. Examples

of such prior knowledge include pretrained model for ini-

tialization [39], motion correlation among video frames [40],

and saliency map [16], [41]. Here we continue along this

line while focusing on video retrieval models and improving

attack stealthiness by designing proper prior knowledge in

accordance to intuitions.

III. SYSTEM AND ADVERSARY MODEL

A. Video Retrieval System

Let v ∈ R
N×W×H×C denote a video with N frames, where

W , H , and C represent the width, height, and channel of each

frame, respectively. In this paper, we target at the popular

distributed video retrieval systems consisting of an end-to-

end deep model. As shown below, our attack does not depend

on the deep model itself and we adopt the widely used one

from [42] illustrated in Figure 1. The deep model uses a long

short-term memory and a stacked convolution neural network

for temporal and spatial feature extraction, fully-connected

layers for feature flattening, and a similarity function (e.g.,

�2-norm based) for computing a list of similar videos. Given

a query video as the input, the deep model outputs a list of

videos from a gallery that are similar to the query one. Denote

the video retrieval model, the video gallery, and the query

video by R(·), G, and v, respectively. Then the output list
can be denoted by

Rm(v) = {v1, · · · ,vi, · · · ,vm|vi ∈ G} ,
and m is the number of returned videos. Note that the output

list is in descending order meaning that the smaller i the more
similar vi is to v, i.e., the query video.

B. Adversary Model

As mentioned in Section I, we focus on black-box attacks

as such attacks have high practicality and impact in real

world scenarios. Hence first and foremost, we assume that

the attacker knows only the public information of the victim

model including the format requirements for input videos and

output list (i.e., Rm(·)) but no other non-public information
such as model architecture and parameters. Next we follow

existing transfer-based attacks [10] to assume that the attacker

is able to obtain sufficient training samples to train a surrogate

model. In our evaluation, the maximum number of training

samples the attacker obtains is 8,421 for both UCF101 [19]

and HMDB51 [20]. Finally we follow existing query-based

attacks [16], [17], [39]–[41] to assume that the attacker is

able to obtain the prediction results, i.e., the retrieved video

list, from the victim model.

C. Attacker’s Goals

Denote the original video, the corresponding adversarial

video, and the target video by v, vadv , and vt, respectively.

Our DUO attack generates vadv from v by adding carefully-
crafted perturbations φ ∈ R

N×W×H×C , i.e., vadv = v + φ.
DUO aims to achieve that the retrieval list of vadv (i.e.,

Rm(vadv)) is as similar as possible to that of vt (i.e.,
Rm(vt)) while vadv remains similar to v in human eyes. More
specifically, DUO aims to be:

• A targeted attack: The retrieval lists of vadv and vt are
similar, i.e., Rm(vadv) is as close to Rm(vt) as possible.

• A stealthy attack: The added perturbation φ should be

imperceptible to human eyes. To start with, the exact

perturbation for each pixel should not exceed a preset

threshold, i.e., ‖φ‖∞ = max{|φi,w,h,c|} ≤ τ , where
τ is the threshold. More importantly, our attack aims

to sparse the perturbed pixels and frames (i.e., reduce

the number of perturbed pixels and frames) to improve

its stealthiness. Let φi denote the perturbation for the

i-th frame, ‖φi‖0 =
∑

j |φi,j |0 the number of non-

zero elements in φi, and ‖φ‖2,0 =
∑

i ‖
∑

j φ
2
i,j‖0 the

number of non-zero rows in φ. Let B and N be the

number of pixels in each frame and frames in the whole

video, respectively. Then the number of perturbed pixels

(or frames) in the i-th frame (or the video) should be as
small as possible, i.e., ‖φi‖0 � B and ‖φ‖2,0 � N .

IV. METHODOLOGY

In this section, we first introduce the overview and then the

detailed steps of our DUO attack.

A. Overview and a User Case

Figure 2 shows the overview of our DUO attack consisting

of two components (i.e., SparseTransfer and SparseQuery)

and a user case. As mentioned above, given an intact video

and a target video (denoted by v and vt, respectively), DUO
generates the corresponding AE (denoted by vadv). v, vt, and
vadv are in the same format. Recall that we use W , H , and
C to denote the width, height, and channel of video frame,

respectively, while N the number of frames. In UCF101,

W = H = 112, C = 3, N = 16. As shown in Figure 2, while
v is labelled ‘Run’, DUO aims to perturb v to vadv with subtle
changes so that vadv can retrieve videos labelled ‘Clap’, i.e.,
the same label as vt. The attack process can be described in
the following. First, SparseTransfer in DUO launches frame-

