
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

PhyAuth: Physical-Layer Message Authentication
for ZigBee Networks

Ang Li and Jiawei Li, Arizona State University; Dianqi Han,
University of Texas at Arlington; Yan Zhang, The University of Akron;
Tao Li, Indiana University–Purdue University Indianapolis; Ting Zhu,
The Ohio State University; Yanchao Zhang, Arizona State University

https://www.usenix.org/conference/usenixsecurity23/presentation/li-ang

PhyAuth: Physical-Layer Message Authentication for ZigBee Networks

Ang Li
Arizona State University

Jiawei Li
Arizona State University

Dianqi Han
University of Texas at Arlington

Yan Zhang
The University of Akron

Tao Li
Indiana University–Purdue University Indianapolis

Ting Zhu
The Ohio State University

Yanchao Zhang
Arizona State University

Abstract
ZigBee is a popular wireless communication standard for In-

ternet of Things (IoT) networks. Since each ZigBee network

uses hop-by-hop network-layer message authentication based

on a common network key, it is highly vulnerable to packet-

injection attacks, in which the adversary exploits the com-

promised network key to inject arbitrary fake packets from

any spoofed address to disrupt network operations and con-

sume the network/device resources. In this paper, we present

PhyAuth, a PHY hop-by-hop message authentication frame-

work to defend against packet-injection attacks in ZigBee

networks. The key idea of PhyAuth is to let each ZigBee

transmitter embed into its PHY signals a PHY one-time pass-

word (called POTP) derived from a device-specific secret key

and an efficient cryptographic hash function. An authentic

POTP serves as the transmitter’s PHY transmission permis-

sion for the corresponding packet. PhyAuth provides three

schemes to embed, detect, and verify POTPs based on dif-

ferent features of ZigBee PHY signals. In addition, PhyAuth

involves lightweight PHY signal processing and no change to

the ZigBee protocol stack. Comprehensive USRP experiments

confirm that PhyAuth can efficiently detect fake packets with

very low false-positive and false-negative rates while having

a negligible negative impact on normal data transmissions.

1 Introduction

ZigBee is an IEEE 802.15.4-based specification very popu-

lar for Internet of Things (IoT) networks [13]. The ZigBee

stack architecture comprises four layers from low to high: the

Physical layer (PHY), medium access control layer (MAC),

network layer (NWK), and application layer (APL) [3]. The

APL layer consists of the application support sublayer (APS)

and the ZigBee device objects (ZDO). PHY and MAC layers

are defined in the IEEE 802.15.4 standard [7], and NWK and

APL layers are defined in the ZigBee specification [3].

A ZigBee network consists of three device types: coordina-

tor, router, and end device. Each ZigBee network has exactly

one coordinator and can have many routers and end devices.

Star Tree Mesh

End DeviceRouterCoordinatorC R E

C

E

E

EE

E

E E

E
E

E

E

EE

E

R

R R
C

E
E

E

E

E
E

E

R

R
R

C

R

E

Figure 1: ZigBee network topologies.

The coordinator acts as a central node responsible for man-

aging the ZigBee network. Routers can route traffic between

different devices. End devices (e.g., wireless sensors) can

only transmit/receive a message to/from their parent nodes

(routers or the coordinator). As shown in Fig. 1, a ZigBee

network can operate in three network topologies and support

up to 65,000 nodes [3]. ZigBee supports multi-hop mesh net-

working based on the AODV (Ad-hoc On-demand Distance

Vector) routing protocol [27]. ZigBee packets comprise uni-

cast transmissions between two APL peer entities that can be

multi-hop away, network-wide or one-hop broadcast transmis-

sions, and multicast transmissions to a group of nodes. ZigBee

has been widely used in many mission-critical contexts, such

as hospitals and healthcare automation, critical-infrastructure

monitoring and management, industrial/home/building au-

tomation, personnel and asset tracking, smart-city sensing,

and military/defense applications [11]. For example, the UK

government uses ZigBee mesh networks to connect smart

meters in homes to the utility network [14]. In addition, smart

factories use ZigBee-enabled sensors to monitor and manage

the entire manufacturing process [17, 21]. Moreover, ZigBee

networks are used to control the routes of multiple automatic

guided vehicles in smart factories or warehouses [12].

ZigBee defines security mechanisms at the NWK and APS

layers based on “link” keys and a “network” key [3]. In par-

ticular, unicast frames between APL peer entities are secured

with a 128-bit link key shared by the source and destination,

while broadcast/multicast frames and all network-layer frames

USENIX Association 32nd USENIX Security Symposium 1

Authenticated

APL SDU Message Integrity CodeAPL Header Auxiliary Header

Encrypted

Authenticated

APL Frame

NWK SDU Message Integrity CodeNWK Header Auxiliary Header

Encrypted

NWK Frame

Bytes: 4 1 1

Synchronization Header PHY Header PHY SDU

Variable, ≤ 127
PHY FrameFrame Length MAC PDUPreamble Sequence Start of Frame Delimiter

MAC Frame

Encrypted

Authenticated

Message Integrity CodeMAC SDUAuxiliary Header MAC Header CRC

Figure 2: The IEEE 802.15.4/ZigBee frame structure with all

possible security features.

(e.g., routing commands) are secured with a 128-bit network

key shared amongst all devices in the network. As shown in

Fig. 2, every NWK frame is encrypted and/or authenticated

with a Message Integrity Code (MIC) based on the network

key and the 128-bit AES-CCM algorithm.1 An APS frame can

also be encrypted and/or authenticated with a MIC based on

128-bit AES-CCM with the network key or a link key accord-

ing to the frame type and application requirements. ZigBee

achieves hop-by-hop message authentication by letting each

node use the network key to verify the MIC of each incoming

NWK frame before any further processing (e.g., forwarding

to the next hop). In contrast, the APS MIC is only verified at

the APS entity of the end-to-end destination.

Hop-by-hop message authentication based on the com-

mon network key makes ZigBee networks very vulnerable to

packet-injection attacks. In such an attack, the adversary first

acquires the authentic network key by compromising any node

in the large network. In the current ZigBee security architec-

ture, a ZigBee device is considered legitimate by its neighbors

as long as it shows the knowledge of the correct network key

by appending an authentic MIC in each forwarded/originated

NWK frame. So the adversary can exploit the compromised

network key to inject arbitrary fake NWK frames with forged

content but a valid MIC from spoofed legitimate or even

random device addresses, which can all evade hop-by-hop

message authentication. NWK frames can be classified into

command frames for routing and network management and

data frames carrying APS-layer broadcast/unicast/multicast

data messages. Since NWK command frames and NWK data

frames containing APS-layer broadcast data are only authen-

ticated with the network key, fake packets targeting these

frame types can propagate throughout the entire network to

be falsely accepted by every node, leading to severe disruption

1AES-CCM stands for Advanced Encryption Standard-Counter with Ci-

pher Block Chaining-Message Authentication Code.

of network operations and quick depletion of device batteries.

Even if some NWK data frames such as those carrying APS-

layer unicast data can be additionally authenticated by an

APS MIC based on a non-compromised end-to-end link key,

fake packets involving these frame types can only be detected

by the APL entity at the final destination and would have

consumed massive network resources for being relayed along

multi-hop paths. An intuitive countermeasure against such

packet-injection attacks is to replace the common network key

with unique node-dependent keys to (re)generate and verify

the NWK MICs at every hop towards the destination. This

plausible defense would involve a major change to the NWK

layer of the ZigBee specification and is thus impractical.

In this paper, we present PhyAuth, a PHY hop-by-hop mes-

sage authentication framework that complements the current

ZigBee NWK hop-by-hop message authentication method.

The key idea of PhyAuth is to let each ZigBee transmitter em-

bed into its PHY signals a PHY one-time password (called

POTP) derived from a device-specific secret key. An authentic

POTP serves as the transmitter’s PHY transmission permis-

sion for the corresponding NWK frame. A verifier authen-

ticates a ZigBee transmitter by detecting and verifying the

POTP from its PHY signals. Verifiers can be normal Zig-

Bee receivers or dedicated intrusion detection systems (IDS)

not engaged in normal ZigBee communications. If a valid

POTP cannot be detected, verifiers drop the corresponding

NWK frame without any further processing; they can also

send an alert message to the network administrator which can

physically locate and remove illegitimate transmitters. POTP

generation and verification use any standard cryptographic

hash function implemented in software or hardware.

PhyAuth includes three methods—VarChip, VarAmp, and

VarPhase—that explore different features of ZigBee PHY

frames (Fig. 2) to embed a POTP. In particular, ZigBee uses

the IEEE 802.15.4 PHY layer which explores Direct Sequence

Spread Spectrum (DSSS) to improve interference and noise

resilience (§2.2). Each 4-bit ZigBee symbol from the MAC

layer is spread to a predefined 32-chip pseudorandom noise

(PN) sequence at the transmitter. VarChip sends a POTP by

substituting it for some chips in the PN sequences. In ad-

dition, ZigBee adopts offset quadrature phase-shift keying

(OQPSK) to (de)modulate the PN sequences outputted by

DSSS. VarAmp embeds a POTP by increasing (or decreasing)

the amplitude of an OQPSK symbol to convey a bit-1 (or

bit-0). Finally, VarPhase embeds a POTP by manipulating the

phase shifts between consecutive OQPSK signals according

to predefined parameters. All three schemes only involve ad-

ditional processing steps to existing PHY signal processing

operations in ZigBee devices. In addition, they can be used

independently or collectively as needed.

