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Abstract—Secure and usable user authentication is the first line of defense against cyber attacks on smart end-user devices.

Advanced hacking techniques pose severe threats to the traditional authentication systems based on the password/PIN/fingerprint. We

propose MagAuth, a secure and usable two-factor authentication scheme with commercial off-the-shelf (COTS) wrist wearables with

magnetic strap bands to enhance the security and usability of password-based authentication for mobile touchscreen devices. In

MagAuth, a user enrolls a self-chosen unlock pattern or touch gesture into his touchscreen device by performing it with the same hand

the magnetic wrist wearable is on. The chosen unlock pattern or touch gesture serves as the first authentication factor, and the user’s

behavioral features manifested in the magnetic field changes during his finger movement correspond to the second factor. The user can

unlock his touchscreen device only when both authentication factors can be validated. Comprehensive user experiments confirm the

high security and usability of MagAuth. In particular, MagAuth achieves an average true-positive rate up to 96.3 percent and a false-

positive rate no larger than 8.4 percent. Moreover, we show that MagAuth is highly resilient to various attacks.

Index Terms—Mobile authentication, security, usability

Ç

1 INTRODUCTION

SECURE and usable user authentication is the first line of
defense again cyber attacks on smart end-user devices

like smartphones, tablets, wearables, and smart home devi-
ces. Most such devices store private user information and
are also entry points to home/enterprise networks and the
Internet. A secure authentication scheme can prevent illegit-
imate users from logging into a protected device to access
sensitive information therein or even launch more severe
attacks on the network with the hacked device as the step-
ping stone. In contrast, a usable authentication scheme
means that it should be very easy to use by the legitimate
user. There is often a natural conflict between the security
and usability requirements. Popular authentication schemes
can be classified into the following categories with each hav-
ing its merits and drawbacks.

Password-based authentication is the most widely used.
Familiar examples include PINs, alphanumeric passwords,
Android pattern locks, etc. Complex passwords relate to
stronger security but lower usability, as they are more diffi-
cult to remember and input, especially by senior citizens,
children, and people with cognitive disability.

Biometric authentication is also seeing popular usage.
Examples are fingerprint and face authentication functions
on the latest mobile devices. Although very easy to use, bio-
metric authentication has a known disadvantage that a user
cannot alter his1 biometric identifier once cloned by an
attacker. There has been a lot of news on successful hack-
ings of fingerprint and face scanners on both Android and
iOS devices [1], [2], [3], [4]. For instance, FaceID released by
Apple can be cracked with a composite mask [3] and cannot
distinguish family members who are not even alike [4].

Hardware token-based authentication explores an extra
miniature device each legitimate user should own and
carry. When the user tries to log into his device, the token
transmits a user-chosen password to the device on behalf of
the user. Such devices [5], [6] have to be specially built and
are not available on the market. In addition, these techni-
ques actually authenticate the hardware token rather than
the user to the device, so an attacker stealing the token can
log into the device.

Touch-based authentication harnesses a user’s behav-
ioral biometrics exhibited in his random or predefined fin-
ger-touch gestures performed on touchscreen devices. Most
existing research on touch-based authentication uses behav-
iorial features such as stroke time, touching pressure, device
motion, the shape of the swiping trajectories, and tapping
rhythms passively recorded by the device [7], [8], [9], [10],
[11]. These features are relatively simple and vulnerable to
mimicry attacks [12] because they are only related to the fin-
gertip. Another category of systems actively generate acous-
tic or vibration signals and explore a user’s unique response
to the signals for authentication [13], [14], [15]. The systems
using acoustic signals [13] are highly susceptible to
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environmental interference, and those based on device
vibration [14], [15] may generate audible noise which is not
appropriate for many naturally quiet environments such as
the meeting room and classroom.

In this paper, we propose MagAuth, a secure and usable
two-factor authentication scheme with commercial off-the-
shelf (COTS) wrist wearables with magnetic strap bands/
clasps as hardware tokens to enhance the security and
usability of password-based mobile authentication techni-
ques. MagAuth is motivated by three observations. First, a
cheap magnetometer is available on growing end-user devi-
ces such as smartphones and IoT devices. Second, there has
been a massive production of wrist wearables [16], [17] such
as smartwatches and fitness trackers that are equipped with
magnetic strap bands and/or clasps with strong magne-
tism [18], [19], and we refer to such devices as magnetic wrist
wearables hereafter. Last, when a user inputs an unlock pat-
tern or touch gesture on a touchscreen device (say, a smart-
phone or tablet) with the same hand wearing the magnetic
wrist wearable, his finger movement can induce magnetic
field changes that can be sensed by the device’s inertial
magnetometer. Each user’s finger movement relative to his
wrist may be unique enough due to his palm size, finger
lengths, and input habits. For example, when a user inputs
an unlock pattern while wearing a smartwatch with a mag-
netic clasp, his unique finger movement is manifested by
the time sequences of orientation and displacement vectors
from the varying touch points on the touchscreen to the cen-
ter of the magnetic clasp. MagAuth explores such natural
behavioral features to enhance the security of conventional
password-based authentication schemes.

MagAuth is naturally a two-factor authentication
scheme. In particular, a MagAuth user buys a magnetic
strap band/band for his wrist wearable and then enrolls his
self-chosen unlock pattern or touch gesture by performing
it with the same hand the wrist wearable is on. The chosen
unlock pattern or touch gesture serves as the first authenti-
cation factor, and the user’s behavioral features manifested
in the magnetic field changes during his finger movement
correspond to the second factor. The user can unlock his
touchscreen device only when both authentication factors
can be validated. Since there is no need for any specially-
built hardware token or additional user effort, MagAuth
can be highly usable.

MagAuth aims to complement rather than completely
replace password-based authentication techniques for
touchscreen devices. For example, a user needs to input a
password each time he wants to unlock his password-
protected smartphone. A complex alphanumerical
password can obviously enhance his device security. But
average iPhone and Android users unlock their phones
80 and 110 times per day, respectively [20]. It is quite
inconvenient for the user to input the complex password
for each unlocking attempt. With MagAuth in place, the
user can input the complex password only when power-
ing on his smartphone and then use MagAuth along with
a simpler unlock pattern or touch gesture for subsequent
smartphone unlockings. MagAuth can basically apply to
any end-user device with an internal magnetometer and a
touchscreen.

Our contributions can be summarized as follows.

We propose MagAuth, a new two-factor authentication
method to enhance the security and usability of password-
based authentication techniques for smart touchscreen devi-
ces. MagAuth requires a user to input a self-chosen unlock
pattern or touch gesture on the device’s touchscreen with
the same hand wearing a magnetic wearable. The user is
authenticated if the unlock pattern or touch gesture he
inputs and his behavioral characteristics exhibited in the
inputting process both match those stored in the mobile
device. To the best of our knowledge, we are the first to
explore the movement features of a user’s finger relative to
his wrist along with magnetic wrist wearables to achieve
user authentication.

We conduct comprehensive experiments to evaluate the
security and usability of MagAuth. Our experimental stud-
ies involved 23 volunteers and over 1,800 samples. We
show that MagAuth is highly secure with the true-positive
rate up to 96.3 percent and false-positive rate no larger than
8.4 percent in all the testing scenarios. In addition, the
enrollment time and authentication time of MagAuth are
comparable to those of face or finger authentication on
COTS mobile devices. In addition, we use the volunteers to
verify the performance of MagAuth in different application
scenarios with various magnetic bands/clasps and
smartphones.

The rest of this paper is organized as follows. Section 2
introduces the background knowledge about magnetic field
theory and magnetometers. Section 3 presents the MagAuth
design. Section 4 evaluates the performance of MagAuth.
Section 5 discusses the related work. Section 6 concludes
this paper.

2 PRELIMINARIES

For ease of illustration, we assume a smartphone as the tar-
get device to protect, though MagAuth can apply to virtu-
ally any end-user device with an internal magnetometer
and a touchscreen. The smartphone user protects his device
with a strong system password such as an alphanumeric
password or a complex unlock pattern. The user needs to
input his system password when turning on his smartphone
or performing critical operations such as system updates,
which is the current practice even if face or fingerprint
authentication is available. As mentioned, average iPhone
and Android users unlock their phones 80 and 110 times
per day, respectively [20]. MagAuth aims to help the user
unlock his smartphone in a more secure and usable fashion
after the user powers on his smartphone. In this section, we
first introduce some background on magnetic field and
magnetometer to help illustrate the MagAuth design.