pixel search using a trained surrogate model and derives initial

sparse perturbations for v. In short, SparseTransfer outputs I ,
F , and θ while the three adds up as the initial perturbation,
i.e., φ = I�F�θ. Following that, SparseQuery finetunes φ
using queries to the victim model and derive the adjusted φ.
In our implementation, we loop the two components to avoid

being trapped at a local optimal. In the end, DUO synthesizes

vadv by vadv = v+φ and uses vadv to retrieve similar videos
to those of vt. For the above use case, vadv’s retrieved videos
are labelled ‘Clap’ rather than ‘Run’, thus indicating that DUO

achieves a targeted attack.
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Fig. 2. Step-by-step illustration of DUO pipeline. Assume v has six frames. I , F , and θ: the selected pixels, the selected frames, and the perturbation
magnitude.

B. SparseTransfer

In this component, we first train a surrogate model ap-

proximating the target victim model and use it for generating

initial adversarial perturbations conditioned by frame-pixel

sparsification.

1) Building a Surrogate Model: In SparseTransfer, a surro-
gate model serves in place of a white-box model approximat-

ing the black-box victim model. As a result, SparseTransfer

can generate (initial) perturbations for a given v. Denote
the surrogate model and victim model by S(·) and R(·),
respectively. The key to train S(·) is to construct a proper
training set while the exact backbone model is less important

due to the transferability of AEs [15]. Below we briefly

describe how we construct the training set (starting as an

empty list denoted by T ). vr denotes a random video. Each

row of T corresponds to a training sample.

Step 1:We upload vr to R(·), obtain Rm(vr), and append
Rm(vr) to T . That is, T = {〈vr,vi,vj〉|vi,vj ∈
Rm(vr), i < j ∈ [1,m]}.

Step 2:We uniformly select M videos from Rm(vr) and
repeat Step 1.

Step 3:We repeat Step 1 and 2 for Z times and obtain the

final T as the training set.

Finally, we use T as the training set, a typical video retrieval

backbone from [43], and the following loss function [10], [44]

to obtain S(·):
argmax

ρ

∑
j>i

[D(v,vj)−D(v,vi) + γ]+ .

Here ρ is the model parameters of S(·), D(v,vi) =
‖Feaρ(v) − Feaρ(vi)‖22 is the feature distance between v
and vi, Feaρ(v) is v’s projected feature, and γ is a margin
constant to make sure the loss value stays positive and set as

0.2 in this paper. More details about the stealing process can

be found in the supplementary material at [45].

2) Computing Initial Perturbations with Sparsification: In
this part, we use S(·) to derive initial perturbations for v while

following the intuitions to sparse perturbations on pixels and

frames. We illustrate the process in Figure 2 and Algorithm 1

as well. The input are v, vt, and S while the output are I , F ,
and θ, which correspond to the selected pixels, the selected
frames, and the perturbation magnitude, respectively. I , F ,
and θ are termed as “prior knowledge” for AE generation as
well. As mentioned in Section I, we conjecture that

1) different pixels and frames contribute differently to the

targeted attack goal, while

2) reducing the number of perturbed pixels and frames

(thus frame-pixel sparsification) makes vadv less per-
ceptible, i.e., stealthier.

Consequently, we formulate AE generation on S(·) as the
following:

argmin
θ,I,F

L(Feaρ(vadv),Feaρ(vt)) + λ‖θ � I �F‖22
s.t. 1�I = k, ‖F‖2,0 = n, ‖θ‖∞ ≤ τ .

(1)

In the above formulation, λ is a constant for regularization,
L(·, ·) is an Euclidean distance function, τ is a threshold to
limit the maximum allowable perturbation on arbitrary pixel

(i.e., ‖θ‖∞ ≤ τ ). We emphasize that the constraints are
where we implement the intuitions. Specifically, I,F ,θ ∈
{0, 1}N×W×H×C , Ii,w,h,c = 1 indicates that the (w, h, c)-
th pixel in the i-th frame is selected as a perturbed one (F is

defined similarly), φ = I �F � θ is the output perturbation
for v. Hence 1�I = k means that the number of perturbed
pixels in the query video v is k and ‖F‖2,0 = n applies to the
number of perturbed frames in v. By enforcing smaller k and
n, Equation (1) effectively sparses perturbations for vadv , thus
making vadv stealthier. More details about the optimization
process can be found in the supplementary material at [45].