PhyAuth has many nice features that render a practical and

effective defense against packet-injection attacks. (1) It is

invulnerable to single point of compromise. Since POTPs

use device-specific secret keys, the adversary can only use a

2 32nd USENIX Security Symposium USENIX Association

compromised device itself to inject fake packets instead of

impersonating other devices as in the case of message authen-

tication based on the single network key. Continuous fake

packets originating from the compromised device make it

easily identifiable if the network administrator adopts fake-

packet traceback defenses. (2) It is standard-complaint. The

ZigBee specification defines the NWK and APL layers and

assumes the use of IEEE 802.15.4 MAC and PHY layers.

The actual PHY implementation (i.e., signal processing) is

up to each device manufacturer as long as it offers proper

services to the MAC layer. PhyAuth does not modify the

ZigBee NWK/APL/MAC layers and only involves additional

simple PHY processing logics. (3) It is backward-compatible.

PhyAuth involves no hardware modification and can be imple-

mented as a firmware update with slightly modified PHY sig-

nal processing logics. (4) It is low-intrusive. PhyAuth incurs

a negligible negative impact on ZigBee PHY communication

performance. ZigBee devices not implementing PhyAuth are

oblivious to the POTPs embedded in PHY signals and can

receive packets as usual. (5) It is resilient to fake and replayed

POTPs. (6) It is computationally efficient due to using a stan-

dard hash function for POTP generation and verification.

We prototype PhyAuth on Universal Software Radio Pe-

ripheral (USRP) devices and thoroughly evaluate its perfor-

mance in three representative environments: a laboratory

room, a hallway, and an apartment. Our results show that

PhyAuth can extract and verify POTPs from legitimate pack-

ets with an average false-negative rate of 0.8%. In addition,

PhyAuth is highly resilient to fake packets with forged or

replayed POTPs with an average false-positive rate of 0.01%.

Moreover, PhyAuth has a negligible negative impact on nor-

mal ZigBee data transmissions.

2 ZigBee Basics
2.1 ZigBee Security 101
The ZigBee security architecture extends the basic security

services provided by the underlying IEEE 802.15.4. It as-

sumes an “open trust” model such that the protocol stack lay-

ers trust each other and that the layer that originates a frame is

responsible for initially securing it. ZigBee communications

are secured with 128-bit keys used with symmetric-key cryp-

tographic building blocks including AES-CCM (an authen-

ticated encryption algorithm) and AES-MMO (the Matyas-

Meyer-Oseas hash function based on AES-128) [3].

ZigBee uses an entity known as the Trust Center to authen-

ticate joining devices, distribute keys, and manage security

policies. ZigBee supports two security models. There is ex-

actly one active Trust Center (typically the ZigBee coordina-

tor) in the centralized security model, while all ZigBee routers

can act as the Trust Center in the distributed security model.

The decision to use a centralized or distributed security model

is made when the network is formed and cannot be changed

afterward. Our PhyAuth can support both security models.

Broadcast and all NWK communications are secured with

a 128-bit common network key in both distributed and cen-

tralized security models. Each device obtains the network

key from the Trust Center in a secure fashion when admitted

into the network. In addition, a ZigBee device is considered

legitimate by its neighbors as long as it can send correctly

formed NWK frames secured with the active network key.

End-to-end ZigBee communications are secured with a 128-

bit link key. In particular, unicast communications between

two APL peer entities are secured by a 128-bit application
link key uniquely shared by the two devices, neither of which

is the Trust Center. An application link key can be manually

configured or established through the Trust Center which gen-

erates a key and sends it securely to two requesting devices.

Each ZigBee device also maintains a 128-bit Trust Center
link key for securing APS messages with the Trust Center

which can be either global or unique for each device. Trust

Center link keys may also be negotiated at the APL layer with

a Certificate-Based Key Exchange protocol [3]. Fig. 2 shows

the IEEE 802.15.4/ZigBee frame structure with all possible

security features. MAC security can be optionally used based

on the ZigBee keys. Both NWK and APS security can use

only encryption, only authentication, or both. The MIC length

can be 32, 64, or 128 bits in both NWK and APS frames.

2.2 ZigBee PHY Operations

ZigBee Transmitter. Fig. 16(a) shows how a ZigBee de-

vice transmits RF signals. Specifically, ZigBee first employs

Direct Sequence Spread Spectrum (DSSS) to spread the bit-

stream from the MAC layer. Each byte of the bitstream is

divided into two 4-bit ZigBee symbols with each mapped to

a specified 32-chip PN sequence which is further modulated

using OQPSK with half-sine pulse shaping. In particular, the

odd and even chips are modulated as the in-phase (I) and

quadrature (Q) components of the carrier wave, respectively.

Both in-phase and quadrature chip sequences go through a

half-sine pulse shaping module to shape the chips to a sinu-

soidal wave. Particularly, a chip-1 (or chip-0) is shaped to a

positive (or negative) half-sine. Additionally, the quadrature

chip sequence has a half-chip delay. Finally, the in-phase and

quadrature signals are combined and transmitted to the air.

ZigBee Receiver. Fig. 16(b) shows the workflow of a ZigBee

receiver. After receiving RF signals, the ZigBee receiver uses

an Analog-to-digital converter (ADC) to digitize them into

I/Q samples. Next, the ZigBee receiver uses the phase shift

between consecutive I/Q samples to demodulate ZigBee sym-

bols. Specifically, the phase shifts between consecutive I/Q

samples are computed from arctan(Z(n)∗Z∗(n−1)), where

Z∗(n−1) is the conjugate of Z(n−1). ZigBee outputs a chip-

1 if the phase shift is bigger than 0◦ and otherwise a chip-0.

After collecting a sequence of chips, ZigBee converts every

32-chip PN sequence to a 4-bit ZigBee symbol. However,

due to noise and interference, some chips could be corrupted

during transmission, leading to 32-chip PN sequences that do

not match any of the 16 valid sequences. So ZigBee selects

USENIX Association 32nd USENIX Security Symposium 3

the closest symbol with the smallest Hamming distance. In

addition, users can define a correlation threshold to control

the maximum Hamming distance between the received and

the predefined 32-chip sequences that the ZigBee receiver

can tolerate. Finally, the ZigBee receiver passes the decoded

packets to the MAC layer.

3 PhyAuth Design

In this section, we first outline the PhyAuth workflow. Then

we illustrate the generation and verification of POTPs. Finally,

we present three schemes for embedding, transmitting, and

extracting POTPs at the PHY layer.

3.1 PhyAuth Workflow
PhyAuth consists of two steps. (1) In the sending step, every

legitimate ZigBee transmitter initiating or forwarding a packet

must embed a POTP into the PHY signals of the preamble

sequence in the 802.15.4/ZigBee frame (Fig. 2). It is worth

noting that no change is made to the frame structure and

standard frame processing at MAC/NWK/APS layers. (2) In

the receiving step, every ZigBee receiver hearing the packet

acts as a POTP verifier to extract and verify the POTP from

the PHY signals of the preamble sequence. Only the packet

with a valid POTP is passed to MAC/NWK/APS layers for

routine ZigBee processing. The ZigBee receiver simply drops

the packet without a valid POTP and can optionally notify the

network administrator which can take further actions such as

locating and excluding the network intruder. Since preamble

processing is done at every ZigBee receiver regardless of

whether it is the intended receiver, PhyAuth incurs negligible

additional computational overhead for a simple bit-wise POTP

comparison and an optional real-time hash operation.

3.2 POTP Generation and Verification
A POTP refers to a cryptographic and unforgeable binary

sequence used for authorizing ZigBee devices to transmit

packets within a ZigBee network. PhyAuth uses the following

process for constructing and verifying POTPs.

POTP Generation. PhyAuth uses standard ZigBee security

keys to construct POTPs by combining the HMAC-based

OTP (HOTP) algorithm defined in RFC 4226 [1] and the

Time-based OTP (TOTP) algorithm defined in RFC 6238 [2].

HOTP and TOTP are widely used in commercial two-factor

authentication systems such as Google Authenticator [5] and

Duo [4]. Both HOTP and TOTP use a secret key K known

only to the HOTP/TOTP generator and verifier. The HOTP

value is generated as HOTP(K,T) = Truncate(HMAC(K,C)),

where C denotes an increasing 8-byte counter, and Truncate
represents the function that converts an HMAC value into a

HOTP value as defined in [1]. In contrast, the TOTP value is

computed as TOTP(K,T) = Truncate(HMAC(K,T)) by replac-

ing the counter C with the time factor T derived from a time

reference and a time step.