2.1 Briefs of Magnetic Field and Magnetometer

A magnet is an object that produces a magnetic field. A per-
manent magnet is made from some magnetized material
and maintains its own magnetic field. In contrast, an electro-
magnet acts as a magnet only when an electric current runs
through it. They have found tremendous household appli-
cations and are available in various shapes and sizes like
rings, bracelets, and watch bands. MagAuth uses COTS
magnetic strap bands with some small magnets embedded
inside them [18] or COTS stainless steel bands with
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magnetic closure [19]. This paper uses the latter ones. The
extension of our studies to other types of magnetic products
is left as future work.

The magnetic moment of a magnet is a vector that char-
acterizes its overall magnetic properties. Consider a bar
magnet as an example. The direction of its magnetic
moment points from its south pole to its north pole, and
the corresponding magnitude relates to how strong and
how far apart these poles are. The magnetic field vector
(MFV) produced by a magnet at any given point is propor-
tional to the magnitude of its magnetic moment [21]. It can
be made from many types of materials such as composites,
alloys, rare-earth elements, and nano-structured materials
[22], [23].

According to the magnetic field theory [24], the magnet-
induced three-dimensional (3D) MFVmeasured by a nearby
magnetometer can be approximated by

Hð~rÞ ¼ �

4pj~rj3
3~rð~m>~rÞ

j~rj2 � ~m

" #
; (1)

� ¼ BrV

4pm0

� m0; (2)

where � ¼ BrV =ð4pm0Þ � m0. Here � is a constant related
with magnetic moment, ~r :¼ hrx; ry; rzi and ~m :¼
hmx;my;mzi represent the 3D distance of the magnet rela-
tive to the magnetometer and directional unit vectors of
magnetic moment, and all the variables take values in the
magnetometer’s coordinate system as is shown in Fig. 2.
m0 is the permeability of a vacuum (unit: N=A2), Br is the
Residual Flux Density (unit: Tesla), V is the volume of the
magnet (unit: m3). Since � is approximately a constant for
each given magnet, the MFV changes relate with the 3D
relative position and direction between the magnetometer
and magnet.

A magnetometer is a standard miniature Hall-effect sen-
sor in smartphones, tablets, and other smart end-user devi-
ces, which detects the Earth’s magnetic field along three
perpendicular axes. The magnetometer is often used as a
compass and crucial for detecting the orientation of the
smartphone relative to the Earth’s magnetic north. The price
of three-axis magnetometers is well below US $1 per device.
The magnetometer outputs a time series of MFV measure-
ments in the format of ht;HxðtÞ; HyðtÞ; HzðtÞi, where t is a
timestamp, and HxðtÞ, HyðtÞ, and HzðtÞ denote the MFV in
micro-Tesla (mT) at time t along the X-axis, Y-axis, and Z-
axis, respectively. Because there exists environmental mag-
netic field such as the geomagnetic field, to measure the
magnetic field induced only by the tiny magnet, we need to
cancel the impact of environmental magnetic field before
further data processing which is demonstrated in Section 3.
We can greatly boost the security strength of mobile devices
by combining magnetic properties with pattern/gesture-
based authentication techniques, as shown in Section 3.

2.2 Swipe Events on Touchscreen Devices

MagAuth collects data about a swipe event on the device
touchscreen as a time series ht; rtouchx ; rtouchy i, where t is the

time stamp of the event, and rtouchx and rtouchy are the x and y
coordinates of the touch point, respectively. It is worth men-
tioning that one finger touch may generate multiple data
samples which have little difference because of impercepti-
ble finger movement. Therefore, we downsample the col-
lected data to facilitate subsequent data processing.

Fig. 1 shows the magnetometer data when a user inputs
the unlock pattern, Pattern 2, in Fig. 6 on the touchscreen
with the upper-left corner as the start point. This experi-
ment used a COTS magnetic clasp [19] and a Samsung Gal-
axy S5 with a magnetometer on the upper-right corner of
the phone front. The phone was placed on the table, and the
sampling rates of the touch sensor and the magnetometer
were both 100 Hz. We derived the touch gesture and MFV
data sequences for the same trajectory after proper time
alignment. The figure clearly demonstrates the nonlinear
relationship between the MFV and relative magnet-magne-
tometer position. In addition, elaborate magnetic motions
can lead to varying MFV data that can be explored for user
authentication.

2.3 Association of Magnetometer and Swipe Events

When the user performs an unlock pattern or touch gesture
with the wrist wearable on the same hand, the relative 3D
magnetometer-magnet position changes with time. The dis-
tance vector ~r and direction vector ~m in Eq. (1) thus both
become a function of time t. So does the MFV measurement
Hð~rÞ. For simplicity, we abuse Eq. (1) without introducing
the variable t and expand it into three equations corre-
sponding to the three axes:

Hx ¼ �½�3rxð�mxrx �myry �mzrzÞ �mxðr2x þ r2y þ r2zÞ�
4pðr2x þ r2y þ r2zÞ5=2

;

(3)

Hy ¼
�½�3ryð�mxrx �myry �mzrzÞ �myðr2x þ r2y þ r2zÞ�

4pðr2x þ r2y þ r2zÞ5=2
;

(4)

Hz ¼
�½�3rzð�mxrx �myry �mzrzÞ �mzðr2x þ r2y þ r2zÞ�

4pðr2x þ r2y þ r2zÞ5=2
:

(5)

Here rx; ry; rz could be expressed as,

rx ¼ rdx þ Dx; ry ¼ rdy þ Dy; rz ¼ rdz þ Dz; (6)

Fig. 1. Illustration of magnetometer and swipe event data.

ZHANG ETAL.: MAGAUTH: SECURE AND USABLE TWO-FACTOR AUTHENTICATION WITH MAGNETIC WRIST WEARABLES 313

Authorized licensed use limited to: ASU Library. Downloaded on March 18,2023 at 05:01:34 UTC from IEEE Xplore.  Restrictions apply. 



where

rdx ¼ roriginx þ rtouchx ; rdy ¼ roriginy þ rtouchy ; rdz

¼ roriginz þ rtouchz : (7)

Here rdx, Dx, and roriginx are the X-axis values of displacement
vectors from the origin of the magnetometer to the touch
point, from the touch point to the magnet, and from the ori-
gin of the magnetometer to that of touch screen, respec-
tively. The illustration is shown in Fig. 2b.

In addition, dividing Eqs. (3) and (4) by Eqs. (4) and (5),
respectively, we obtain

Hx

Hy
¼ 3rxðmxrx þmyry þmzrzÞ �mxðr2x þ r2y þ r2zÞ

3ryðmxrx þmyry þmzrzÞ �myðr2x þ r2y þ r2zÞ�
;

(8)

and

Hy

Hz
¼ 3ryðmxrx þmyry þmzrzÞ �myðr2x þ r2y þ r2zÞ

3rzðmxrx þmyry þmzrzÞ �mzðr2x þ r2y þ r2zÞ�
:

(9)

According to the analysis and derivation process above, we
have three remarks to make for Eqs. (3), (4), and (5).

� Remark 1: Given the value of hroriginx ; roriginy ; roriginz i
and hrtouchx ; rtouchy ; rtouchz i, Eqs. (3), (4), and (5) form
an equation set with six variables: Index ¼
hmx;my; mz;Dx;Dy;Dzi. Table 1 lists the parameter
values used in deriving displacement and orienta-
tion vectors which are stored on the user device.

� Remark 2: Using two pairs of the equation set men-
tioned in Remark 1, we can derive Index with a
known constant �. Here we define hmx;my;mzi and
hDx;Dy;Dzi as the orientation and displacement vectors
of finger movement, respectively. We assume that
the displacement vectors of adjacent two sampling
points from the finger tip to the small magnetic clasp
(i.e., the values of Dx;Dy;Dz) remain unchanged dur-
ing finger movement. The assumption is reasonable
because the interval between two adjacent sampling

points is too short for the change of the finger’s bend-
ing. We can use the optimization methods to solve
the equation set to obtain the values of the two vec-
tors [25]. Note that because of measurement errors of
rorigin, rtouch and ~H, there may be non-negligible
accumulated errors in the final solution such that the
derived orientation vector does not satisfy m2

x þ
m2

y þm2
z ¼ 1. Thus, we use the Levenberg-Mar-

quardt (LM) algorithm because of its computational
efficiency with the constraint mentioned above. In
addition, we take the orientation equation as a con-
straint of the optimization problem. Note that Index
contains the behavioral features of the finger move-
ment which could be used to uniquely identify the
user.