As Equation (1) reveals itself as a mixed integer program-

ming problem [46], we follow the tooling in [18] and iterate

to update {I,F ,θ} until they converge. More details can
be found in the supplementary material at [45] regarding

how to formulate Equation (1) (including choosing L(·, ·)
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Algorithm 1: SparseTransfer(v, vt, S)
Input: v, vt, S;
Output: Pixel-mask I , Frame-mask F , perturbation

magnitude θ;
1 Initialize I and F as 1 and θ as 0;
2 while not converge do
3 Given I,F , update θ via gradient descent under

S;
4 Given θ,F , update I with ADMM;

5 Replace F with a continuous variable C;
6 Given I,θ, update C following [47];
7 Update F based on ‖Cπ(1)‖2 ≥ · · · ≥ ‖Cπ(N)‖2;
8 end
9 return I,F , and θ;

Algorithm 2: SparseQuery(v,vt,I,F ,θ)

Input: v, vt, I,F , θ;
Output: vadv;

1 Initialize v
(0)
adv as v;

2 Calculate T(0) using Equation (2);

3 Initialize ε from θ, μ = iter numQ, κ = 1;
4 while κ < μ do
5 Randomly sample q(κ) from the Cartesian basis

without replacement;

6 for ξ ∈ {+ε,−ε} do
7 v′ = CLIP(v(κ−1)

adv + ξq(κ));
8 Calculate T(κ) using Equation (2);

9 if T(κ) < T
(κ−1) then

10 v
(κ)
adv = v′;

11 break;

12 end
13 T

(κ) = T
(κ−1)

14 end
15 κ++;
16 end
17 return v

(κ)
adv;

and regularization term), relax conditioning, and design the

approximation algorithm.

C. SparseQuery

Apparently, vadv relying only on I , F , and θ (vadv =
v + I � F � θ) is guaranteed be good on S(·) but can be
less effective on R(·). So we design a query-based scheme,
i.e., SparseQuery, to further improve vadv while following the
same intuition, i.e., to make sure that perturbations on pixels

and frames are sparse. We illustrate SparseQuery in Figure 2

and Algorithm 2 as well. The input are I , F , and θ and

the output is vadv . The high-level idea in query-based attacks
is to iterate and move vadv along the direction to decrease
the objective function. To implement such an idea, we first

formulate the objective function as follows so that when it

decreases, Rm(vadv) gets closer to Rm(vt).

T(vadv,v,vt) =H(Rm(vadv),Rm(v))

−H(Rm(vadv),Rm(vt)) + η ,
(2)

where η is a margin constant and H(Rm(v),Rm(v′)) is a
probability-based similarity function derived from the NDCG-

based function [10] to capture the co-occurrence probability

that a returned video shows up in both Rm(v) and Rm(v′).
More details about the loss function can be found in the

supplementary material at [45]. Next, in each iteration, we

modulate the corresponding perturbation term by I�F�θ in
order to make sure perturbations at this stage maintain sparse.
Thus for the κ-th iteration, we update vadv as follows:

v
(κ)
adv =

{
CLIP(v(κ−1)

adv + εq), T
(κ)(·, ·, ·) ≤ T

(κ−1)(·, ·, ·) ;
CLIP(v(κ−1)

adv − εq), T
(κ)(·, ·, ·) ≥ T

(κ−1)(·, ·, ·) ,
(3)

where T
(κ)(·, ·, ·) = T

(κ)(vadv,v,vt), T
(κ−1)(·, ·, ·) =

T
(κ−1)(vadv,v,vt), and q

(κ) ∈ R
N,W,H,C is a random matrix

modulated by I �F � θ, i.e.,

q
(κ)
i,w,h,c =

{
q
(κ)
i,w,h,c, Ii,w,h,c ×F i,w,h,c × θi,w,h,c 
= 0 ;

0, Ii,w,h,c ×F i,w,h,c × θi,w,h,c = 0 ,
(4)

and ε is a step size. ε is derived from ‖ ± εq(κ)‖∞ ≤ τ such

that v
(κ)
adv complies with ‖θ‖∞ ≤ τ in Equation (1). The above

process stops until it converges or the number of iterations

exceeds the preset maximum (i.e., κ ≥ iter numQ) and
SparseQuery outputs vadv . More details about H(·, ·) and q
can be found in the supplementary material at [45].

Summary. Here we briefly summarize our DUO attack.

Given v and vt, DUO first launches SparseTransfer to obtain
I , F , and θ. Following that, DUO launches SparseQuery to

obtain vadv based on I , F , and θ. To avoid being trapped at a
local minimum [48], we loop SparseTransfer and SparseQuery

together by using {I , F ,θ,vadv} to initialize {I , F ,θ,v}
for the next iteration until the process converges or the number

of iteration exceeds a preset threshold, i.e., iter numH.
iter numH is a small number in our implementation (less
than 4).