The ZigBee transmitter generates the POTP value as

POTP(K,T,SN,src-addr) =

Truncate(HMAC(K,T,SN,src-addr)) ,
(1)

where K denotes a standard ZigBee security key; T is derived

from a time reference and a time step; SN denotes the 8-bit

monotonically increasing sequence number in the 802.15.4

MAC frame header; src-addr is the transmitter’s 64-bit MAC

address. The (T , SN, src-addr) triple serves as a time-based

device-specific counter value that makes the resulting POTP

both device-dependent and time-dependent with the desired

one-time property. HMAC(·) can use any cryptographic hash

function implemented in software or hardware, such as AES-

MMO (the standard ZigBee hash function [3]) or SHA-2

available on many commercial ZigBee hardware including

CC1352P [8], CC2652P [9], and CC2652R [10]).

POTP Length. The HOTP/TOTP value should be at least

31-bit long for sufficient resilience to brute-force attacks [1,2].

So we require the POTP length to be at least 31 bits as well,

e.g., 32/64/128 bits to match the security strength of MICs at

NWK/APS layers (Fig. 2). The longer the POTP, the higher

the attack resilience, the larger the related overhead, and vice

versa. Such security-overhead trade-offs are analyzed in §4.

Time-step Size. The time factor T is an integer and repre-

sents the number of time steps between the initial counter

time T0 and the current Unix time. More specifically, let X
represent the time step in seconds and T0 denote the Unix

time to start counting time steps. Both X and T0 are system

parameters and must be securely conveyed to each ZigBee

device and POTP verifier when they join the system. We have

T = (current Unix time−T0)/X , where the default floor func-

tion is used in the computation. The time-step size X is set

to less than the minimum time taken to wrap around the 8-

bit MAC frame sequence number, which can be estimated

as a common network parameter per the concrete ZigBee

application and shared with all ZigBee devices.

Choice of Secret Key K. We use standard ZigBee security

keys for the secret key K to generate the POTP and face three

choices. As the first choice, K can be the common ZigBee

network key, in which case a POTP can be verified by every

ZigBee device and also dedicated verifiers that know the net-

work key by default. Although simple, the exposure of the

network key enables the adversary to derive a valid POTP

for any illegitimate ZigBee device. As the second choice, K
can be the transmitter’s unique Trust Center link key which

is known to the Trust Center and can be loaded to dedicated

verifiers not engaged in ZigBee network operations. This op-

tion provides higher attack resilience because a compromised

Trust Center link key allows the adversary to successfully

impersonate the corresponding device only.

We opt for the last choice by setting K to an application

link key shared between the transmitter and its neighbor(s). In

particular, the ZigBee NWK layer has a neighbor-discovery

4 32nd USENIX Security Symposium USENIX Association

process that allows each device to discover and record one-

hop neighbors for routing. We propose to use the standard

ZigBee procedure (§2.1) to establish a unique application

link key between any two neighboring ZigBee devices, as

well as a common device-specific application link key each

device shares with all its neighbors. Consider an arbitrary

ZigBee transmitter i which has a common application link

key ki known to all its neighbors and a unique application

link key ki, j with its neighbor j. Transmitter i uses ki as K
to generate the POTPs for broadcast packets, which can be

verified by all its neighbors; it uses ki, j to derive the POTPs

for unicast packets destined for device j, which can only be

verified by device j. Since the Trust Center helps generates all

application link keys in the ZigBee network, it can securely

distribute all of them to dedicated POTP verifiers for them to

validate all the POTPs.

POTP Verification. Let δ denote the integer-valued maxi-

mum possible clock drift normalized by the time-step size X
between two ZigBee devices. Also assume that the current

time-step window is Tc. Each POTP verifier extracts a POTP

from the PHY signals of each incoming packet’s preamble

sequence and then verifies it in two steps for each time factor

T ∈ [Tc − δ,Tc + δ]. (1) Check if the MAC frame sequence

number is the largest it has ever seen from this transmitter

in the time-step window T . (2) Use the broadcast/unicast ap-

plication key associated with this transmitter as K to derive

POTP(K,T , SN, src-addr) and check its equality with the ex-

tracted one. If either step fails, the POTP is considered invalid

for the time-step window T . If the two-step verification fails

for all T ∈ [Tc−δ,Tc+δ], the verifier considers the transmitter

illegitimate, drops the packet, and optionally reports this event

to the network administrator. Otherwise, it passes the packet

to the upper layers for routine ZigBee processing. The POTP

verification involves a processing delay mainly incurred by

at most 2δ+ 1 hash operations with each to compute one

anticipated POTP. If this already small real-time delay is a

concern, each verifier can periodically precompute and store

the POTPs for some future time-step windows. In this case,

the real-time processing delay is reduced to the negligible

time for POTP-table lookup and bit-wise POTP comparison.

3.3 POTP Encoding and Decoding
In this section, we illustrate three schemes to embed, trans-

mit, and extract a POTP from PHY signals of an IEEE

802.15.4/ZigBee frame as shown in Fig. 2. All three schemes

can embed a POTP to the PHY signals of the entire PHY

frame as needed. For simplicity, we just insert the POTP into

the preamble sequence as an example in what follows.

3.3.1 VarChip

POTP Embedding and Transmission. As mentioned in

§ 2.2, IEEE 802.15.4 uses DSSS to improve interference

and noise resilience. In particular, ZigBee transmitters map

every 4-bit ZigBee symbol to a 32-chip PN sequence. Since

interference and noise can corrupt the chip stream during

transmission, the received 32-chip sequences may not exactly

match one of the 16 predefined standard PN sequences. As a

result, a ZigBee receiver compares each received 32-chip PN

sequence with the 16 predefined PN sequences and selects the

corresponding symbol with the minimum Hamming distance.

More importantly, DSSS defines a correlation threshold (e.g.,

12) that can control the maximum Hamming distance between

the received and predefined 32-chip PN sequences, allowing

a tolerance margin for noise and interference resilience. We

propose VarChip that uses the toleration margin to embed a

POTP. Specifically, we replace some chips in a PN sequence

by POTP bits. For simplicity, we illustrate VarChip by embed-

ding POTP bits only into the PN sequence of the 4-byte PHY

preamble, which corresponds to 8 symbols×32 chips/symbol

= 256 chips.

The key issue in VarChip is to determine the number of

the embedded POTP bits and their embedding positions in

the PN sequence of a PHY preamble. Our goal is to embed

as many POTP bits as possible into one PHY packet while

maintaining a very low symbol-error rate at the receiver. Sup-

pose that we embed mc bits into the 32-chip PN sequence of

one symbol at the transmitter. Let St denote the set of chips

in the modified 32-bit PN sequence that differ from those

in the original 32-bit PN sequence. Since there may exist

some common bits between the POTP bits and the chips that

we want to replace in the original 32-bit PN sequence, we

have |St | ≤ mc. In this paper, we consider the worst case, i.e.,

|St |= mc. This means that we need to change mc chips in the

original 32-bit PN sequence. In addition, there may be some

corrupted chips caused by interference and noise during trans-

mission, which we denote by Sc. At the receiver, the hamming

distance between the received and the corresponding 32-chip

PN sequences is dr with the following four cases: vspace-.1in

i St ∩ Sc = /0. None of the embedded POTP bits are cor-

rupted during transmission. So we have dr = |St |+ |Sc|.
ii St ∩Sc �= /0. Not only some embedded POTP bits but also

some original chips are corrupted during transmission. So

we have dr = |St |+ |Sc|− |St ∩Sc|.
iii St ⊆ Sc. All the embedded POTP bits are corrupted during

transmission. So we have dr = |Sc|− |St |.
iv Sc ⊆ St . Only some embedded POTP bits are corrupted.

So we have dr = |St |− |Sc|.
Let θ denote the correlation threshold such that dr must be

≤ θ to ensure the correct decoding of the 32-chip PN sequence

at the receiver. We have the following three cases:

i St ∩Sc = /0 → mc = |St | ≤ θ−|Sc|.
ii St ∩Sc �= /0 → mc = |St | ≤ θ−|Sc|+ |St ∩Sc|.

USENIX Association 32nd USENIX Security Symposium 5

(a) Chip-error distribution over symbols (b) Distribution of chip-error count per symbol (c) Distribution of chip-error position

Figure 3: Chip-error pattern exemplification.

iii St ⊆ Sc or St ⊇ Sc → |Sc|−θ ≤ mc = |St | ≤ θ+ |Sc|.

The maximum value of mc in the latter two cases is greater

than that of mc in the first case, indicating that we can embed

more POTP bits if we replace some or all chips that expect

to be corrupted during transmission. However, due to the ran-

domness of the wireless communication channel, it is almost

impossible to predetermine which chips will be corrupted

during transmission. Consequently, we focus on the first case

to determine the number of POTP bits that we can insert into

a 32-chip PN sequence. Furthermore, the first case indicates

that we should replace chips that cannot be corrupted during

transmission by POTP bits, but each chip in the PN sequence

may be corrupted in practice. Therefore, a more feasible way

is to substitute POTP bits for chips with a low error prob-

ability. So how can a ZigBee transmitter identify the chip

positions with a low error probability in a PN sequence?