� Remark 3: Using three pairs of Eqs. (8) and (9), we
can obtain Index. Because Eqs. (8) and (9) have can-
celed the impact of the magnetic moment �, user
authentication could succeed for any magnetic strap
band which could induce significant changes in the
magnetometer data. This observation can inspire
common users to utilize our authentication scheme
because there is no specific requirement for selecting
a strap band. Here we also assume that the displace-
ment vectors of three adjacent sampling points from
the finger tip to the small magnetic clasp remain
unchanged during finger movement. Again, we use
the LM algorithm to solve the equation set in our
experiments and evaluation.

The above remarks drive the choice of the unlock pat-
tern or touch gesture in MagAuth. In particular, the first
remark indicates that elaborating unlock patterns or
touch gestures with large position changes can induce
totally different values of Hð~rÞ due to signal attenuation
and the nonlinear relationship of ~r and Hð~rÞ. In reality,
the distinctiveness of Hð~rÞs benefits solving the equation
set. Furthermore, more complex unlock patterns or touch
gestures always induce more elaborate finger movement
which can make the user’s behavioral features more
representative.

To further illustrate these three remarks, we let a user
input the unlock pattern, Pattern 2, in Fig. 6 on the
touchscreen of a smartphone placed on the table. This
experiment used a COTS tiny rectangle magnet (12.7
mm*3.2 mm*3.2 mm) whose magnetic moment is known
and a Samsung Galaxy S5 with a magnetometer on the
upper-right corner of the phone front. The touch sensor’s
and the magnetometer’s sampling rates were both 100 Hz.
Then we derived the displacement and orientation vectors
from the touch-event and MFV data sequences. We utilize
the two methods proposed in Remark 2 and 3 and compare
the curves after resampling. The results are shown in Fig. 3.
The figure clearly verifies the feasibility of our schemes. In
addition, the displacement and orientation readings are

Fig. 2. (a) Illustration of magnet clasp-induced 3D MFV; (b) when a user
inputs an unlock pattern or touch gesture, the inertial magnetometer on
the smartphone generates an MFV sequence.

TABLE 1
Parameters for Deriving Displacement and Orientation Vectors

parameters roriginx roriginy roriginz rtouchz

approximate value (mm) �62.50 2.00 3.00 0.00
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similar for 2-point and 3-point methods as expected. In Sec-
tion 2.4, we discuss how the derived displacement and ori-
entation readings can be used as the second factor during
the authentication process based on the pattern lock or
touch gesture.

2.4 Pattern Lock and Touch Gesture

In this paper, we focus on two authentication modes for
MagAuth: pattern lock and touch gesture. For both modes,
the user should use the same hand wearing the magnetic
wearable for authentication to unlock his smartphone. For
the pattern-lock mode, the user performs a carefully chosen
unlock pattern such as those in Fig. 6. For the touch-gesture
mode, the user uses one or two fingers to perform a self-cho-
sen touch gesture at arbitrary positions on the smartphone’s
touchscreen such as pinch and zoom in Fig. 4.

Muiti-Touch Gesture Data Collection. For an unlock pattern
or a single-finger touch gesture, we can derive one displace-
ment vector and one orientation vector for one trial. It is
more challenging to handle multi-touch gestures. Take the
two-finger touch gesture as an example. The touch sensor
records two time sequences with one for each finger, which
are denoted by rtouch1 ¼ hrtouchx;1 ; rtouchy;1 ; rtouchz;1 i and rtouch2 ¼
hrtouchx;2 ; rtouchy;2 ; rtouchz;2 i, respectively. With rtouch1 and the magne-
tometer data, we can derive one displacement vector for fin-
ger 1, ~Dr1 ¼ hDx1;Dy1;Dz1i. Moreover, the displacement for
finger 2, ~Dr2, could be derived as

Dx2 ¼ Dx1 þ x2!1;Dy2 ¼ Dy1 þ y2!1;Dz2 ¼ Dz1 þ z2!1;

(10)

where hx2!1; y2!1; z2!1i is the distance vector from finger 2
to finger 1. Due to the uniqueness of each user’s palm size,
finger lengths, and swipe habits, these two displacement
vectors may represent a user’s unique behavioral features.
Therefore, we could collect multiple displacement vectors
and one orientation vector for the multi-touch gesture
mode, e.g., hmx;my;mz;Dx1;Dy1;Dz1;Dx2;Dy2;Dz2i illus-
trated in Fig. 4. Then these vectors are fed into the classifica-
tion module to distinguish different users.

3 MAGAUTH DESIGN

In this section, we illustrate the design of MagAuth which
consists of two phases. In the enrollment phase, the user
performs a self-chosen unlock pattern or a single/multi-fin-
ger touch gesture on the touchscreen of his smartphone
which then records the touch and MFV data. In the

subsequent verification phase, the user inputs his unlock
pattern or touch gesture in the same way as in the enroll-
ment phase. The smartphone compares the resulting finger
movement data generated by the inertial magnetometer and
touch sensor with the stored and admits the user if a strong
match can be found. In what follows, we detail the enroll-
ment and verification phases.

3.1 Enrollment Phase

The user opens the MagAuth app and presses a soft or hard
button on the device to start performing an unlock pattern
or a touch gesture. How to select a suitable unlock pattern
or touch gesture is deferred to Section 3.3. The resulting raw
touch and MFV data go through the following Data Prepro-
cessing and Feature Extractionmodules in sequence.

3.1.1 Preprocessing

After the user performs a chosen unlock pattern or touch
gesture, the inertial touch sensor and magnetometer on the
smartphone simultaneously generate a touch-data sequence
and a raw MFV data sequence, respectively. We first sub-
tract the environmental MFV from the raw MFV data to
obtain the net magnet-induced MFV data.

Environmental Magnetic Field Cancellation. Since there
exists long-lasting and stable magnetic field around us
such as Geomagnetic field and the fields induced by men-
tal infrastructures, we prerecord the average strength of
environmental MFV which is assumed to be non-changing
during the short enrollment phase. Then using the attitude
sensor in the smartphone, we derive the values of the envi-
ronmental magnetic field strength along the three axes in
the magnetometer’s coordinate system. The attitude sensor
in most smartphones has its own fixed reference coordi-
nate system (e.g., a reference frame with the X-axis point-
ing towards geomagnetic North and the Z-axis pointing
upward away from the geocenter). Therefore, we first mea-
sure the environmental magnetic field distribution in this
reference system (xrefmag; yrefmag; zrefmag) by using one
magnetometer and aligning it with the reference system in
advance or directly using the magnetometer and the atti-
tude sensor in the smartphne before authentication. Dur-
ing the authentication process, we can get the attitude
sensor readings of the smartphone and derive the rotation
matrix R. By space transformation in Eq. (11), the environ-
mental magnetic field readings along the three axes of the
magnetometer space (xmag; ymag; zmag) could be obtained as
follows,

Fig. 3. 2-point and 3-point displacement and orientation vector calcula-
tions for Pattern 2 in Fig. 6. Fig. 4. Displacement vectors for a multi-touch gesture, ~Dr1 ¼

hDx1;Dy1;Dz1i and ~Dr2 ¼ hDx2;Dy2;Dz2i.
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xmag

ymag

zmag

2
4

3
5 ¼ R

xrefmag

yrefmag

zrefmag

2
4

3
5: (11)

In most real-world scenarios, we just need to consider
the impact of the stable environmental magnetic field
such as the Geomagnetic field and the field induced by
large equipment. Most moving magnetic objects can
hardly be sensed due to the exponential attenuation of
the magnetic field strength with the distance between the
magnet and the magnetometer. Figs. 22 and 23 in Sec-
tion 4.3.1 also verify this claim. As a result, we can use the
environmental magnetic field cancellation method men-
tioned above to cancel the stable environmental magnetic
impact. In addition, if there appears instantaneous elec-
tromagnetic interference during the authentication pro-
cess, we can remove the outliers from the signals before
the final decision.