V. PERFORMANCE EVALUATION

A. Datasets and Metrics

In this paper, we focus on UCF101 [19] and HMDB51 [20]

for benchmarking our attack. For fair comparison against other

attacks, we follow [1] to uniformly sample a 16-frame snippet

from each video. Table I lists the details of our datasets. When

evaluating attack performance, we randomly choose ten pairs

of two videos from the training dataset: one as the original

video and the other as the target video (i.e., v and vt). The
experimental results in what follows are the average from all

experiments on one of the ten pairs of v and vt.
We adopt four performance metrics to evaluate the perfor-

mance of DUO. The first metric is mean average precision

(denoted by mAP) and it measures the retrieval performance
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TABLE I
DATASET DETAILS

Dataset # of training videos # of testing videos # of categories
UCF101 9,324 3,996 101
HMDB51 4,900 2,100 51

of the victim system. Specifically, the mAP can be calculated
as follow:

mAP =
1

N
×

N∑
i=1

ctop(i)

i
,

where N and ctop(i) indicate the total size of the correct
retrieval list, and the number of correct items in top-i re-
trieval list, respectively. The higher mAP, the better retrieval
performance. The average precision AP@m, as the second
metric, measures the average precision betweenRm(vadv) and
Rm(vt), i.e., the returned videos of vadv and vt. The precision
of the i-th retrieved video is defined as:

preci =
|Rm

i (vadv) ∩Rm
i (vt)|

i
,

where Rm
i (vadv) denotes the top-i items in the retrieval list. If

preci is equal to 1, it show that the i-th item of the retrieval

list of vadv and v is the same, otherwise 0. Hence, AP@m
can be calculated as

AP@m =
∑
i

preci/m .

Obviously, the higher AP@m, the higher similarity between
Rm(vadv) and Rm(vt). In addition, we use a sparsity metric
to evaluate the sparsity of a synthesized AE, defined as

Spa =
∑N

i=1 ‖φi‖0. φi denotes the number of perturbed

pixels in the i-th frame thus ‖φi‖0 denotes the number of
non-zero elements in φi. N is the number of frames. Note

that the smaller Spa, the better sparsity, thus the stealthier
attack. Lastly, we adopt the perceptibility score [49] PScore
to measure the imperceptibility of an AE defined as

PScore =
1

N ×B × C

N×B×C∑
i=1

|φi|,

where B denotes the number of pixels in one frame. The

smaller PScore, the less perturbations, thus the stealthier
attack.

B. Implementation and Experimental Settings

Implementation. We implement DUO in Pytorch and run

all the experiments on a server with a Intel(R) Xeon(R) Silver

4210 CPU@2.20GHz and eight NVIDIA Geforce RTX 3080.

Our code can also be found in [45].

Victim model. We explore four DNN models for extracting
spatial and temporal features from videos: I3D [21], TPN [22],

SlowFast [23], and Resnet34 [24]. The features are flattened

as a vector with a size of 768× 1. We experiment three loss
functions including ArcfaceLoss [50], LiftedLoss [51], and

AngularLoss [52] and �2-norm for regularization in all cases.

Surrogate model. We experiment two DNN models (i.e.,

C3D [43] and Resnet18 [24]), four sizes of the surrogate

Different DNNs

m
A

P 
(%

)

ArcfaceLoss LiftedLoss AngularLoss

(a) UCF101

Different DNNs

m
A

P 
(%

)

ArcfaceLoss LiftedLoss AngularLoss

(b) HMDB51

Fig. 3. mAPs on different (victim) video retrieval systems

dataset, and four output feature sizes (i.e., [256, 512, 768,

1,024]). On UCF101, the sizes of the surrogate dataset are

[165, 1,111, 3,616, 8,421] while on HMDB51 [165, 1,111,

1,885, 2,995]. We use a 7:3 split ratio to divide them into a

training dataset and a testing dataset.

System parameters. λ in Eq. (1) is set as e−5. The maxi-

mum number of iterations in SparseQuery, i.e., iter numQ,
is 1,000. The step size for gradient descent there is initialized

as 0.1 and decays for every 50 steps with a rate of 0.9.

Baselines. We compare DUO to the following baselines.

Note that DUO-C3D and DUO-Res18 correspond to DUO with
C3D and Resnet18 as the surrogate model, respectively.

• Vanilla attack. Our Vanilla attack is very straight-
forward. It first randomly selects pixels for each frame

given a fixed Spa. Then it uses a query-based attack [53]
to generate vadv .

• TIMI attack [25]. As one of the popular transferable

adversarial attacks, it combines the momentum iterative

(MI) and translation-invariant (TI) methods to achieve a

high success rate. Similarly, we also denote the trans-

ferable attack by TIMI-C3D and TIMI-Res18 cor-

responding to TIMI with C3D and Resnet18 as the

surrogate model, respectively.

• HEU-Nes attack [16] and HEU-Sim attack that re-

places the nature-estimated strategy in HEU-Nes with

the random-selection strategy from Vanilla.

