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Abstract— Cooperative spectrum sensing (CSS) adopted by
spectrum-sensing providers (SSPs) plays a key role for dynamic
spectrum access and is essential for avoiding interference with
licensed primary users (PUs). A typical SSP system consists of
geographically distributed spectrum sensors which can be com-
promised to submit fake spectrum-sensing reports. In this paper,
we propose SpecKriging, a new spatial-interpolation technique
based on Inductive Graph Neural Network Kriging (IGNNK)
for secure CSS. In SpecKriging, we first pretrain a graphical
neural network (GNN) model with the historical sensing records
of a few trusted anchor sensors. During system runtime, we use
the trained model to evaluate the trustworthiness of non-anchor
sensors’ data and also use them along with anchor sensors’
new data to retrain the model. SpecKriging outputs trustworthy
sensor reports for spectrum-occupancy detection. To the best
of our knowledge, SpecKriging is the first work that explores
GNNs for trustworthy CSS and also incorporates the hardware
heterogeneity of spectrum sensors. Extensive experiments confirm
the high efficacy and efficiency of SpecKriging for trustworthy
spectrum-occupancy detection even when malicious spectrum
sensors constitute the majority.

Index Terms— Wireless security, GNN, cooperative spectrum
sensing.

I. INTRODUCTION

W ITH ever-growing wireless/mobile devices and the
resulting explosive data traffic, RF spectrum has

emerged as an imperative resource worldwide with lim-
ited supply. Cooperative spectrum sensing (CSS) adopted
by spectrum-sensing providers (SSPs) plays a key role for
dynamic spectrum access and is essential for avoiding inter-
ference with licensed primary users (PUs). A typical SSP
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system consists of geographically distributed spectrum sen-
sors. Most spectrum sensors are deployed by the SSP itself,
and some can be recruited mobile users accepting crowd-
sourced spectrum-sensing tasks [1]–[3]. The SSP distrib-
utes spectrum-sensing tasks to spectrum sensors and then
explores the collected spectrum data to provide an inte-
grated spectrum-analytics platform to various users. There
has been a lot of work on CSS-based applications such
as spectrum patrolling [4], spectrum occupancy query [5],
and transmitter localization [6]. Although promising, CSS is
vulnerable to false spectrum reports from compromised or
dysfunctional spectrum sensors. An extreme example is when
the majority of spectrum sensors are compromised to submit
fake spectrum measurements and/or location information, the
spectrum-analysis results can be totally wrong.

The prior work to defend against compromised spectrum
sensors can be classified into several categories. The first
category [7], [8] uses anomaly detection and fails if mali-
cious sensors are the majority. The second category maintains
reputations for spectrum sensors based on their historical
logs or statistical results [9]–[11]. These methods could not
handle the sudden change in sensor behavior and thus are
vulnerable to the instantaneous attack. The third category
relies on a few trusted sensors to exclude the malicious
nodes whose data significantly deviate from trusted sen-
sors’ [1], [12], [13]. Although attractive, they require either
real signal-propagation data from PUs that are often difficult
to obtain [12] or signal-propagation models that are unpre-
dictable in real scenarios [1]. The latest category utilizes var-
ious spatial-interpolation techniques such as Inverse Distance
Weighting (IDW) [14] and Ordinary Kriging (OK) [5], [13].
With growing demand for fine-granular and large-scale spec-
trum data, these spatial-interpolation techniques show great
potential for RF signal processing [5], [13]. The underlying
intuition is that the spectrum measurement in a location can be
inferred from those at neighboring locations with spatial inter-
polation. By comparing the predicted and measured spectrum
data of individual spectrum sensors, the SSP could evaluate
their trustworthiness.

Although promising, spatial-interpolation techniques suffer
from a few drawbacks. First, it can be difficult to implement
these techniques when the number n of spectrum sensors
is large. For example, the state-of-the-art techniques [5],
[13] based on OK [15] uses large-matrix multiplication with
computational complexity of O(n4). Second, these methods
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cannot handle the multi-dimensional RF datasets (e.g., spec-
trum signals from multiple frequency bins). Last and most
importantly, these methods cannot apply when spectrum sen-
sors are heterogeneous. In particular, when spectrum sensors
have heterogeneous device features such as a different number
of antennas, various sampling rates, or measurement mecha-
nisms, their RF signal measurements might relate to not only
spatial information but also these device features. In this case,
spatial-interpolation methods become less valid.