We propose to let each ZigBee transmitter periodically es-

timate chip-error patterns from existing ZigBee packets. For

example, 802.15.4/ZigBee uses periodic broadcast beacons

to synchronize the network devices, which can be explored

for our purpose. We use a pair of USRP B210s as the trans-

mitter and receiver to illustrate the estimation process. The

transmitter-receiver distance is set to 1 m, and the SNR is

18 dB. The transmitter sends 10 packets (e.g., beacons or data

packets) within 10 ms to the receiver. So the receiver can get

256×10 = 2560 preamble chips to calculate the chip-error

distribution. Fig. 3(a) shows the distribution of ZigBee sym-

bol positions with chip errors. We can see that about 80% of

chip errors occur in the first symbol of a PHY preamble. So

we can embed POTP bits from the 2nd 32-chip PN sequence

of the preamble. We further check the distribution of the chip-

error count from symbol-2 to symbol-8. Fig. 3(b) shows that

(1) about 89.3% symbols have no chip errors, and (2) about

99% symbols have 2 or fewer chip errors. So we can safely

say that the number of chip errors for symbol-2 to symbol-8

lies in [0,2]. As a result, we can insert at most 7× (θ−2) bits

into the 2nd to 8th 32-chip PN sequences of the preamble. For

example, if θ is 10, we can embed at most 7×8 = 56 POTP

bits into the PN sequence of the preamble. To determine the

embedding positions, we check the distribution of chip-error

positions from symbol-2 to symbol-8. Fig. 3(c) shows that

without considering the 1st and 32nd chips, the chip positions

with the lowest eight chip-error probabilities from low to high

are the 9th, 31st, 4th, 24th, 6th, 7th, 25th, and 18th. Thus, we

can choose these eight positions as the embedding positions

for symbol-2 to symbol-8.

Based on the periodically estimated chip-error pattern, the

transmitter embeds mc POTP bits into a ZigBee symbol. Let

Np denote the number of preamble symbols available for

POTP embedding. So the transmitter can embed an mcNp-bit

POTP into the preamble of the PHY packet.

POTP Extraction. As a one-hop neighbor of the transmitter,

each verifier can estimate the same or highly similar chip-error

pattern. It then extracts the chips at the embedding positions

to construct a candidate POTP for verification.

3.3.2 VarAmp

POTP Embedding and Transmission. As mentioned in

§ 2.2, ZigBee adopts OQPSK with half-sine pulse shaping

to modulate the chip sequence outputted by the DSSS mod-

ule. In particular, the chip sequence is first split into odd and

even chip sequences, which are then assigned to the I and Q

components of the carrier wave, respectively. Specifically, a

chip-1 is encoded as a positive half sinusoid, while a chip-0 is

encoded as a negative half sinusoid. Afterward, the OQPSK

modulator sums the I component with the Q component de-

layed by a half-chip duration. This offset can limit the phase

shift to no more than ±π/2 at a time. OQPSK encodes two

bits per symbol by using four phases: π/4,3π/4,5π/4, and

7π/4, corresponding to four constellation points equispaced

around a circle. We assume that the original four OQPSK

constellation points (symbols) have an amplitude ±√
E.

From the OQPSK modulation process, we can see that the

amplitudes of OQPSK symbols do not carry any information

bits. Therefore, we can leverage the amplitudes of OQPSK

symbols to convey POTP bits. We propose VarAmp to embed

a POTP by dynamically changing the amplitudes of the orig-

inal OQPSK symbols. Specifically, if the POTP bit is 1, we

increase the amplitude of the original OQPSK symbol by a

factor of α (α ≥ 1); if the POTP bit is 0, we decrease the am-

6 32nd USENIX Security Symposium USENIX Association

−α√E/2 −√E/2 −β√E/2 β√E/2 √E/2 α√E/2
I

Q

1101

00 10

11(1)01(1)

00(1) 10(1)

11(0)01(0)

00(0) 10(0)

Figure 4: Constellation diagram for VarAmp.

plitude of the original OQPSK symbol by multiplying a factor

of β (0 < β < 1). Here α and β here are system parameters

whose impact is analyzed in § 5.

Fig. 4 shows the constellation diagram of VarAmp. The

four black points represent the original constellation points

(±√
E/2,±√

E/2). The phase shift between two adja-

cent constellation points is limited to ±π/2, and the am-

plitude of each constellation point is
√

E or −√
E. In ad-

dition, the blue dots at (±β
√

E/2,±β
√

E/2) and red dots at

(±α
√

E/2,±α
√

E/2) are POTP-constellation points. The

bit value in parentheses represents the POTP bit. In addi-

tion, the two POTP-constellation points in each quadrant cor-

respond to the same data symbol but different POTP bits.

For example, the original constellation point for the OQPSK

symbol “11" is (
√

E/2,
√

E/2). The transmitter sends

(β
√

E/2,β
√

E/2) for a POTP bit-0 and (α
√

E/2,α
√

E/2)
for a POTP bit-1.

We have two remarks to make. First, the larger α can in-

duce higher transmission power. So α cannot be too large in

practice due to many constraints. For example, FCC often

imposes an upper limit on the transmission power, and the

transmitter may have low energy residue. Second, similar to

VarChip, VarAmp can embed a POTP into the preamble and

other fields of a PHY packet.

POTP Extraction. The verifier extracts a POTP according to

the constellation diagram of VarAmp. In particular, the verifier

decodes POTP bits by checking the distances between the

received data symbols and POTP-constellation points (blue

and red dots) in Fig. 4. The verifier determines the POTP-

constellation point closest to each received symbol and then

decodes the embedded POTP bit as either 1 or 0.

-1

0

1

A
m

pl
itu

de

I
Q

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (s)

-2

0

2

A
m

pl
itu

de I+Q

Figure 5: Half-sine wave for a zero-symbol chip sequence.

0 5 10 15
Time (s)

-pi/4

0

pi/4

P
ha

se
 (

R
ad

ia
n)

Figure 6: Phase shift for a zero-symbol.

3.3.3 VarPhase

POTP Embedding and Transmission. ZigBee uses phase

shift between consecutive I/Q samples to demodulate ZigBee

symbols. Specifically, ZigBee calculates the phase shift be-

tween two consecutive complex samples Z(n) and Z(n−1)
by using arctan(Z(n)∗Z∗(n−1)), where Z∗(n−1) is the con-

jugate of Z(n−1). ZigBee outputs a chip-1 if the phase shift

is bigger than 0◦ and otherwise a chip-0.

Based on the fact that the decoding of the chip value only

relies on the sign (±) of the phase shift, we propose VarPhase,

where legitimate transmitters embed a POTP into PHY pack-

ets by manipulating the phase shift between consecutive I/Q

data samples. Specifically, when the POTP bit is 0, the orig-

inal phase shift Δφo between two consecutive I/Q samples

is scaled by μ (μ ≥ 1); when the POTP bit is 1, the original

phase shift Δφo is scaled by λ (λ > μ).

We first check the original phase shift between consecutive

I/Q samples in PHY signals. The top figure in Fig. 5 shows

the original half-sine waveform of a zero-symbol 32-chip PN

sequence. The time duration of the zero-symbol is 16 μs. Each

chip time (i.e., 1 μs) contains four discrete sampling points.

We then merge the I and Q waveforms and get the resulting

signal shown in the bottom figure of Fig. 5. Based on the

summation signal, we further calculate the original phase shift

between every two consecutive I/Q samples. Fig. 6 shows the

original phase-shift sequence. We can see that the original

phase shift Δφo could be π
4 or −π

4 . Suppose that the current

I/Q sample is (Asinφo,Acosφo). If the POTP bit is 1, the

next I/Q sample is (Acos(φo +λΔφo),Asin(φo +λΔφo)) and

otherwise is (Acos(φo +μΔφo), Asin(φo +μΔφo)). Similar

to VarChip and VarAmp, VarPhase can embed a POTP into

the preamble and other fields of a PHY packet as needed.

POTP Extraction. To extract a valid POTP, the verifier de-

USENIX Association 32nd USENIX Security Symposium 7

codes POTP bits by checking the phase shift between the

received consecutive complex numbers. Specifically, if the

phase shift is larger (smaller) than an empirical threshold τ, it

decodes the embedded POTP bit as 1 (or 0).

4 Performance and Security Analysis

In this section, we theoretically analyze the POTP-decoding

performance, communication and communication overhead,

and security of VarChip, VarAmp, and VarPhase.

4.1 POTP-decoding Performance
We first analyze the bit error rate (BER) for the POTP. To

make the analysis tractable, the channel is assumed to be Ad-

ditive White Gaussian Noise (AWGN) with mean zero and

power spectral density (PSD) N0/2. We use E to represent

the energy of an original constellation point. We define SNR

as γ = E/N0. According to [19], the original BER for the

OQPSK modulation is erfc(
√

γ/2)/2, where erfc(·) denotes

the complementary error function. Given the encoding pro-

cess in VarChip, its POTP BER at the verifier is the same as

the BER in the original OQPSK. Therefore, we only show the

following results for VarAmp and VarPhase.