C. Experimental Results

mAPs of victim video retrieval systems. Figure 3 shows
mAPs of different victim models on UCF101 and HMDB51.

Note that UCF101 has a larger size than HMDB51. Our two

observations are as follows. 1) On UCF101, the loss function

has little impact on mAP while SlowFast leads to the highest
mAP among the four feature extractors. 2) The situation on
HMDB51 is quite different. In general, ArcfaceLoss leads to

higher mAP among the three loss functions while Resnet34

tends to do so as well among the four feature extractors.

Yet Slowfast plus ArcfaceLoss happens to achieve the highest

mAP. To sum up, the best combination of feature extractor and
loss function could still depend on the exact dataset.

mAPs on different setups for the surrogate model. We
anticipate that mAP is under the impact of the size of the

surrogate dataset and the size of the output feature vector. Our

goal here is to select the surrogate model with the best mAP
in hope of improving attack performance of DUO. We have
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Fig. 4. mAPs of the surrogate model with different # of samples and output
feature sizes.

the following three conclusions from the results in Figure 4.

1) As expected, the larger surrogate dataset, the higher mAP.
The mAP on UCF101 increases from 19.91% to 50.92% as the

size of the surrogate dataset increases from 165 to 3,616. 2)

The output feature size has little impact on mAP.

Performance of different AE attacks. We conclude that
a targeted AE attack succeeds if AP@m from Rm(v) and
Rm(vt) (which we use to refer to the scenario “w/o attack”,
i.e., “without attack”) is lower than that from Rm(vadv) and
Rm(vt). That is, the retrieved videos are more similar to vt
rather than v. We summarize the results in Table II and draw
the following conclusions. 1) All targeted AE attacks in our

experiments succeed because the retrieved videos by vadv in
these attacks are more similar to vt rather than v. As a proof,
if we look at the result when using I3D as the feature extractor

on UCF101, AP@m from Rm(v) and Rm(vt) is only 48.67%
while AP@ms from from Rm(vadv) and Rm(vt) under all
attacks are higher, ranging from 49.04% to 56.40%. 2) DUO

tends to outperform other attacks consistently. Particularly,

when the victim model is TPN on UCF101 and we fix the

number of perturbed frames, DUO-C3D achieves a higher

AP@m (79.29%) than Vanilla (72.54%). This indicates that
DUO retrieves more similar videos, confirming that our dual

frame-pixel search in SparseTransfer finds better perturbations

than random selection in Vanilla. 3) PScores are approxi-
mately proportional to Spas, which is as expected by referring
to Equation (3).

Impact of the size of surrogate dataset and the loss
function of the victim model. Here we want to answer
two questions. Q1: does the size of the surrogate dataset
impact the effectiveness (i.e., AP@m) and the stealthiness
(i.e., Spa) of DUO? If the answer is ‘No’, it is good news as
the attacker no longer need to obtain many training samples

for the surrogate model. The results in Table III tend to

imply ‘No’ because for DUO-C3D on UCF101, when the

surrogate dataset size increases significantly (from 165 to

3,616), Spas only decreases slightly (from 2,903 to 2,832,

thus little improvement) while AP@m decreases (from 58.08%

to 56.28% meaning a larger size could instead harm AP@m).
Therefore, we believe that DUO works even with only a
handful of samples for the surrogate model and fix the size
to be 1,111 and the output feature dimension 512 for the
remaining part. Q2: which loss function is robust against
DUO when used to train a victim model? The one(s) in the
answer should provide lower AP@m as well as higher Spa. In
general, Table IV suggests that ArcFaceLoss is the most robust

one (due to low AP@m and higher Spa) while LiftedLoss and
AngularLoss tend to results at higher AP@m with smaller Spa.
Impact of k and n on attack performance. Equation (1)

conveys two suggestions for us. The first is that a larger

k and/or n are/is very likely to result at higher AP@m and

higher Spa simultaneously simply because the larger k and/or
n allow(s) more perturbations. The second is that AP@m is

likely to converge with the increase of k and/or n simply

because DUO cannot find better perturbations even provided

the resources. We are able to confirm the above two through

the results in Table V. As proof, AP@m of DUO-C3D on

UCF101 increases from 52.81% to 56.40% when k increases
from 20K to 40K and converges after that. We can find proof

to support conclusions on Spa in Table V as well.
Impact of the number of queries in SparseQuery. Here

we want to confirm whether the queries in SparseQuery of

DUO indeed rectify adversarial perturbations thus synthesizing

better vadv or not. We anticipate that if T in Equation (2) is

able to drop with the increase of queries, the synthesized vadv
should result at higher AP@m. First, we show in Figure 5 the
relationship between the number of queries and T from Equa-