This paper explores graph neural networks (GNNs) for
secure CSS for the first time in literature. We are moti-
vated to adopt GNNs because they are powerful in mapping
spatiotemporal spectrum data from different sensor location
at a certain time slot into a single graph. Then we can
adopt GNN-based interpolation techniques such as [16] to
detect malicious spectrum sensors. The biggest advantage of
GNN-based interpolation is that the GNN-based model need
not be retrained once trained well. In contrast, the OK-based
model needs to recalculate the variance matrix of all sensors
every time when new data arrive, resulting in huge computa-
tional overhead for a large number of spectrum sensors. Our
main contributions can be summarized as follows.

1) First, we propose SpecKriging, a new spatial-
interpolation technique based on Inductive Graph Neural
Network Kriging (IGNNK) [16] for secure CSS.
In SpecKriging, we first pretrain the GNN model with
the historical sensing records of a few trusted sen-
sors called anchor sensors during system initialization.
During system runtime, we use the model to evaluate
the trustworthiness of non-anchor sensor’s data and
also use them along with anchor sensors’ new data to
retrain the model. The model retraining stops when the
model quality is sufficiently high. Compared with the
OK-based methods with computational complexity of
O(n4) [15], SpecKriging’ computational complexity is
only O(n2) for each time slot and is thus more suitable
for large-scale CSS systems.

2) Second, we incorporate spectrum-sensor heterogeneity
into SpecKriging. As far as we know, SpecKriging is
the first work that takes spectrum-sensor heterogene-
ity into consideration for interpolation-based trustwor-
thiness evaluation of spectrum sensors. In particular,
we assign a linear transformation matrix for each sensor
to represent its hardware configuration before feeding its
sensing reports into the GNN model. These matrices are
updated with other model parameters during the training
phase.

3) Third, we evaluate the efficacy of SpecKriging for trust-
worthy spectrum-occupancy detection with and without
malicious spectrum sensors. Our evaluations use SVM
and Random Forest as examples. The experiments show
that SpecKriging can distinguish benign and malicious
sensors with the classification accuracy up to 98.10%
for homogeneous sensors and 97.69% for heterogeneous
sensors. When the sensors are homogeneous, SpecKrig-
ing can perform correct spectrum-occupancy detection
with accuracy as high as 98.45%, which is comparable
to the performance of the OK-based techniques [5], [13].

Fig. 1. System architecture.

When the sensors are heterogeneous, SpecKriging can
still achieve the detection accuracy up to 98.18%, while
the OK-based techniques [5], [13] no longer work.

The rest of this paper is organized as follows. Section II
gives the problem formulation and threat model. Section III
illustrates the SpecKriging design. Section IV presents the
experimental evaluation of SpecKriging. Section V reviews
the related work. Section VI concludes this paper.

II. PROBLEM FORMULATION AND GNN PRIMER

A. System Model

We consider an SSP who provides spectrum analytics over
a large geographic area divided into many sensing zones.
There are one or more static PUs in each sensing zone.
Since SpecKriging applies to one or more PUs without any
operational difference, we assume only one PU in each sensing
zone hereafter for ease of presentation. Fig. 1 shows the CSS
architecture where the snapshot of one sensing zone is shown.
As in [1], [12], [13], we assume that the SSP deploys several
anchor sensors at strategic locations. Anchor sensors are highly
safeguarded, tamper-resilient, and remotely monitored by the
SSP; they can also undergo periodic remote attestation by the
SSP and are excluded if tested as compromised. Although
anchor sensors provide trustworthy sensing reports, they are
too expensive to deploy in large numbers and can thus only
serve as “ground-truth” reports at their locations. the SSP
resorts to a lot of cheaper non-anchor sensors along with a
few anchor sensors to provide high-quality spectrum analytics.
Most non-anchor sensors are expected to be deployed by the
SSP itself, and some can be recruited mobile users accepting
crowdsourced spectrum-sensing tasks [1]–[3]. Anchor and
non-anchor sensors can be mobile or static and report their
location-tagged spectrum-sensing reports to the SSP either
periodically or on demand. For simplicity, we assume that
each report contains the sensor location and detected RSS
(radio signal strength) values, and the extension of our work
to other types of spectrum-sensing reports is left as future
work. Most sensing reports come from non-anchor sensors
are initially untrustworthy. In the following, we use Λanchor

to denote anchor sensors and Λ to denote non-anchor sensors,
where |Λ| � |Λanchor|.

B. Threat Model

We assume that anchors sensors cannot be compromised,
but the adversary can compromise and fully control arbitrary
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non-anchor sensors. Each malicious sensor hereafter refers to a
compromised non-anchor sensor. The adversary is fully aware
of our SpecKriging scheme and can use malicious sensors to
launch the following attack. First, a malicious sensor submits
high RSS values when the PU is absent, aiming to block the
spectrum access of legitimate spectrum users by increasing
the probability of false alarms. Second, a malicious sensor
may report low RSS values when the PU is present, aim to
cause interference to the PU by increasing the probability
of missed detection. Third, the malicious sensor submits a
fake location to attempt inducing a wrong CSS result. Given
this threat model, we assume that anchor sensors’ reports are
trustworthy, but the trustworthiness of all non-anchor sensor’s
reports needs to be carefully evaluated before they are explored
for spectrum-occupancy detection.