Theorem 1. The POTP BER of VarAmp is

PAM
b ≈ erfc((α−β)√γ/2)

2
. (2)

Proof. According to the nearest neighbor approximation [19],

the BER is approximated as
Mdmin

2 erfc(dmin

2
√

N0
), where dmin is

the minimum distance between any two constellation points,

and Mdmin
is the number of neighbors separated by dmin. In

VarAmp, dmin equals (α−β)
√

E, and Mdmin
equals 1. So we

can obtain Eq. (2).

Theorem 2. The POTP BER of VarPhase is

PPH
b ≈ erfc(

√
γsin(

μΔφo

2
)). (3)

Proof. In VarAmp, dmin is 2
√

E sin(μΔφo/2), and Mdmin
is 2.

We thus obtain Eq. (3).

Next, we analyze the data BER of the PHY field (e.g.,

the preamble sequence) carrying POTP bits at the receiver.

Ideally speaking, we would like PhyAuth to induce negligible

changes in the data BER. Similar to the POTP BER, the data

BER of VarChip is the same as that in the original QPSK

constellation. We thus only show the following results for

VarAmp and VarPhase.

Theorem 3. For VarAmp, the data BER is upper-bounded by

PAM
b,data ≈

erfc(β
√

γ/2)

2
, (4)

and lower-bounded by

PAM
b,data ≈

erfc(α
√

γ/2)

2
, (5)

Proof. The larger amplitudes of the data symbols imply a

higher SNR, leading to more error-resilient data transmission.

Therefore, the upper bound of the data BER can be achieved

when the POTP bits are all 0s so that the absolute amplitude

of all data symbols is β
√

γ/2. So we can have Eq. (4). In

contrast, the data BER can be minimized when the POTP bits

are all 1s, so the absolute amplitude of all data symbols is

α
√

γ/2. We thus obtain Eq. (5).

Theorem 4. The data BER of VarPhase is upper-bounded by

PPH
b,data ≈ erfc(

√
γsin(

μΔφo

2
)), (6)

and lower-bounded by

PPH
b,data ≈ erfc(

√
γsin(

λΔφo

2
)), (7)

Proof. According to the nearest neighbor approximation, the

greater distance between two constellation points implies a

lower BER. Therefore, the upper bound of the data BER can

be derived if the distance between the OQPSK constellation

points is 2
√

E sin(μΔφo/2). So we can have Eq. (6). Corre-

spondingly, the lower bound is achieved when the distances

between the OQPSK constellation points are always increased.

In this case, the mutual distance between the QPSK constella-

tion points is 2
√

E sin(λΔφo/2). We thus obtain Eq. (7).

Let p denote the POTP BER of VarChip/VarAmp/VarPhase

as derived above. The probability for each verifier to correctly

decode an Nl-bit POTP is simply (1− p)Nl , which can be

further improved by using error-correction codes such as the

Reed-Solomon code in IEEE 802.15.4 to encode the POTP.

4.2 Communication/Computation Overhead
and Energy Consumption

PhyAuth does not introduce extra ZigBee traffic except the

one-time packets for establishing application link keys, so its

runtime communication overhead is negligible.

The computation overhead and energy consumption of

PhyAuth are dominated by the HMAC(·) operation in Eq. (1)

for generating/verifying a POTP. Each HMAC operation in-

volves two passes of a cryptographic hash function such as

SHA-1/SHA-2/AES-MMO. The HMAC input is 128-bit long,

corresponding to the bit-wise XOR on a 128-bit application

link key, a 32-bit time factor T , a 64-bit MAC address, and

a 8-bit frame sequence number. Each intermediate ZigBee

node (i.e., router) performs one HMAC operation to verify the

POTP in the incoming packet and the other to generate a new

POTP in the outgoing packet to the next hop. In contrast, each

intermediate node uses the 128-bit network key to perform

8 32nd USENIX Security Symposium USENIX Association

two AES-CCM operations on an input up to 100 bytes long

in the current ZigBee security architecture, one for verifying

the NWK MIC in each incoming packet and the other for

regenerating it for the outgoing packet.

We use the benchmark results in the TI report [6] to com-

pare PhyAuth with the original ZigBee hop-by-hop message

authentication method. Assume that the input length of AES-

CCM and SHA-224 (an SHA-2 hash function) is 64 bytes.

For hardware implementations of AES-CCM and SHA-224

in the popular SimpleLink CC13x2/CC26x2 ZigBee devices,

the duration of an AES-CCM operation with a 128-bit key

is 0.041 ms with the average current of 3.9mA, while the

duration of an SHA-224 operation is 0.024 ms with the aver-

age current of 3.8mA. For Arm Cortex-M4F software-based

implementations of AES-CCM and SHA-224, the duration

of an AES-CCM operation with a 128-bit key is 0.435 ms

with the average current of 3.1mA, while the duration of an

SHA-224 operation is 0.179 ms with the average current of

3.1mA. Since each HMAC operations involves two SHA-224

operations, the energy consumption of each POTP genera-

tion/verification is (2*0.024*3.8)/(0.041*3.9)≈ 1.1 times that

of each NWK MIC verification/generation for hardware im-

plementations and (2*0.179*3.1)/(0.435*3.1)≈ 0.8 times for

software implementations. The actual POTP involves an 128-

bit input, while the real NWK MIC can involve an input up to

100 bytes long. It is safe to say that the computational delay

and energy consumption of the POTP generation/verification

in PhyAuth are at least as good as the NWK-layer MIC

generation/verification in the ZigBee security architecture.

PhyAuth does add extra overhead for per-hop POTP verifica-

tion/generation involving legitimate ZigBee packets, which

can be easily mitigated. In particular, the network adminis-

trator can turn off the NWK-layer MIC operation by setting

the proper option bits in the auxiliary NWK header when

PhyAuth is always activated or on demand, e.g., when there

is evidence of huge fake traffic.

The huge energy savings of PhyAuth lie in its capability

to stop the multi-hop or network-wide transmissions of fake

packets. Without PhyAuth in place, a fake unicast packet sent

over a n-hop path involves 2n−1 AES-CCM operations (two

by each intermediate node and one by the destination), and a

fake broadcast packet to a network of N nodes involves up to

2N AES-CCM operations (two by each node). With PhyAuth

in place, a fake unicast/broadcast packet with an incorrect

POTP but a correct NWK MIC can be immediately detected

and dropped by the legitimate neighbors of the attacker device

after each performs one POTP verification.

4.3 Security Analysis

We assume that attackers can use commodity software-defined

radios like USRPs to send fake ZigBee packets with an arbi-

trary spoofed address. By continuously transmitting fake pack-

ets, attackers aim to disrupt network operations by consum-

ing the network bandwidth as well as the processing power,

memory, and battery of ZigBee devices. Attackers are also

assumed to be computationally bounded and cannot break

the cryptographic primitives used by PhyAuth. ZigBee and

all other wireless networks are vulnerable to naive jamming

attacks that use random signals to jam the entire frequency

band. How to deal with such traditional jammers is beyond

the scope of this paper.

We first consider external attackers that do not know the

authentic network key of the target ZigBee network. Without

PhyAuth in place, fake packets do not carry a correct NWK

MIC and thus cannot pass the original hop-by-hop message

authentication that involves an AES-CCM-based MIC verifi-

cation. With PhyAuth in place, external attackers must insert

a forged POTP into the PHY signals of each fake packet.

As long as the POTP value is long enough (say, L ≥ 32 bits

per the HOTP security recommendation [1]), the probability

1/2L that fake packets with a randomly forged POTP pass

PhyAuth detection can be made very small. Since POTP veri-

fication can be computationally much more efficient than an

AES-CCM-based MIC verification (§4.3), it is also computa-

tionally beneficial to filter fake packets with PhyAuth before

invoking the NWK MIC verification.

We then consider internal attackers that have compromised

an arbitrary node A to get the authentic network key. Without

PhyAuth in place, an internal attacker can use the compro-

mised network key to send fake packets in the name of any

spoofed node, say B. Since such fake packets carry an au-

thentic NWK MIC, they can pass hop-by-hop NWK-layer

message authentication to reach the intended destinations.

With PhyAuth in place, the internal attacker must send the cor-

rect POTP for each fake packet purportedly sent by B, which

succeeds with a negligible probability 1/2L. Fake packets

without an authentic POTP can be immediately detected and

dropped by the legitimate one-hop neighbors of the attacker.

Since impersonating arbitrary nodes to send fake packets is

no longer feasible, internal attackers can only use the com-

promised node A to send fake packets which carry correct

POTPs and also NWK MIC values. Although such fake pack-

ets can evade hop-by-hop message authentication by PhyAuth

and also the ZigBee NWK layer, they make A easily identifi-

able if the network administrator employs simple fake-packet

trackback mechanisms.

PhyAuth is highly resilient to the replay attack as well. In

particular, each POTP value is dependent on the transmit-

ter’s MAC address, MAC frame sequence number, and the

time factor, it satisfies the one-time property required of an

OTP algorithm. In addition, since the security key for gen-

erating POTPs is the broadcast/unicast application link key

each ZigBee transmitter shares with its authenticated one-hop

neighbors, each POTP can only be used in the one-hop neigh-

borhood of the corresponding transmitter. Therefore, both

external and internal attackers cannot replay a sniffed POTP

to impersonate the target transmitter in its vicinity or other

areas of the ZigBee network. This also implies that PhyAuth

USENIX Association 32nd USENIX Security Symposium 9

does not have a higher time synchronization requirement than

the current ZigBee network to deal with the replay attack.