tion (2) in SparseQuery. The results confirm that SparseQuery

helps rectify the perturbations for vadv because the retrieved
videos become more similar to vt. Second, although a lower T
does not guarantee a higher AP@m across different attacks, we
do see that the lower Ts of our DUO-C3D and DUO-Res18
attack comparing to Vanilla in Figure 5(a) do result at

higher AP@ms in Table II (AP@m of Vanilla, DUO-C3D
and DUO-Res18 when the victim model is TPN on UCF101:
59.78%, 68.15% and 67.03%) under the same experimental

settings. Therefore, we conjecture a lower T in SparseQuery

would help achieve a higher AP@m.
Impact of τ in SparseTransfer on attack performance.

We experiment four τ selection from [15, 30, 40, 50] and
summarize the resulting AP@m and Spa in Table VII. Note
that τ from Equation (1) is the perturbation budget for a single
pixel. 1) As expected, the results show that AP@m increases
significantly as τ increases simply because a larger perturba-
tion budget helps find larger perturbations and thus synthesizes

more effective vadv . We can see that AP@m increases from

50.57% to 55.25% as τ increases from 15 to 40. 2) τ does
not affect Spas significantly. This means that very likely the
capability of adding perturbations with a higher magnitude

does not impact the number of total perturbed pixels much.
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TABLE II
ATTACK PERFORMANCE OF DIFFERENT AE ATTACKS

Target Model TPN SlowFast I3D Resnet34

Dataset
UCF101

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
w/o attack 67.84 – – 40.06 – – 48.67 – – 52.12 – –

TIMI-C3D (n = 16) 68.34 602,100 10.00 40.16 588,726 9.55 49.04 601,371 9.87 52.40 597,127 9.63
TIMI-Res (n = 16) 68.64 602,100 10.00 40.49 588,726 9.55 49.20 601,371 9.87 53.19 597,127 9.63
HEU-Nes (n = 4) 69.85 2,880 0.14 40.92 2,076 0.10 51.19 3,000 0.15 64.19 3,456 0.17
HEU-Sim (n = 4) 74.36 2,136 0.11 41.14 417 0.02 53.48 1,920 0.09 63.61 1,900 0.09
Vanilla (n = 4) 72.54 2,885 0.14 41.26 1,549 0.08 52.84 2,806 0.14 61.87 2,645 0.13
DUO-C3D (n = 4) 79.29 2,884 0.14 48.34 2,077 0.10 56.40 2,800 0.14 67.40 3,466 0.17

DUO-Res18 (n = 4) 76.07 2,138 0.11 42.58 873 0.04 55.73 2,404 0.12 68.50 2,797 0.14

Dataset
HMDB51

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
w/o attack 28.90 – – 38.47 – – 24.72 – – 36.64 – –

TIMI-C3D (n = 16) 29.82 602,111 10.00 40.07 602,112 10.00 25.60 602,014 9.92 37.07 602,112 10.00
TIMI-Res (n = 16) 29.84 602,111 10.00 40.45 602,112 10.00 25.64 602,014 9.92 37.61 602,112 10.00
HEU-Nes (n = 4) 30.02 1,404 0.07 48.54 1,512 0.08 26.25 1,284 0.06 39.37 1,056 0.05
HEU-Sim (n = 4) 30.21 180 0.01 42.11 304 0.02 29.31 377 0.02 40.75 326 0.02
Vanilla (n = 4) 33.89 789 0.04 52.29 1,152 0.06 30.74 673 0.03 43.75 796 0.04
DUO-C3D (n = 4) 44.22 1,404 0.07 58.83 1,515 0.08 34.61 903 0.04 53.41 1,047 0.05

DUO-Res18 (n = 4) 32.70 662 0.03 62.59 1,153 0.06 34.73 656 0.03 44.90 716 0.04

TABLE III
ATTACK PERFORMANCE OF OUR ATTACKS WITH DIFFERENT SIZES OF THE SURROGATE DATASET

# of Videos/Samples 165 1,111 3,616 8,421

Dataset
UCF101

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 58.08 2,903 0.14 56.40 2,800 0.14 56.28 2,832 0.14 55.19 2,184 0.11

DUO-Res18 56.88 2,652 0.13 55.73 2,404 0.12 57.31 2,218 0.11 55.15 2,573 0.13

Dataset
HMDB51

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 32.19 651 0.03 34.61 903 0.04 32.70 661 0.03 31.74 588 0.03

DUO-Res18 34.47 676 0.03 34.73 656 0.03 33.57 678 0.03 33.90 679 0.03

TABLE IV
ATTACK PERFORMANCE OF OUR ATTACKS ON VICTIM MODELS USING DIFFERENT LOSS FUNCTIONS

Loss Function ArcFaceLoss LiftedLoss AngularLoss

Dataset
UCF101

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 56.40 2,800 0.14 67.87 1,620 0.08 63.88 2,536 0.12

DUO-Res18 55.73 2,404 0.12 66.46 1,103 0.05 67.14 2,128 0.10

Dataset
HMDB51

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 34.61 903 0.04 51.67 537 0.03 67.15 1,034 0.05

DUO-Res18 34.73 656 0.03 51.97 565 0.03 66.96 1,052 0.05

We plan to look deeper into this in the future.