To increase the distinction of adjacent sampling points to
facilitate solving the equation set in Section 2.3, we down-
sample the collected data sequence from 100 to 50 Hz
empirically. After time alignment, we obtain the pair of
MFV and touch data sequences. Given the prerecorded val-
ues of hrtouchx ; rtouchy ; rtouchz i and hroriginx ; roriginy ; roriginz i, we can
derive the displacement and orientation vectors of finger
movement. Due to inevitable hand vibrations during the
inputting process, the values of displacement and orienta-
tion vectors can have some shaking noise. Therefore, we use
the 3-point moving average method to smooth the curves.

The derived displacement and orientation vectors of Pat-
tern 2 in Fig. 6 are shown in Figs. 7 and 8, respectively. As
we can see, the X-axis and Y-axis curves of orientations and
displacements from the same person present similar trajec-
tories, while the Z-axis curves fluctuate within a small range
and have no clear distinction because of the dominating
hand-shaking effect. Therefore, we just process the X-axis
and Y-axis data of orientation and displacement vectors in
what follows.

As for touch gestures, the absolute displacements and
orientations of finger movement always change for each
trial due to the varying gesture location, scale, and rotation.
As described in [26], the impact of gesture rotation could be
neglected because of a user’s input habits. Therefore, we
first scale original samples into a bounding box (1*1) to miti-
gate the impact of different gesture scales in each trial. Then
we apply the following three indexes [27] to both displace-
ment and orientation vectors to represent finger movement,
which are not impacted by the touch gesture’s starting posi-
tion on the touchscreen.

� Distance: the distance between sequential sample
points in the X-Y plane, denoted by dxyðiÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ2
q

.

� Path angle: the angle between sequential sample

points in the X-Y plane, denoted by alphaxyðiÞ ¼
arccos ~pðtÞ�~pðtþ1Þ

jj~pðtÞjj�jj~pðtþ1Þjj , where pðiÞ ¼ ½xi�1 � xi; yi�1 � yi�.
Curvature: the log radius of curvature in the X-Y

plane, denoted by kxyðiÞ ¼ jvx;i�accey;i�vy;i�accex;ij
ðv2

x;i
þv2

y;i
Þð3=2Þ ;

logkxyðiÞ ¼ logð1=kxyðiÞÞ.

As shown in Figs. 9 and 10, the curves from the same
user present similar trends while those from different users
are significantly distinct for all the three indices. Therefore,
instead of the orientation and displacement vectors, we use
the derived distance, path angle, and curvature to distin-
guish touch gestures among different users.

3.1.2 Feature Extraction

In this section, we take the X-axis and Y-axis sequences of
the displacement vector of the unlock pattern as an example
to illustrate the feature extraction process in MagAuth. The
orientation vector and the three indices of the touch gesture
are processed in the similar way. We denote the displace-
ment vector by fti; xi; yigNi¼1, where N is the number of sam-
pling points. For the X-axis data series denoted by
Vx :¼ fxigNi¼1, we represent its average by mx and its vari-
ance by sx. Similarly, we define other variables including
Vy, my, and sy. We initialize 19 features in Table 2 to charac-
terize the MFV data.

In the next step, we convert each feature vector into a sca-
lar using the root-mean-square (RMS) metric. Consider the
FFT feature vector fFFTx;igMx

i¼1 for the X-axis as an example.
Let fFFTx;igMx

i¼1 denote the averages of multiple legitimate

training samples for the same gesture. The RMS value of

fFFTx;igMx
i¼1 is computed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mx

PMx
j¼1ðFFTx;j � FFTx;jÞ2

q
.

Finally, we obtain a scalar vector of 18 RMS values, one for

each feature.

Feature Selection. We notice that not all features are neces-
sary for each unlock pattern or touch gesture. Therefore, after
scalarization, all the 19 features are fed into a feature-selec-
tion module which trains a neighborhood component analy-
sis (NCA) model to learn and find the most powerful feature
combination. Compared with PCA which focuses on
dimensionality reduction, NCA belongs to supervised learn-
ing and aims to find the best prediction results. Here we use
5-fold cross-validation for model training. The classification
accuracy before and after feature selection is shown in
Table 3. In the table, we use P1, P2, P3, G1, G2, G3 to repre-
sent Pattern 1, 2, 3, and Gesture 1, 2, 3. As we can see, feature
selection significantly improves the classification accuracy
for both the pattern-lock and touch-gesture mode.

Then we use the resulted scalar vector to train a classifier
based on sophisticated machine learning algorithms, for
which we experimentally compare the performance of some
popular ones in Section 4. For this purpose, the user needs
to perform the same unlock pattern or touch gesture multi-
ple times, each leading to a legitimate scalar vector. Mag-
Auth also maintains a library of random scalar vectors that
serve as illegitimate training samples for the user. The accu-
racy of the classifier can be improved and dynamically
retrained as the user supplies more legitimate samples in
subsequent authentication phases. Since the classifier is
infrequently updated, it can be trained in the cloud and
pushed to the smartphone which may have limited compu-
tational capabilities.

3.2 Verification Phase

Assume that a user wants to unlock his device. He wears the
enrolled magnetic wearable to perform his personal unlock
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pattern or touch gesture, resulting in a swipe event and
MFV sequences recorded by MagAuth. After going through
the same data processing in Section 3.1, the data sequences
are converted into a scalar vector which is then fed into the
trained classifier. Because feature selection has been done
during the enrollment phase, it is omitted in this phase. The
user passes the authentication only when both conditions
are met: (1) the difference between the derived value of fin-
ger movement and the recorded one is below a system
threshold, and (2) the pattern/gesture-induced scalar vector
is classified as legitimate. The system password mechanism
is invoked as a fall-back mechanism if the user fails to pass
MagAuth after a threshold number of authentication
attempts. Fig. 5 demonstrates the whole authentication pro-
cess for clarity.

3.3 Selection of Unlock Patterns or Touch Gestures

What kind of unlock patterns or touch gestures should the
user pick? As analyzed before, we want to get the vector
Index ¼ hmx;my;mz;Dx;Dy;Dzi. where ðmx;my;mzÞ charac-
terizes the orientation change of the wrist wearable’s mag-
netic clasp, and ðDx;Dy;DzÞ characterizes the relative
finger-clasp position changes and relates to the user’s
unlock pattern/gesture. Since our goal is to make Index
clearly distinguishable among different users, the best
method is to increase the fluctuation of Index.

We observe that the relative magnetometer-wrist posi-
tion ðrx; ry; rzÞ is more stable than the finger movement
ðrdx; rdy; rdzÞ due to most users’ input habits. In particular, we
have the following result

rx ¼ rdx " þDx #; ry ¼ rdy " þDy #; rz ¼ rdz " þDz # : (12)

From Eq. (12), when ðrx; ry; rzÞ is stable, the unlock-pattern
or touch-gesture curves ðrdx; rdy; rdzÞ should be as complex as
possible to achieve noticeable fluctuation ðDx;Dy;DzÞ.

Armed with the above observation, we first discuss the
selection of unlock patterns. In [28], the authors define the
(security) strength of an arbitrary unlock pattern P as

PSP ¼ SP � log2ðLP þ IP þOP Þ; (13)

where PSP denotes the pattern strength. SP ; LP ; IP ; and OP

are the size, length, the number of intersections, and the
number of overlaps of the pattern P . It is clear that larger
values of SP , LP , IP , and OP result in more complex pattern
curves and thus more elaborate curves of ðDx;Dy;DzÞ. In
Section 4, we evaluate three patterns in Fig. 6 which corre-
spond to the complex (PSP � 33), medium
(19 	 PSP < 33), and simple (PSP < 19) level of pattern
strength, respectively and provide the guidelines on
unlock-pattern selection.

In the touch-gesture mode, the touch gesture should be
easy for the user to remember and reproduce (high usabil-
ity) but difficult for the attacker to emulate (high security).
The authors in [29] first discretize one touch gesture, then
use the similar representation of PIN numbers with the
n-gram Markov Model, and finally, refer to the partial
guessing entropy estimation [30]. If the discretized gesture
is complex, we could claim that the original touch gesture is
also complex. MagAuth follows a white list of good touch
gestures in [29] which achieve the usability and security at
the same time properly. Note that although there is no fixed
input area for a touch gesture, the size of the gesture could
not be too large. Otherwise, the value of ðrdx; rdy; rdzÞ may
dominate that of ðrx; ry; rzÞ and thus cause low discrimina-
tion of ðDx;Dy;DzÞ.