Finally, the adversary may compromise a neighboring node

A of a target node B to acquire its broadcast/unicast appli-

cation key to generate B’s valid POTPs. But the adversary

cannot use such valid POTPs to send fake packets without be-

ing detected, as these POTPs can only be used in B’s one-hop

neighborhood and thus can be detected by B itself.

5 Performance Evaluation

In this section, we thoroughly evaluate PhyAuth using USRP

experiments. In what follows, we first describe our experi-

mental setup. Then we evaluate the performance of the three

schemes under different scenarios.

5.1 Experimental setup

We implement PhyAuth with three USRP devices as the hard-

ware platforms. Specifically, we connect one N210 USRP to

a Dell laptop with an Ethernet cable and use it as the ZigBee

receiver. One B210 USRP serves as the ZigBee transmitter,

and the other B210 USRP acts as the dedicated verifier. The

two B210 USRPs are connected to two Dell laptops which

have two Intel 4.7 GHz i7 processors where all the compu-

tations are executed. In addition, we implement the three

PhyAuth schemes (i.e., VarChip, VarAmp, and VarPhase) on

GNU Radio by modifying the open source code of IEEE

802.15.4 PHY [15]. We use the Nyquist sampling rate 4 MHz

(i.e., twice the bandwidth). SHA-1 is used to implement the

HMAC function in Eq. (1) to generate POTPs of 32 bits or

longer with the time step X set to 30 s. We embed each POTP

into randomly generated data packets with a constant payload

length of 100 bytes. Additionally, we use three representative

physical environments in the evaluations: (1) a laboratory

room with the size of 8m× 6m (Fig. 7(a)), (2) a hallway

(Fig. 7(b)), and (3) an apartment (Fig. 7(c)).

In our experiments, we evaluate the impact of the dis-

tance and the channel SNR. Specifically, in the laboratory

room and the hallway, the transmitter-receiver and transmitter-

verifier distance settings include 1 m, 4 m, 7 m, and 10 m. The

receiver-verifier distances are fixed to about 2 m. In the apart-

ment, we deploy the receiver and the verifier in the kitchen,

and the transmitter in bedroom 1 or 2. The transmitter-receiver

and transmitter-verifier distances are about 9 m. In addition, at

each position, we evaluate the three schemes with 5 different

SNRs: 10 dB, 14 dB, 16 dB, 18 dB, 20 dB. The experienced

channel noises are from the natural physical environment.

For all experimental environments, there are random human

activities such as walking during the experiments.

5.2 Performance Metrics

We use four performance metrics as follows. (1) The first

is the POTP-bit error rate (PBER) defined as PBER = NB
e

NB
L

,

where NB
e denotes the number of received POTP-bit errors,

and NB
L denotes the POTP length. We use PBER to evaluate

the performance of the three schemes on decoding POTPs

from the received data packets. (2) The second is the packet er-

ror rate (PER) defined as PER = NP
e

NP
r
, where Ns

e and NP
r denote

the number of incorrectly received and total ZigBee packets,

respectively. We use PER to evaluate the impact of the three

schemes on normal data transmission/reception. (3) The third

is the false-negative rate (FNR) defined as FNR = NFN
e

NP
r

, where

NFN
e and NP

r denote the number of legitimate packets that are

incorrectly classified as fake packets and total received legiti-

mate packets, respectively. (4) The fourth is the false-positive

rate (FPR) defined as FPR = NFP
e

NP
r

, where NFP
e and NP

r denote

the number of fake packets that are incorrectly classified as le-

gitimate packets, and total received fake packets, respectively.

We use FNR and FPR to evaluate the ability of the three

schemes to distinguish between legitimate and fake packets.

5.3 Parameter Selection
5.3.1 VarChip

In VarChip, we need to configure three parameters: Np, mc,

and Se. In our experiments, the transmitter sends 10 beacon

packets within 10 ms in every time step to determine these

three parameters. Our results show that the chip error pat-

terns are different for different scenarios. We also observe

that about 80% to 95% chip errors occur in the first pream-

ble symbol. Therefore, we can embed POTP bits from the

2nd preamble symbol and set Np to 7 in all experiments. For

the 2nd to 8th preamble symbol, we further check the fre-

quency distribution of chip-error count in each preamble sym-

bol. Then we can find the chip-error count Nec in the 97th

percentile. This indicates 97% preamble symbols have Nec
or fewer chip errors. We then set mc to θ−Nec, where θ is

the correlation threshold and equals 10 in our experiments.

Our experimental results show that mc decreases as SNR de-

creases. This is reasonable because a channel with a lower

SNR can corrupt more chips during transmission. After this,

we check the chip-error position distribution to find mc chip

positions with the lowest error probability and put them in

the embedding-position set Se. In our experiments, we find

that mc and the chip-error position distributions change under

different scenarios (e.g., different SNRs and time). The rea-

son is that the wireless channel is not very stable in different

scenarios. We thus can not list all the settings of the three

parameters for all scenarios due to space limitations. It is

also worth noting that mc is no less than 5 in all experiments,

indicating that we can insert at least 5× 7 = 35 POTP bits

into one packet with VarChip.

5.3.2 VarAmp

In VarAmp, we embed a 128-bit POTP into one PHY packet.

We also need to set up two parameters: α and β. We evaluate

the impact of α and β on PER, LRR, and PBER at different

positions with different SNRs. In our experiments, α is set

10 32nd USENIX Security Symposium USENIX Association

(a) Lab (b) Hallway

Living Room

Kitchen Bedroom #1

Bedroom #2

(c) Apartment

Figure 7: The floor plan of the lab, hallway and apartment.

(a) α/β v.s. PBER (b) λ/μ v.s. PBER

Figure 8: Parameter settings in VarAmp and VarPhase.

to 1.2|1.4|1.6|1.8, β is set to 0.8|0.7|0.65|0.6. So the ratio

α/β is 1.5|2|2.5|3. Fig. 8(a) shows the impact of α/β on

PBER when the SNR is 20 dB. As expected, the PBERs dra-

matically decrease as α/β increases. We can also observe

similar results under other scenarios. Since α/β relates to

the distance between two POTP-constellation points in each

quadrant, the larger α/β, the greater distance between two

POTP-constellation points in each quadrant, the lower detec-

tion error for POTP bits, and versa. In addition, we evaluate

the impact of α/β on PER and have similar observations.

Based on these observations, we set α = 1.8 and β = 0.6 in

our experiments.

5.3.3 VarPhase

Similar to VarAmp, VarPhase can also embed a 128-bit POTP

into one packet. In VarPhase, we need to determine three

parameters: λ, μ, and τ. Similar to VarAmp, we evaluate the

impact of λ and μ on PBER at different positions with dif-

ferent SNRs. In our experiments, λ is set to 1.5, 2, 2.5, 3, μ
is set to 1 for all scenarios. So the ratio of λ to μ is 1.5, 2,

2.5, 3. Fig. 8(a) shows the impact of λ/μ on PBER when

SNR is 20 dB. As expected, the PBERs decrease dramatically

as λ/μ increases. Similar results can also be observed under

other scenarios. Similar to VarAmp, a larger λ/μ indicates a

greater distance between two consecutive constellation points,

inducing a lower detection-error rate for POTP bits. We also

evaluate the impact of λ/μ on PER and have similar obser-

vations. Therefore, we set λ and μ to 3 and 1, respectively.

Additionally, we empirically set τ to 0.85 based on our exper-

imental results.

5.4 PhyAuth Performance
In our experiments, we let the ZigBee transmitter send 5,000

packets with POTPs embedded in their PHY preambles. Since

VarAmp increases or decreases the amplitude of the original

OQPSK symbols if a POTP bit is 1 or 0, the average transmis-

sion power consumption does not change if POTP bit-1 and

bit-0 occur with equal probability. Fig. 9 shows the PBER

performance for our three schemes under all scenarios. As ex-

pected, we can observe the PBER curves for all three schemes

decreases as SNR increases from 10 dB to 20 dB. In addition,

the four curves in each figure are close to each other, indicat-

ing that the distance impact on the three schemes is negligible.

Moreover, compared with VarChip and VarAmp, VarPhase

can achieve lower PBERs, which is consistent with the analy-

sis in Eq. (2) and Eq. (3). Specifically, when the SNR is larger

than 16 dB, the PBERs of VarPhase in all scenarios are be-

low 10%. In addition, when the SNR is larger than 18 dB, the

PBERs of the three schemes in almost all scenarios are below

10%. These results demonstrate that the three schemes can

effectively extract and decode POTPs in practice. We place

more statistical results about PBER in Appendix B. Moreover,

we can encode the POTP with a lightweight error-correction

code (ECC) to dramatically improve the detection perfor-

mance. For example, we can simply repeat every POTP bit

three times and using the majority vote for decoding. Fig. 15

shows the PBER performance for VarPhase at the hallway.