Impact of iter_numH on attack performance. We
change iter_numH in DUO from 1 to 4 and list the results in
Table VIII. The results show that 1) AP@m of DUO increases
along with iter_numH which is as expected considering

that more iterations should result at better vadv . For example,
the AP@m increases from 53.04% to 56.94% as iter_numH
increases from 1 to 3. 2) Spa and PScore also increase along
with iter_numH. Spa increases from 1,712 to 2,942 when

iter_numH from 1 to 3. Though such results are somehow

expected since usually a higher AP@m is accompanied by a
higher Spa/PScore, we plan to look deeper into this to see if
we can maintain lower Spa/PScore even when iter_numH
increases so that the effectiveness as well as the stealthiness

of vadv is enhanced.

Impact of AE Transferability. To evaluate the transferabil-

ity of AE attacks, we run AE attacks to generate adversarial

examples on the same surrogate models and evaluate the attack

performance in various target models. Concretely, we adopt the

l2- and l∞-norm constraints for Eq. (1), run SparseTransfer

and SparseQuery on the same surrogate model, and finally

output the AP@m from the target model. We show part of

the results on the UCF101 dataset in Table IX given space

limit. From Table IX, we can conclude that 1) the AEs we

generated on the target model have a higher transferability

on the surrogate model. It is reasonable as SparseQuery is

expected to further fine-tune the results of SparseTransfer. 2)

The AEs generated by our pipeline have better AP@ms and
Spas than TIMI on the more popular SlowFast model. For
example, the AP@m under the DUO-C3D with the l2 constraint
is 44.94% while that under the TIMI-C3D is only 40.16%.

Summary. We summarize the key takeaway pieces from
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TABLE V
ATTACK PERFORMANCE UNDER OUR DUO ATTACKS WITH n = 4 AND k = {20K, 30K, 40K, 50K}

k 20K 30K 40K 50K

Dataset
UCF101

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 52.81 2,508 0.12 54.97 2,683 0.13 56.40 2,800 0.14 56.93 2,844 0.13
DUO-Res18 51.31 1,956 0.10 52.98 2,142 0.11 55.73 2,404 0.12 58.81 3,364 0.16

Dataset
HMDB51

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 30.87 725 0.04 32.95 897 0.04 34.61 903 0.04 35.79 1,020 0.05
DUO-Res18 32.35 438 0.02 32.81 556 0.03 34.73 656 0.03 36.45 795 0.04

TABLE VI
ATTACK PERFORMANCE UNDER OUR DUO ATTACKS WITH k = 40K AND n = {2, 3, 4, 5}

n 2 3 4 5

Dataset
UCF101

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 53.35 1,832 0.09 54.18 2,620 0.13 56.40 2,800 0.14 56.45 2,955 0.14
DUO-Res18 52.63 1,487 0.07 54.33 2,167 0.11 55.73 2,404 0.12 54.94 2,555 0.13

Dataset
HMDB51

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 26.20 380 0.02 33.80 630 0.03 34.61 903 0.04 32.42 970 0.05
DUO-Res18 27.00 438 0.02 34.56 663 0.03 34.73 656 0.03 33.41 968 0.05
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Fig. 5. Impact of the number of queries on the loss function T in SparseQuery. A decreasing T implies a rectified vadv .

our evaluations. For a DUO attacker,

• a handful of samples and using C3D as the backbone

could already make a good surrogate model.

• k and τ are better choices to optimize because they

tend to improve AP@m without sacrificing Spa/PScore,
particularly when compared to n and iter numH (thus
they require more careful selection).

For a potential victim model, try to use ArcFaceLoss rather

than LiftedLoss and AngularLoss for model training if there

are options and model robustness is preferred.