Fig. 5. MagAuth system workflow.

Fig. 6. Illustration of three unlock patterns.

ZHANG ETAL.: MAGAUTH: SECURE AND USABLE TWO-FACTOR AUTHENTICATION WITH MAGNETIC WRIST WEARABLES 317

Authorized licensed use limited to: ASU Library. Downloaded on March 18,2023 at 05:01:34 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Orientation vectors of finger movement for Pattern 2 in Fig. 6. As for the X-axis and Y-axis of the orientation vector, the samples from the same
user have similar curves while those from distinct users are different.

Fig. 9. Indices (distance, path angle, and curvature) of the moving finger’s displacement in X-Yplane when inputting the touch gesture similar to Pat-
tern 2 in Fig. 6. Samples from the same user have the similar curves while that from different users are totally different.

Fig. 10. Indices (distance, path angle, and curvature) of the moving finger’s orientation in X-Y plane when inputting the touch gesture similar to Pat-
tern 2 in Fig. 6. Samples from the same user have the similar curves while that from different users are totally different.

Fig. 7. Displacement vectors of finger movement for Pattern 2 in Fig. 6. As for the X-axis and Y-axis of the displacement vector, the samples from the
same user have similar readings while those from distinct users are significantly different.
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3.4 Application Scenarios

The great potential of MagAuth is based on the rapid growth
of wrist wearables. In particular, wrist wearables, including
smartwatches, basic watches, and wrist bands, reached 34.2
million units in the second quarter of 2019; the global fitness
trackers are predicted to reach 59.22 billion by 2023. Almost
all wrist wearables except basic watches are required to be
paired with a host device, and many people are used to car-
rying their paired smartphones along with their wrist wear-
ables devices. Other magnetic wearables such as rings and
bracelets are also very common in daily life.

We picture three possible application scenarios of Mag-
Auth, as shown in Fig. 11. The first is that the user holds the
smartphone while trying to unlock it with the same hand
wearing the wrist wearable. For example, the user wants to
unlock his smartphone while walking. The second is that the
user holds the smartphone with one hand and tries to unlock
it with the other hand wearing the wrist wearable. The third
scenario is that the user tries to unlock the smartphone placed
on a flat surface. In this paper, we compare the system perfor-
mance under these three scenarios in the experiment part.

3.5 MagAuth With Other Password Authentication
Modes

In addition to unlock patterns and touch gestures, MagAuth
can work with PINs and alphanumeric passwords as well.

Take PINs as an example. In the Android system, a user can
make his PIN as long as 17 digits. Assume that the user
chooses a 17-digit PIN for MagAuth. According to the
remarks in Section 2, when the user inputs his PIN, Mag-
Auth generates six time sequences, i.e.,
hmx;my;mz;Dx;Dy;Dzi. Each sequence contains either 8 or
5 sampling points which correspond to Remarks 2 and 3,
respectively. Then four sequences (i.e., hmx;my;Dx;Dyi) are
used as the user’s behavioral features. In total, we use 32 or
20 sampling points for authentication, which are far less
than hundreds of points for unlock patterns or touch ges-
tures. But we could easily augment the data set for authenti-
cation according to the continuity of the inputting process.
In contrast, for a 4- or 6-digit PIN, since there are only less
than 10 sampling points (sometimes even less than 5 points)
generated to represent one user’s behavioral features, the
authentication performance might be degraded signifi-
cantly. So we recommend users to apply MagAuth to longer
PINs. The extension of MagAuth to PINs and alphanumeric
passwords is left as future work.

3.6 Adversary Models

In this section, we consider the adversary models against
MagAuth. The attacker A possesses and attempts to log into
the locked smartphone which has been turned on by the
legitimate user when it is stolen or lost. A knows that Mag-
Auth is installed and can be used to unlock the smartphone.
A is also fully aware of how MagAuth is designed and
works. In particular, A knows that the user can unlock the
smartphone by performing the self-chosen unlock pattern
or touch gesture with a magnetic wrist wearable. If the user
chooses the authentication scheme demonstrated in Remark
3 of Section 2.3, the knowledge of the band/clasp is not

Fig. 11. Application scenarios.

Fig. 12. Different magnets and magnet bands/clasps.

TABLE 2
List of Initialized Features

feature name Description

Coefficient of Variation cvx ¼ stdðxÞ=�x
Fast Fourier Transform fFFTx;igMx

i¼1

Energy
energyx ¼

PN

i¼1
jxij2

N

Zero Crossing Rate zcrx ¼ 1
N�1

PN�1
i¼1 1xi�xi�1 < 0

Interquartile range iqrx ¼ Q3ðxÞ �Q1ðxÞ
Skewness 1

N

PN

i¼1
ðxi�mxÞ3

1
N�1

PN

i¼1
ðxi�mxÞ2

� �3=2
Kurtosis 1

N

PN

i¼1
ðxi�mxÞ4

1
N

PN

i¼1
ðxi�mxÞ2

� �2 � 3

Pearson Correlation Coefficient covðVx;VyÞ
sxsy

Velocity
vx;i ¼ xiþ1�xi

tiþ1�ti

n oN�1

i¼1

Acceleration
accex;i ¼ vx;iþ1�vx;i

tiþ1�ti

n oN�1

i¼1

Hu Invariant Moments Miðmj;kÞ; i ¼ 1; 2; . . . ; 7;

mj;k ¼
P

x

P
yðx� �xÞjðy� �yÞk;

j; k 2 f0; 1; 2; 3g

TABLE 3
Classification Accuracy Before and After Feature Selection

accuracy P1 P2 P3 G1 G2 G3

before 88.5% 89.3% 91.7% 86.4% 88.2% 90.5%
after 95.8% 98.6% 98.1% 94.6% 96.2% 98.0%
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necessary because attackers could unlock the device with a
random magnetic band/clasp. If the user chooses the
scheme in Remark 2 instead, attackers need to obtain the
same band/clasp to achieve their goals. We assume that the
attacker can obtain the same band/clasp used by the user
for authentication. Below, we classify the attacker into one
of the following types according to his increasing capability.

� Type-I (guess): A does not know the user’s unlock
pattern or touch gesture; A knows neither how the
user performs the unlock pattern or touch gesture
(i.e., the pattern/gesture trajectory) nor the details of
his finger movement (i.e., behavioral features) dur-
ing the authentication process.

� Type-II (replay): A has a rough idea about the user’s
unlock pattern or touch gesture; he knows neither
the pattern/gesture trajectory nor the behavioral fea-
tures of the user.

� Type-III (one-time-observation mimicry): A knows
the user’s unlock pattern or touch gesture; he knows
the pattern/gesture trajectory but not the behavioral
metrics.

� Type-IV (five-time-observation mimicry): A knows
the user’s unlock pattern or touch gesture; he knows
both the pattern/gesture trajectory and the behav-
ioral metrics of the user.

A can observe the user’s unlock pattern or touch gesture
via shoulder surfing and/or stealthy video recording via a
spy camera. The resilience of MagAuth to the above attacker
types is experimentally evaluated in Section 4.

4 PERFORMANCE EVALUATION

In this section, we experimentally evaluate the security and
usability of MagAuth on a Samsung Galaxy S5 which has
the magnetometer on its upper-right corner of the front face.

4.1 Experimental Setup

We designed experiments to verify that legitimate users
could be distinguished by their behavioral features when
inputting an unlock pattern or a touch gesture with a mag-
netic wearable. To eliminate the effect of different magnetic
bands, we used the same one [31] in all the experiments.
The phone was placed on a table with the front face up (as
shown in Fig. 11), unless otherwise stated.

According to the analysis in Section 3, elaborate unlock
patterns or touch gestures can produce more proper MFV
data suitable for user authentication. We chose three simple
patterns: Pattern 1, Pattern 2, and Pattern 3 shown in Fig. 6.
In addition, the touch gestures we chose are similar to the
three unlock patterns except that they were performed at
arbitrary starting positions on the touch screen.

We recruited 15 volunteers, all of whom are college stu-
dents aged 18 or above. All volunteers acted as legitimate
users, and 10 among them also served as attackers who tried
to mimic the unlock patterns/gestures of other users. Every
legitimate user input each of the three unlock patterns/ges-
tures 20 times, so we collected 1,800 legitimate samples. In
order to avoid the bias caused by other restrictions, the
whole experiment process had no time limitation, and par-
ticipants were encouraged to perform unlock patterns/

gestures in a natural way as they normally do. Our experi-
ments were approved by our Institutional Review Board
(IRB).