Compared with Fig. 9(h), the PBERs can be reduced about

by 50%. The error tolerance or detection performance can

be further improved if more sophisticated ECCs such as the

Reed-Solomon code are used to encode POTP bits.

Fig. 10 illustrates the PER at the receiver of the three

schemes. According to Eq. (4) to (7), both VarAmp and

VarPhase can lower the BER, resulting in a reduction in PERs

in contrast to the original OQPSK modulation. In addition,

we notice that VarChip can increase the PERs in low SNR

cases. The reason for this is that we replace some chips in the

USENIX Association 32nd USENIX Security Symposium 11

(a) VarChip at Lab (b) VarChip at Hallway (c) VarChip at Apartment

(d) VarAmp at Lab (e) VarAmp at Hallway (f) VarAmp at Apartment

(g) VarPhase at Lab (h) VarPhase at Hallway (i) VarPhase at Apartment

Figure 9: PBER performance.

Figure 10: PER performance. Figure 11: No POTP. Figure 12: Fake POTPs. Figure 13: Replay POTPs.

original PN sequences with POTP bits, thus increasing the

chip-error count in each packet. However, VarChip has almost

no negative impact on the PER when the SNR is above 18 dB

in normal communication environments.

Fig. 14 shows the average FNRs of the three schemes under

different scenarios. In our experiments, we set a threshold to

determine if a decoded POTP is valid or not. Specifically, if the

PBER of a decoded POTP is below the predefined threshold,

we consider the corresponding received packet legitimate and

otherwise fake. In VarChip, VarAmp, and VarPhase, we set the

threshold to 25%. We can see that the average FNRs decrease

as the SNR increases. When the SNR is above 14 dB, the

12 32nd USENIX Security Symposium USENIX Association

Figure 14: FNR performance. Figure 15: PBER (r = 3).

FNRs of the three schemes can be lower than 1%. These

results demonstrate that the three schemes can extract and

verify POTPs from legitimate packets with a very low FNR.

We also experimentally evaluate the attack resilience of our

three schemes. In our experiments, we use one USRP B210

as the attacker to transmit 5,000 packets without any POTP,

with fake POTPs, and with replayed valid POTPs. The verifier

always follows the PhyAuth protocol and tries to detect and

decode POTPs from each received packet regardless of the

adversary’s actions. We then calculate the average PBER from

the extracted POTPs. Fig. 11, Fig. 12, and Fig. 13 show the

average PBER performance of the three schemes under the

three attacks. As we can see, the average PBERs of decoded

POTPs extracted from fake packets in all schemes are above

45%, which is much greater than those of legitimate POTPs.

Furthermore, we evaluate the FPRs of the three schemes with

the same setting for FNRs. As expected, the average FPRs

of VarChip, VarAmp, and VarPhase can be as low as 0.01%.

These results show the high efficacy (i.e., attack resilience) of

the three schemes for fake-packet detection.

To summarize, VarChip, VarAmp, and VarPhase have

slightly different performance for various SNR contexts but

are comparably very good overall. In practice, the network ad-

ministrator can activate one of them based on onsite SNR and

PBER measurements. Any combination of the three schemes

can also be used to improve the error tolerance of POTP trans-

missions or even implement a PHY covert channel without

violating the ZigBee specification.

6 Related Work

The most related work to PhyAuth is PHY authentication

(PLA) in wireless networks. According to [31], we classify

existing works into passive and active PLA schemes.

In the passive PLA schemes, a receiver uses the features

of the received PHY signals to verify the transmitter. The

scheme in [24] uses differential constellation trace figure

(DCTF) to identify ZigBee devices. But the authors only eval-

uate their scheme on 16 ZigBee devices. The scheme in [25]

uses DCTF, carrier frequency offset (CFO), modulation offset,

and I/Q channel offset features extracted from constellation

trace figure (CTF) to train a hybrid ML classifier to iden-

tify different ZigBee devices. Their results show that there

is a 4%–9% loss of classification accuracy under multipath

fading scenarios. The scheme in [34] extracts statistics from

the preambles of ZigBee devices and uses the Mahalanobis

distance and nearest neighbor algorithm to identify 50 Zig-

Bee devices. In addition, the schemes in [23, 26, 32] employ

DNN models to extract latent features from received signals

to distinguish ZigBee devices. But it requires a large amount

of data to train a DNN model. Moreover, their results show

that the performance of the trained models suffers a great loss

of degradation in accuracy for low SNR cases (e.g., SNR <

15 dB). Furthermore, these schemes cannot be deployed on

resource-constrained ZigBee devices.

PhyAuth belongs to active PLA schemes, in which a trans-

mitter constructs an authentication token based on a symmet-

ric key and embeds it into a PHY packet. Then the intended

receiver extracts and verifies the authentication token from the

received packet. The schemes in [33] and [28] superimpose

the authentication token to the original 16-QAM and QPSK

signal. The schemes in [22] and [30] add the authentication

token into the PHY packet by replacing some initialization

bits in the original message with the corresponding token bits.

In [18], Goergen et al. hide the authentication in the chan-

nel fading. Auth-SLO [29] divides the transmitting signals

into two groups according to a pre-shared secret key and ma-

nipulates the transmission power of each group marginally.

The scheme in [16] superimposes an authentication token to

QAM signals by controlling the disturbance of the transmit-

ted symbol around constellation points. The scheme in [20]

embeds a spectrum bit into an OFDM frame by dynamically

changing its cyclic prefix length. Unlike these existing works,

our work focuses on ZigBee networks that have a different

data modulation scheme and thus require different methods

for embedding an authentication token into PHY signals.

7 Conclusion and Discussion

In this paper, we presented the design and evaluation of

PhyAuth, a PHY message authentication framework against

packet-inject attacks in ZigBee networks. ZigBee devices

commonly adopt the wireless microcontrollers (MCUs) made

by major manufacturers such as TI, NXP, Microchip, and

Silicon Labs. To deploy PhyAuth in practice, these ZigBee

MCU makers need to update the firmware to incorporate

the required PHY signal processing logic and also provide

the corresponding API for this additional security feature to

be invoked by the application profile of the corresponding

ZigBee device. PhyAuth does have a few limitations. First,

it incurs additional PHY processing overhead for legitimate

packets due to two HMAC operations for POTP verification

and generation, respectively. This limitation can be mitigated

if the network administrator only activates PhyAuth when a

certain amount of fake traffic is reported, which requires the

deployment of a network intrusion system. Second, some ex-

isting ZigBee devices may not easily support PHY firmware

updates, in which case PhyAuth cannot apply.

USENIX Association 32nd USENIX Security Symposium 13

Acknowledgement

We thank the anonymous reviewers and shepherd for their

invaluable advice that have greatly helped improve the quality

of this paper. This paper was supported in part by U.S. Na-

tional Science Foundation under awards CNS-1652669, CNS-

1824355, CNS-1824491, CNS-1933069, and CNS-2055751.

References

[1] HOTP: An HMAC-Based One-Time Password Algo-

rithm. https://datatracker.ietf.org/doc/html/
rfc4226, 2005.

[2] TOTP: Time-Based One-Time Password Algorithm.

https://datatracker.ietf.org/doc/html/
rfc6238, 2011.

[3] ZigBee Pro Specification. https://zigbeealliance.
org/wp-content/uploads/2019/11/
docs-05-3474-21-0csg-zigbee-specification.
pdf, 2015.

[4] Duo security. https://duo.com/, 2018.

[5] Google 2-Step Verification. https://safety.
google/authentication/, 2018.

[6] Cryptographic Performance and Energy Efficiency

on SimpleLink™ CC13x2/CC26x2 Wireless MCUs.

https://www.ti.com/lit/an/swra667/swra667.
pdf?ts=1662470814398, 2020.

[7] IEEE Standard for Low-Rate Wireless Networks.

https://standards.ieee.org/ieee/802.15.4/
7029/, 2020.

[8] CC1352P SimpleLink™ High-Performance Multi-Ban

Wireless MCU With Integrated Power Ampli-

fier. https://www.ti.com/lit/ds/symlink/
cc1352p.pdf?ts=1662950426920&ref_url=https%
253A%252F%252Fwww.ti.com%252Fproduct%
252FCC1352P%253FkeyMatch%253DCC1352%
2526tisearch%253DSearch-EN-Everything,

2021.

[9] CC2652P SimpleLink™ High-Performance Multi-Ban

Wireless MCU With Integrated Power Ampli-

fier. https://www.ti.com/lit/ds/symlink/
cc2652r.pdf?ts=1662950398077&ref_url=https%
253A%252F%252Fwww.ti.com%252Fproduct%
252FCC2652R%253FkeyMatch%253DCC1352%
2526tisearch%253DSearch-EN-Everything,

2021.

[10] CC2652R SimpleLink™ Multiprotocol 2.4 GHz

Wireless MCU. https://www.ti.com/lit/

ds/symlink/cc1352r.pdf?ts=1662914186089&
ref_url=https%253A%252F%252Fwww.ti.com%
252Fproduct%252FCC1352R, 2021.