D. Attack Robustness against Popular Defenses

Existing defenses. In this part, we briefly explore the

robustness of different attacks under two popular defenses:

feature squeezing [26] and Noise2Self [27]. The

high-level idea of feature squeezing is that AEs are

not robust against linear transformation such as reducing the

size of the feature vector while that of Noise2Self is

simply to treat AEs as noise and apply de-noising to reduce

the impact of AEs. We summarize only the robustness of

attacks using I3D as the victim model in Table X due to page
limit while we have similar observations in other settings as

well. The results show that DUO is more resilient towards

feature squeezing and Noise2Self when compared
to Vanilla, confirming the better stealthiness of DUO. DUO
also exhibits similar robustness when compared to TIMI and
HEU while it achieves the lowest detection rate (8.25%) on
UCF101. Therefore, we believe that perturbation sparsification
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TABLE VII
ATTACK PERFORMANCE OF OUR DUO ATTACKS WITH DIFFERENT PERTURBATION BUDGET τ IN EQUATION (1)

τ 15 30 40 50

Dataset
UCF101

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 51.62 2,249 0.06 56.40 2,800 0.14 57.33 2,634 0.17 57.88 2,557 0.20
DUO-Res18 50.57 1,761 0.04 55.73 2,404 0.12 55.25 2,282 0.15 58.92 2,546 0.20

Dataset
HMDB51

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 28.26 362 0.01 34.61 903 0.04 35.65 994 0.07 36.47 1,001 0.08
DUO-Res18 28.36 361 0.01 34.73 656 0.03 35.72 979 0.07 36.28 970 0.08

TABLE VIII
ATTACK PERFORMANCE OF OUR DUO ATTACKS WITH DIFFERENT ITER_NUMHS.

iter_numH 1 2 3 4

Dataset
UCF101

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 53.04 1,712 0.08 56.40 2,800 0.14 56.94 2,942 0.14 56.12 3,007 0.15
DUO-Res18 52.68 1,590 0.08 55.73 2,404 0.12 56.91 2,911 0.15 58.32 2,966 0.15

Dataset
HMDB51

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
DUO-C3D 32.63 549 0.03 34.61 903 0.04 34.65 979 0.05 34.69 988 0.05
DUO-Res18 31.82 419 0.02 32.39 571 0.03 33.85 654 0.03 34.04 664 0.03

TABLE IX
ATTACK PERFORMANCE OF OUR SPARSETRANSFER WITH DIFFERENT TARGET MODEL UNDER UCF101 DATASET.

Target Model TPN SlowFast I3D Resnet34

Dataset
UCF101

AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore AP@m Spa PScore
TIMI-C3D (n = 16) 68.34 602,100 10.00 40.16 588,726 9.55 49.04 601,371 9.87 52.40 597,127 9.63
TIMI-Res (n = 16) 68.64 602,100 10.00 40.49 588,726 9.55 49.20 601,371 9.87 53.19 597,127 9.63

DUO-C3D(l2) 69.45 2,132 0.11 44.94 2,135 0.11 48.76 2,130 0.11 56.23 2,311 0.12
DUO-Res18(l2) 68.71 2,490 0.12 43.51 2,436 0.12 49.01 2,116 0.11 55.61 2,100 0.10
DUO-C3D(l∞) 68.31 2,105 0.10 43.43 2,274 0.11 48.30 2,390 0.12 54.49 2,112 0.11
DUO-Res18(l∞) 68.33 2,450 0.12 43.42 2,364 0.12 48.31 2,195 0.11 54.08 2,105 0.10

TABLE X
ATTACK DETECTION RATE (%) OF TWO DEFENSES [26], [27]

Attacks
feature squeezing Noise2Self
UCF101 HMDB51 UCF101 HMDB51

Vanilla 82.68 66.56 25.01 60.89
TIMI-C3D 24.31 26.86 3.94 23.53

TIMI-Res18 28.56 26.44 4.84 26.60
HEU-Nes 21.67 22.53 21.96 48.36
HEU-Simba 8.74 22.39 23.29 24.16
DUO-C3D 8.25 24.07 26.22 40.56
DUO-Res18 17.96 43.47 21.85 43.06

helps improve the stealthiness of DUO.

A potential defense against DUO. Provided the observa-
tions in our evaluations, we believe that the effectiveness and

stealthiness of an arbitrary attack including DUO inevitably

show (some) dependence on the backbone and loss function of

the victim model. Hence ensemble models built from multiple

backbones would be more robust against most AE attacks,

DUO included. We plan to explore this direction as well.

VI. CONCLUSIONS

In this paper, we explore stealthy AE attacks on popular

video retrieval systems focusing on AE stealthiness and effec-

tiveness. Our DUO attack is a targeted attack under black-box

setting, thus rendering itself practical in real world scenarios.

DUO roots in that perturbation sparsification helps improve

AE stealthiness without sacrificing much effectiveness. We

implemented DUO as a novel sequential pipeline and evaluated

its performance extensively, confirming its better performance

over three existing attacks in terms of precision, stealthiness,

and robustness against two popular defenses.
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