We also conducted experiments to evaluate the perfor-
mance of MagAuth under attacks. Section 3.6 lists three
types of attackers against MagAuth. Due to space limita-
tions, we only report the resilience to more capable Type-II,
Type-III, and Type-IV attackers, which corresponds to the
performance of MagAuth in the worst-case scenarios. In
particular, since the same magnetic band was used, each
participant can be considered a Type-II attacker against all
other participants. To emulate Type-III and Type-IV attack-
ers, we first video-recorded the pattern/gesture-performing
process of each legitimate user. We asked every attacker to
pick six videos consisting of different patterns/gestures
performed by different users. Note that once a video was
chosen, it cannot be chosen again by other attackers. The
attacker mimicked the patterns/gestures in the chosen vid-
eos one by one to unlock the device. The attackers were told
that both the orientation and displacement of finger move-
ment may affect the MFV data. In the first scenario corre-
sponding to Type-III attackers, every attacker watched the
video of a chosen pattern/gesture once. In the second sce-
nario corresponding to Type-IV attackers, every attacker
watched the video of a chosen pattern/gesture five times
and was told to pay close attention to the finger movement.
In both scenarios, almost all attackers could remember the
detail of every pattern/gesture. Every attacker mimicked
each observed pattern/gesture five times. Therefore, each
kind of patterns/gestures was attacked 10*5 times.

We recruited another 8 volunteers, who are college stu-
dents aged 18 or above, to evaluate the authentication per-
formance with different band tightness, swiping speed,
application scenarios, and environments. We also compared
the authentication performance of various bands/clasps
and smartphones.

We tested the performance of MagAuth with popular
classifiers including SVM, Naive Bayes, and Random Forest
(RF), which led to comparable results. Because RF slightly
outperform other methods, we only report the results with
RF except for the algorithm comparison.

4.2 Performance Metrics

We use the receiver-operating-characteristic (ROC) and pre-
cision-recall curves as the main performance metrics.

An ROC curve illustrates the performance of a binary
classifier as its discrimination threshold changes. The Area
Under the Curve (AUC) is an indicator of the overall quality
of an ROC curve. For example, the ROC of the ideal classi-
fier has AUC equal to 1. We can plot an ROC curve by plot-
ting the true positive rate (TPR) with respect to the false
positive rate (FPR) for different thresholds. Denote the num-
ber of true positives, false positives, true negatives, and false
negatives by #TP; #FP; #TN, and #FN. Then TPR and FPR can be
calculated as

TPR ¼ #TP

#TPþ #FN
and FPR ¼ #FP

#FPþ #TN
: (14)

Another indicator is the Equal Error Rate (EER), the point
on the ROC curve that corresponds to an equal probability
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of miss-classifying a positive or negative sample (i.e.,
FPR=FNR). The lower the EER, the more robust the system,
the better the classification performance, and vice versa.

The precision-recall curve shows the trade-off between
precision and recall for different thresholds. Precision repre-
sents the percentage of legitimate users out of all admitted
users for an authentication system, which is calculated as

Precision ¼ #TP

#TPþ #FP
and (15)

Accuracy ¼ #TPþ #TN

#TPþ #FPþ #FNþ #TN
: (16)

Recall in authentication systems is the same as TPRwhich
measures the proportion of legitimate users correctly identi-
fied as such. A high area under the precision-recall curve
represents both high recall and high precision, where high
precision relates to a low FPR, and high recall relates to a
low FNR. The classifier is claimed to have high performance
if both high precision and high recall can be obtained.
Besides, the recognition accuracy in this paper is defined as
the proportion of correctly classified samples including
both positive and negative samples. High accuracy means a
good tradeoff between robustness and security.

We also measured the execution time of MagAuth, which
relates to its usability and should be as short as possible.

4.3 Results

4.3.1 Performance With Type-II Attackers

Recall that each of the 15 legitimate users was required to
input each of six unlock patterns/gestures 20 times, produc-
ing 1,800 magnetic gesture samples. We randomly chose 10
samples from each legitimate user and 140 samples from
other users for classifier training. The remaining samples
were used for testing, and the samples of all other users are
equivalent to Type-II attackers’ inputs against every legiti-
mate user. The process was repeated 20 times, and the aver-
age results are reported below.

We tested the performance of MagAuth with popular
classifiers including SVM, Naive Bayes (NB), and Random
Forest (RF). RF and NB led to comparable results. Table 4
compares the recognition accuracy of all the pattern/ges-
tures based on these two classification algorithms. It’s
shown that the accuracy of every pattern/gesture is above
90 percent which verifies the security of our system. More-
over, among these patterns/gestures, Pattern 2 and Gesture
3 have the highest average accuracy because of the good
trade-off of pattern/gesture complexity and coverage area.
In the meanwhile, Pattern 1 and Gesture 1 have the lowest
accuracy due to small covering area or simple shape.
Because in most scenarios, the performance of RF are a little

better than NB, we choose Random Forest as the classifica-
tion algorithm in the following experimental part.

Fig. 13 shows the results for both the unlock-pattern and
touch-gesture modes. According to Fig. 13a, the ROC curves
for all three unlock patterns/gestures are located in the top-
left corner, so MagAuth can achieve high TPR and low FPR
at the same time. Similarly, the Precision-Recall curves in
Fig. 13b are all located in the top-right corner and show that
MagAuth could simultaneously achieve high precision and
high recall.

The three unlock patterns have slightly different perfor-
mance. In particular, the highest TPR is 96.3 percent, which
was achieved with Pattern 2; the highest FPR is 5.5 percent,
which was achieved with Pattern 1. In contrast to Pattern 2
and Pattern 3, Pattern 1 led to slightly worse performance in
both the ROC and Precision-Recall curves. One reason is
although Pattern 1 is more complex, the coverage area is not
that large for elastic finger bending which results in smaller
discrimination among different users. Therefore, when a
user chooses an unlock pattern/gesture for authentication,
he should consider both the complexity and covering area
of the pattern. Another reason is that positive samples are
relatively easier to be classified as negative because the test-
ing dataset has many more negative samples than positive
ones.

The ROC curves and Precision-Recall curves for all three
touch gestures are shown in Figs. 13c and 13d, respectively.
Gesture 1 has better performance than both Gesture 2 and
Gesture 3 with TPR value 95.4 percent. Gesture 3 has the
highest FPR value 8.4 percent One reason is Gesture 2 and
Gesture 3 are both simpler than Gesture 1, resulting in
smaller discrimination among different users. Another rea-
son is Gesture 2 and Gesture-3 have worse repeatability
than Gesture 1.

Fig. 14 further verifies the classification performance. The
EER values of all unlock patterns/gestures are below 0.1,
which verifies the feasibility of MagAuth. In addition, Pat-
tern 1 and Gesture 3 have worse performance than other
patterns/gestures, which is consistent with the result
shown in Fig. 13. In addition, based on the CDF of recogni-
tion errors in Fig. 15, most users have more than 90 percent

TABLE 4
Classification Accuracy of Random Forest (RF)

and Naive Bayes (NB)

accuracy P1 P2 P3 G1 G2 G3

RF 95.8% 98.6% 98.1% 94.6% 96.2% 98.0%
NB 94.5% 97.3% 96.7% 96.4% 97.2% 97.5%

Fig. 13. ROC and precision-recall curves of three patterns and gestures.
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recognition accuracy. Unlock patterns slightly outperform
touch gestures because of more stable indexes fed into the
classifier for the former.

Fig. 16 demonstrates the classification accuracy—the sum
of true positives and negatives over all test samples—as the
number of legitimate samples varies. It is clear that Mag-
Auth has very high accuracy for all six patterns/gestures,
which increases with the number of legitimate samples. In
particular, when the number of legitimate samples for
unlock patterns and touch gestures reach 6 and 7, respec-
tively, the classification in both modes is above 90 percent.
In other words, the classification accuracy can be boosted if
the legitimate user supplies more legitimate samples in the
enrollment phase and/or later successful authentication
instances.