[11] Connected Solutions | Market Uses. https://csa-iot.
org/market-uses/, 2021.

[12] Smart Factory Solutions with Zig-

bee. https://www.icpdas-usa.com/
Smart-Factory-Solutions-with-Zigbee.html,

2021.

[13] Innovation & Adoption – Zigbee momentum

in 2021. https://csa-iot.org/newsroom/
innovation-adoption-zigbee-momentum-in-2021/,

2022.

[14] Zigbee FAQ. https://csa-iot.org/
all-solutions/zigbee/zigbee-faq/, 2022.

[15] Bastian Bloessl, Christoph Leitner, Falko Dressler, and

Christoph Sommer. A GNU Radio-based IEEE 802.15.4

Testbed. In FGSN, Cottbus, Germany, September 2013.

[16] Kapil Borle, Biao Chen, and Wenliang Du. Physical

layer spectrum usage authentication in cognitive radio:

Analysis and implementation. IEEE Transactions on
Information Forensics and Security, 10(10):2225–2235,

July 2015.

[17] ShuYu Ding, JianLi Liu, and MingHong Yue. The Use

of ZigBee Wireless Communication Technology in In-

dustrial Automation Control. Wireless Communications
and Mobile Computing, 2021, December 2021.

[18] Nate Goergen, W Sabrina Lin, KJ Liu, and T Charles

Clancy. Extrinsic channel-like fingerprinting overlays

using subspace embedding. IEEE Transactions on In-
formation Forensics and Security, 6(4):1355–1369, Oc-

tober 2011.

[19] A. Goldsmith. Wireless communications. Cambridge

University Press, 2005.

[20] Xiaocong Jin, Jingchao Sun, Rui Zhang, and Yanchao

Zhang. SafeDSA: Safeguard dynamic spectrum access

against fake secondary users. In ACM CCS, Denver, CO,

October 2015.

[21] M.Barathi Kannamma, B.Chanthini, and D.Manivannan.

Controlling and monitoring process in industrial automa-

tion using Zigbee. In IEEE ICACCI, Mysore, India,

August 2013.

[22] Vireshwar Kumar, Jung-Min Park, and Kaigui Bian.

PHY-layer authentication using duobinary signaling for

spectrum enforcement. IEEE Transactions on Informa-
tion Forensics and Security, 11(5):1027–1038, January

2016.

14 32nd USENIX Security Symposium USENIX Association

[23] Kevin Merchant, Shauna Revay, George Stantchev, and

Bryan Nousain. Deep learning for RF device fingerprint-

ing in cognitive communication networks. IEEE Journal
of Selected Topics in Signal Processing, 12(1):160–167,

January 2018.

[24] Linning Peng, Aiqun Hu, Yu Jiang, Yan Yan, and Chang-

ming Zhu. A differential constellation trace figure based

device identification method for ZigBee nodes. In IEEE
WCSP, Yangzhou, China, October 2016.

[25] Linning Peng, Aiqun Hu, Junqing Zhang, Yu Jiang, Ji-

abao Yu, and Yan Yan. Design of a hybrid RF fingerprint

extraction and device classification scheme. IEEE Inter-
net of Things Journal, 6(1):349–360, May 2018.

[26] Linning Peng, Junqing Zhang, Ming Liu, and Aiqun Hu.

Deep learning based RF fingerprint identification using

differential constellation trace figure. IEEE Transac-
tions on Vehicular Technology, 69(1):1091–1095, Octo-

ber 2019.

[27] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-

demand distance vector (AODV) routing. RFC 3561,

July 2003.

[28] Yachao Ran, Harith Al-Shwaily, Chaoqing Tang,

Gui Yun Tian, and Martin Johnston. Physical layer

authentication scheme with channel based tag padding

sequence. IET Communications, 13(12):1776–1780,

July 2019.

[29] Ning Xie and Changsheng Chen. Slope authentication

at the physical layer. IEEE Transactions on Information
Forensics and Security, 13(6):1579–1594, January 2018.

[30] Ning Xie, Changsheng Chen, and Zhong Ming. Security

model of authentication at the physical layer and per-

formance analysis over fading channels. IEEE Transac-
tions on Dependable and Secure Computing, 18(1):253–

268, November 2018.

[31] Ning Xie, Zhuoyuan Li, and Haijun Tan. A survey

of physical-layer authentication in wireless communi-

cations. IEEE Communications Surveys & Tutorials,

23(1):282–310, December 2020.

[32] Jiabao Yu, Aiqun Hu, Guyue Li, and Linning Peng. A

robust RF fingerprinting approach using multisampling

convolutional neural network. IEEE Internet of Things
Journal, 6(4):6786–6799, April 2019.

[33] Pinchang Zhang, Jun Liu, Yulong Shen, Hewu Li, and

Xiaohong Jiang. Lightweight tag-based PHY-layer au-

thentication for iot devices in smart cities. IEEE Internet
of Things Journal, 7(5):3977–3990, December 2019.

[34] Xinyu Zhou, Aiqun Hu, Guyue Li, Linning Peng, Yuexiu

Xing, and Jiabao Yu. Design of a robust RF fingerprint

generation and classification scheme for practical device

identification. In IEEE CNS, Washington, DC, June

2019.

A ZigBee Communication Basics

DSSS Spreading

OQPSK ModulatorEven
Chips

Odd
Chips

⊕In-phase

Quadrature

RF-front

ZigBee bitstream
1011…0101

Bit-to-
Symbol

Symbol-to-
Chip

Half-sine
Pulse Shaping

Half-sine
Pulse Shaping

Half-chip
Delay

(a) ZigBee transmitter

OQPSK Demodulator

DSSS De-spreading

RF-front
ADC

I/Q
samples

Upper layer Processing

 ∠ܼ(݊) ∗ ܼ∗(݊ − 1)
Chip sequence

Chip-to-Symbol

(b) ZigBee receiver

Figure 16: Illustrations of ZigBee transmitters and receivers.

B Statistical PBER Results

Fig. 17, Fig. 18 and Fig. 19 show the maximum, minimum and

95% confidence intervals of PBERs under different scenarios

for VarChip, VarAmp, and VarPhase.

USENIX Association 32nd USENIX Security Symposium 15

(a) VarChip at Lab (1 m) (b) VarChip at Lab (4 m) (c) VarChip at Lab (7 m) (d) VarChip at Lab (10 m)

(e) VarChip at Hallway (1 m) (f) VarChip at Hallway (4 m) (g) VarChip at Hallway (7 m) (h) VarChip at Hallway (10 m)

(i) VarChip at Room #1 (j) VarChip at Room #2 (k) VarChip at Lab (1 m) (l) VarChip at Lab (4 m)

(m) VarChip at Lab (7 m) (n) VarChip at Lab (10 m) (o) VarChip at Hallway (1 m) (p) VarChip at Hallway (4 m)

(q) VarChip at Hallway (7 m) (r) VarChip at Hallway (10 m) (s) VarChip at Room #1 (t) VarChip at Room #2

Figure 17: Minimum, maximum and 95% confidence intervals of PBER for VarChip.

16 32nd USENIX Security Symposium USENIX Association

(a) VarAmp at Lab (1 m) (b) VarAmp at Lab (4 m) (c) VarAmp at Lab (7 m) (d) VarAmp at Lab (10 m)

(e) VarAmp at Hallway (1 m) (f) VarAmp at Hallway (4 m) (g) VarAmp at Hallway (7 m) (h) VarAmp at Hallway (10 m)

(i) VarAmp at Room #1 (j) VarAmp at Room #2 (k) VarAmp at Lab (1 m) (l) VarAmp at Lab (4 m)

(m) VarAmp at Lab (7 m) (n) VarAmp at Lab (10 m) (o) VarAmp at Hallway (1 m) (p) VarAmp at Hallway (4 m)

(q) VarAmp at Hallway (7 m) (r) VarAmp at Hallway (10 m) (s) VarAmp at Room #1 (t) VarAmp at Room #2

Figure 18: Minimum, maximum and 95% confidence intervals of PBER for VarAmp.

USENIX Association 32nd USENIX Security Symposium 17

(a) VarPhase at Lab (1 m) (b) VarPhase at Lab (4 m) (c) Varphase at Lab (7 m) (d) Varphase at Lab (10 m)

(e) Varphase at Hallway (1 m) (f) Varphase at Hallway (4 m) (g) Varphase at Hallway (7 m) (h) Varphase at Hallway (10 m)

(i) Varphase at Room #1 (j) Varphase at Room #2 (k) Varphase at Lab (1 m) (l) Varphase at Lab (4 m)

(m) Varphase at Lab (7 m) (n) Varphase at Lab (10 m) (o) Varphase at Hallway (1 m) (p) Varphase at Hallway (4 m)

(q) Varphase at Hallway (7 m) (r) Varphase at Hallway (10 m) (s) Varphase at Room #1 (t) Varphase at Room #2

Figure 19: Minimum, maximum and 95% confidence intervals of PBER for VarPhase.

18 32nd USENIX Security Symposium USENIX Association