Fig. 17 demonstrates the classification accuracy under
different application scenarios in Fig. 11. For the stationary
scenario with a single hand, we asked the volunteers to
stand still during the authentication process. Here we show
the results of Pattern 2 mentioned above. As we can see, the
authentication accuracy is above 90 percent with acceptable
standard deviation for all the four scenarios. In particular,
consistent with our intuition, the accuracy reaches the 98.5
percent with Random Forest when users input their pat-
terns with the smartphone on the table. Besides, under the

two-hand scenario and the scenario with the smartphone on
the table, MagAuth achieves similar high accuracy with
both algorithms. In addition, the accuracy in the two-hand
input mode is higher than that in the single-hand mode.
One possible reason is that the input actions cause the vibra-
tion of the device in the single-hand mode. The other reason
may be that the wrist movement range in the single-hand
mode is smaller than that in the two-hand mode, which
may impact the feature extraction. The walking scenario
under the single-hand mode achieves the accuracy of 92
percent, which is slightly lower than that under the station-
ary scenario due to the vibration noise and the time-delay of
the attitude sensor during the posture estimation of the
smartphone. We also evaluated MagAuth in three environ-
ments and show the results in Fig. 18. Note that we required
that the users input Pattern 2 with the two-hand mode in
Fig. 11 and conducted the experiments under the stationary
scenario. The results show that MagAuth can achieve the
average accuracy of 91.4, 93.0, and 98.1 percent in the lab,
car, and home environments, respectively. In particular, the
accuracy in the lab and car environments are lower than
that at home due to the occasionally appeared, unstable,
and strong magnetic field disturbance caused by the mag-
netic equipment in the lab or the vibration noise in the car.

Table 5 demonstrates the classification accuracy with dif-
ferent swiping speeds and band tightness. We let users
input Pattern 2 in slow, normal, and fast modes, corre-
sponding to about 0.5, 1.2, and 2.5 seconds, respectively. As
we can see, the accuracy drops when the user inputs the
pattern with the fast mode because with the sampling rate
constraint of 100 Hz, the sampling points after preprocess-
ing in the fast mode may not represent the behavior charac-
teristics sufficiently. The good news is that more and more
smartphones begin to use IMU sensors with the sampling
rate up to 400 Hz which is enough for MagAuth. In addi-
tion, we evaluated the impact of band tightness in three
ways: the band can rotate freely around the wrist (loose), l
slightly move around (normal), and hardly move around

Fig. 14. EER of different patterns/gestures.

Fig. 15. CDF of recognition errors of patterns and gestures.

Fig. 16. Classification accuracy versus the number of legitimate
samples.

Fig. 17. Accuracy under different application scenarios.

Fig. 18. Accuracy under different environments.
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(tight). It is of no surprise to see that MagAuth is very accu-
rate in normal and tight modes in contrast to the loose
mode.

Figs. 19 and 20, and Table 6 demonstrate MagAuth’s per-
formance for various smart smartphones and magnetic
bands/clasps illustrated in Fig. 12. First, we randomly
selected one user who has a medium-size palm and let him
input Pattern 2 twice. We compare the MFS values of three
COTS magnetic bands/clasps in Fig. 20. As we can see, all
three bands/clasps have enough magnetism to represent
users’ behaviors. Moreover, for the same user, the MFS
curves are also similar, so we can use any‘ proper magnetic
bands/clasps for authentication when the method in
Remark 3 of Section 2 is applied to MagAuth. However, not
all magnetic bands/clasps are proper for authentication.
We conducted experiments on different magnets to provide

guidelines on future band/clasp selection for our goal.
Fig. 19 shows the overall magnetic field strength (MFS) of
three magnets which are NdFeB and Grade N40 with sizes
of 3.2mm*3.2mm*3.2mm, 6.4mm*6.4mm*6.4mm, and
3.2mm*12.7mm*12.7mm, respectively. As we can see, all
but Magnet 1 induce significant changes in the magnetic
field during pattern input. The results show that only if the
tiny magnet in the band/clasp has magnetism similar to or
stronger than that of Magnet 2 whose size is about half of a
coin, it could be used for user authentication. In Table 6, we
further compare the classification accuracy of various mag-
nets, bands/clasps and smartphones. Magnet 2 and 3 have
better performance than Magnet 1, and all the three mag-
netic bands/clasps achieve high accuracy. In addition, all
the three smartphones—Samsung S5, Samsung S7, and LG
Nexus 5–achieve good classification accuracy. The accuracy
for Samsung S5 and Nexus 5 are a little higher than that for
Samsung S7. The possible reasons are the magnetometer of
Samsung S5 is on the upper-right corner of the phone front
which is close to the inputting hand, and Nexus 5 is rela-
tively small and easier to collect more elaborate features of
the wrist movement. These results further verify the usabil-
ity of MagAuth.

In Fig. 21, we show the classification accuracy based on
the data collected in one week continuously. More than 90
percent of users have recognition errors smaller than 10 per-
cent , which means that most users could input the pattern
consistently in a relatively long period. This result further
verifies the usability of MagAuth.

We also demonstrate the impact of the distance between
the magnetic clasp and the magnetometer. As shown in
Fig. 22, we split the sensing space into four areas and let one
user input Gesture 2 in these areas. Obviously, Area 1 is the
closest place to the magnetometer, and Area 3 and 4 are a
little farther. Fig. 23 shows the MFS changes in these areas.
As we can see, MFS has the most dramatic change which
benefits user classification and authentication in Area 1. In
Area 2 where the pattern keypad is always located, the
change is also large enough for authentication. In contrast,
the MFS curves in Area 3 and 4 have no obvious fluctuation

TABLE 5
Classification Accuracy of MagAuth Under

Different Impact Factors

band tightness loose normal tight
accuracy 76.2% 97.3% 97.9%

swiping speed slow normal fast
accuracy 98.1% 97.5% 88.6%

Fig. 19. MFS of various magnets.

Fig. 20. MFS of various magnetic bands/clasps.

TABLE 6
Accuracy versus Devices/Bands

magnet block 1 block 2 block 3
accuracy 66.3% 95.5% 98.8%

band/clasp band 1 clasp 1 clasp 2
accuracy 97.4% 97.6% 98.1%

smartphone Samsung S5 Samsung S7 LG Nexus 5
accuracy 97.9% 95.2% 97.7%

Fig. 21. CDF of recognition errors in continuous days.

Fig. 22. Illustrations of movement areas of the hand (horizontal).
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which means that most magnetic objects around the device
have little impact on the authentication process.

4.3.2 Performance With Type-III and Type-IV Attackers

In this group of experiments, we added false samples for
each legitimate user into the testing set, which were gener-
ated by the attackers aiming at the user. Therefore, the test-
ing set of a pattern/gesture from each user consists of 10
legitimate samples and 5 fake samples.

Fig. 24 shows the ROC curves with Type-III and Type-IV
attackers. It is clear that the unlock patterns/gestures are
highly resilient to attacks. With the unlock-pattern mode,
the highest FPR is 6.9 percent observed for Pattern 1 with
Type-IV attackers. With the touch-gesture mode, the highest
FPR is 9.7 percent observed for Gesture 3 with Type-IV
attackers.

Fig. 25a further shows the FPR values with Type-III and
Type-IV attackers. It is clear that the unlock patterns/ges-
tures are highly resilient to attacks. With the unlock-pattern

mode, the highest FPR is 6.9 percent observed for Pattern 1
with Type-IV attackers. With the touch-gesture mode, the
highest FPR is 9.7 percent observed for Gesture 3 with
Type-IV attackers. The FPRs of these patterns/gestures are
below 10 percent in all cases, which confirms the security of
MagAuth. It is also not surprising to see that Type-IV
attackers have a higher success rate than Type-II and Type-
III attackers. In addition, unlock patterns have slightly bet-
ter performance than touch gestures because the indexes of
unlock patterns fed into the feature extraction module are
more stable than those of touch gestures.

Fig. 25b shows the accuracy with Type-III and Type-IV
attackers. MagAuth can achieve very high accuracy for both
pattern and touch gesture modes. Moreover, as anticipated,
the most capable Type-IV attackers have a success rate
slightly higher than Type-II and Type-III attackers.

4.3.3 Computation Time

We also evaluated the computation time of MagAuth. The
one-time enrollment time was 20 s and 25 s for unlock pat-
terns and touch gestures, respectively, which is quite com-
parable with that of finger or face authentication on
smartphones. Since the classifier is very infrequently
updated, we opt to let the cloud train the classifier with
user-supplied data and then push the classifier to the smart-
phone, which is the preference approach advocated by
almost all behavioral authentication techniques for mobile
devices. Given the nature of our classifier, it took negligible
time (much less than a second) to train the classifier on a
Dell desktop with 2.67 GHz CPU, 9 GB RAM, and Windows
10 32-bit Professional. In addition, the runtime authentica-
tion time measured on Samsung Galaxy S5 with unlock pat-
terns and touch gestures were 1.2s and 1.5s, respectively.

5 RELATED WORK

In this section, we briefly outline the prior work most ger-
mane to MagAuth.

There are some prior efforts on using hardware tokens
for user authentication. For example, the IR ring [32] trans-
mits a cryptographic pseudorandom bit sequence in the
form of infrared light pulses to authenticate its wearer to a
multi-touch display. In [5], Bojinov and Boneh proposed to
build a lightweight, cheap authentication device for unlock-
ing a user’s smartphone. They built two token prototypes
which can transmit a user’s authentication signals to the
smartphone via either the magnetic field or the acoustic
channel. In addition, the prototype device in [6] transmits a
user’s authentication information through a capacitive
touchscreen. Such hardware tokens have to be specially

Fig. 23. MFS with various distances between the magnetic clasp and the
magnetometer.

Fig. 24. ROC curves of three unlock patterns and touch gestures under
three attcks.

Fig. 25. MagAuth’s resilience to Type-III and Type-IV attacks.
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built and are not available on the market. In addition, these
techniques actually authenticate a hardware token rather
than a user to the mobile device, so an attacker stealing the
token can log into the device as well. In contrast, MagAuth
explores COTS magnetic band that have been widely used
for wearables. MagAuth is also a two-factor authentication
technique built upon the secrecy of a user’s self-chosen pat-
tern/gesture, and the special way a user performs a chosen
pattern/gesture.

Previous work on the association of wearables and
mobile devices (e.g., smartphones) focus on the strong
motion correlation of sensor readings in temporal and spa-
tial domains in these two kinds of devices [33], [34], [35].
This property has two sides, to enhance security of mobile
devices or to leak information of motion dynamics. In con-
trast, this paper regards a wearable as the carrier of a token
and their applications are totally different.

Also relevant is the line of work on using the magnetom-
eter for text entry or interaction with mobile devices. Mag-
Write [36] is a digit-entry method based on drawing
(writing) digits in the 3D space around the device using a
magnet taken in hand. GaussSense [37] enables a stylus to
be used as an input device on any thin non-ferromagnetic
flat surface by utilizing directional magnetism. MagPen [38]
is a magnetically driven pen interface for interacting with
mobile devices. MagGetz [39] is a toolkit that enables tangi-
ble interaction on and around mobile devices via the mag-
netic field. Magboard [40] places a magnet in the specific
position of a customized keyboard and infers the keystroke
by monitoring the magnetic field with the magnetometer in
a nearby phone. The authors try to learn the magnetic field
data which are only related to keystroke locations and inde-
pendent from users, mobile devices, and magnets. There-
fore, the authors actually fingerprinted the keystroke on a
customized keyboard, not the user. In contrast, our system
aims to authenticate a user through specific movement
behavior features derived from the magnetic field readings.
Thus, the techniques and purposes of these two systems are
totally different.

Researchers have explored the magnetometer for user
authentication as well. MagiSign in [36] lets a user draw 3D
signatures around the mobile device with a magnet, and its
security is further evaluated in [41]. In contrast to MagiSign,
we performed a more in-depth study about a user’s biomet-
rics exhibited in pattern/gesture based user authentication.
We also conducted more comprehensive security and
usability studies, in which we experimentally show that
capable attackers can easily bypass MagiSign but not Mag-
Auth due to very different classification features. Besides, in
[9], researchers fuse the motion sensors’ data (including the
magnetometer) collected by the smartphone for authentica-
tion when the user touches the phone’s screen. These behav-
ioral characteristics are similar with the touching pressure
and face a big challenge of intra-class similarity and vari-
ability. To continuously (implicitly) authenticate a user, Fin-
gerAuth [42] keeps checking his/her implicit finger motion
patterns through the on-device magnetometer and a mag-
netic ring worn by the user when using the device. By com-
parison, MagAuth aims to complement pattern-based
device authentication rather than continuous authentica-
tion, and it quantitatively verifies a user’s behavioral

biometrics. Therefore, the application contexts of Finger-
Auth and MagAuth are totally different.

Our work is also related to research on touch-based
authentication. The first category of papers use the data pas-
sively collected from the IMU sensors and the screen.
Hutchins et al. [10] characterized a user’s PIN by the timing
of beats when the user taps the device. TouchIn [7] authenti-
cates a user based on the user’s finger-drawing curves.
RhyAuth [8] verifies a user according to a sequence of
rhythmic taps/slides on the touchscreen device. Authors in
[11] studied features of the touch gesture, including the
velocity, device acceleration, and stroke time. Authors in
[43] extracted the multi-touch information such as velocity,
touching pressure, and shape of the traces for user authenti-
cation. The features used in these systems are relatively sim-
ple and vulnerable to mimicry attacks [12] because they are
only related to the fingertip. MagAuth extracts the dynamic
features which characterize the 3D relative movement
between the user’s fingertip and wrist. These features are
related to the size and structure of the user’s palm and are
thus more resilient to mimicry attacks.

Another category of papers explore a user’s unique
behavioral characteristics by actively generating signals and
measuring the response of the user in the inputting process
[13], [14], [15]. In [13], the authors scanned the user’s hand
posture using active acoustic sensing for authentication.
The features used in the system are coarse-grained and sen-
sitive to the environmental acoustic noise. Besides, authors
in [14], [15] studied the physical characteristics of touch fin-
gers demonstrated in the vibration signals generated by the
vibration motor embedded in the phone. Since the systems
rely on device vibration, they may generate audible noise
which is improper for many quiet environments such as the
meeting room and classroom. In addition, many mobile and
IoT devices such as the tablets are not equipped with vibra-
tion motor, so the vibration-based techniques cannot be
used for these devices. We aim to provide more secure and
user-friendly authentication for mobile devices.

There are also rich literature on novel authentication
methods for mobile users beyond the traditional pass-
word-based approach. For example, Liu et al. designed fin-
ger-input-based authentication by altering vibration
propagation inside a solid surface in [44]. Lu et al. pro-
posed lip-reading-based user authentication using acoustic
signals in [45]. In [46], Kong et al. authenticated users
through finger gestures using CSI information extracted
from WiFi signals. This line of work is orthogonal and
complimentary to our work. Some most recent work
explore other potential biometric features [47]. Researchers
in [47] recently proposed to utilize the induced body elec-
tric potentials caused by the ambient electric field as the
human feature. these work require extra electric devices
which has not be applied to mobile devices.

Researchers also explore the security of the magnetome-
ter based authentication systems. For example, in [48], the
authors proposed one attack scenario in which an adversary
can use the readings of the magnetometer in a nearby
mobile device to infer the movement of a stylus pen during
the input process. This attack is based on a strong assump-
tion that the involved magnet embedded in the pen can
only move in a 2D plane without any rotation or vibration.
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This assumption makes the coordinate transformation from
the magnetometer’s space to the magnet’s space possible. In
this case, if the attacker gets the magnetometer’s readings,
he could recover the magnet movement. However, in our
case, the user’s wrist moves in a 3D space with dynamic dis-
placement and orientation. Therefore, even if the attacker
obtains the magnetometer’s readings, he still could not
recover the movement trace of the magnet.

6 CONCLUSION

In this paper, we presented the design and evaluation of
MagAuth, a secure and usable two-factor user authentica-
tion scheme with magnetic wrist wearables. We experimen-
tally confirmed that the finger movement of a user while
inputting an unlock pattern or touch gesture can be distin-
guished by the induced MFV. In addition, we provided
guidelines on the selection of unlock patterns and touch ges-
tures to strike a good balance between security and usability
according to the magnetic field theory. Finally, comprehen-
sive user experiments confirmed the high security and
usability of MagAuth. As the first two-factor authentication
scheme based on COTS magnetic wrist wearables, MagAuth
has great potential in many applications. We plan to per-
form more security and usability studies in the future work.
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