C. Problem Formulation

The goal of our SpecKriging technique is to develop
a secure sensor-selection scheme for trustworthy
spectrum-occupancy detection when malicious non-anchor
sensors are present and even constitute the majority.
SpecKriging uses a GNN framework to achieve this goal by
mapping the RF signals of all sensors to an undirected graph.
It works by using GNN-based spatiotemporal interpolation
to predict the sensing data of each non-anchor sensor based
on trustworthy anchor-sensor reports and then evaluating
the trustworthiness of each non-anchor sensor, which is
commensurate with the similarity between their respective
interpolation results and reports. In particular, the SSP
first pretrains a GNN model with the historical datasets
from anchor sensors in the off-line mode during system
initialization, as shown in Fig. 1. Note that a limited number
of anchors are always not sufficient to train a GNN model
that is good enough for testing. Therefore, retraining by using
new sensors is necessary for the first several rounds of the
online mode. In particular, each time the SSP receives new
spectrum-sensing reports from non-anchor and anchor sensors
during system runtime, i.e., in the online mode, it tests
non-anchor sensor reports in batches with the pre-trained
model and new anchor sensor reports, distinguish benign
and malicious non-anchor sensors, and then retrain the GNN
model. The model retraining can stop once the retrained
GNN model satisfies the detection-accuracy requirement.
In this scenario, only dataset testing is needed as illustrated
in Fig. 1.

D. IGNNK Method for Spatiotemporal Interpolation

We use GNNs to characterize the spatiotemporal relation-
ships of all sensing reports generated by different spectrum
sensors at different time. Let G = (V , E) denote an undirected
graph, where V and E denote the node and edge sets, respec-
tively. We also define a Euclidean distance-based adjacency
matrix W as follows,

Wi,j = exp

(
−
(

dist(vi, vj)
σ

)2
)

, (1)

where dist(vi, vj) denotes the Euclidean distance or edge
weight between arbitrary sensors i and j. We also use Xi

to represent the data of node i ∈ V .
We adopt the IGNNK model in [16] as the basic model

for spatiotemporal representation and interpolation of sensing
signals. One superior feature of IGNNK is that it is an
inductive GNN which has parameters independent of the scale
of graph nodes and can be used for previous unseen nodes or
even an unseen graph. This feature makes the graph available
even when the input data are from non-anchor sensors (e.g.,
mobile crowdsourcing users) that have never appeared.

IGNNK works as follows. When a period of datasets that
contain some masked measurements are fed into the IGNNK
model, this model learns the corresponding spatiotemporal
graph and then reconstruct the data of all nodes including
both observed and masked nodes. Here the measurements of
masked nodes—called masked or unknown measurements—
are interpolated based on the spatiotemporal relationships
with their neighbors in the graph. This model has three
layers where the first layer is the initial representation of sig-
nals. IGNNK adopts Diffusion Graph Convolutional Networks
(DGCNs) [17] as the basic building block show below,

H1 =
K∑

k=1

Tk(W sample)H0Θk
b,0 + Tk(W sample)H0Θk

f,0. (2)

Here H0 = XM
sample denote observed and masked

measurements fed into the first layer, and W =
Wsample/rowsum(Wsample) represents the forward/backward
transition matrix. Tk, Θk

b,0, and Θk
f,0 are the model’s inner

function and parameters representing the Chebyshev polyno-
mial and learning parameters.

Note that the masked nodes only pass 0 to their neighbors in
this layer and their features are also masked hindering them to
produce desired representation. Therefore, the second layer is
added to produce more generalized representations of masked
nodes, which is represented by

H2 = σ(
K∑

k=1

Tk(W sample)H1Θk
b,1

+ Tk(W sample)H1Θk
f,1) + H1. (3)

The third layer is to reconstruct the input data as

X̂sample =
K∑

k=1

Tk(W sample)H2Θk
b,2 + Tk(W sample)H2Θk

f,2.

(4)

Here the loss function is defined as the total reconstruction
error on both unmasked and masked samples as follows

l =
∑

sample

||X̂sample − Xsample||2. (5)

With the IGNNK method, the measurements from new loca-
tions can be predicted using the trained model. In particular,
these samples are masked as unobserved data and fed into the
model along with the observed ones, and the output of the
model is the interpolation results for the masked locations.
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Fig. 2. Overview of learning and prediction in SpecKriging.

Fig. 3. Graph model illustration.

III. SPECKRIGING DESIGN

A. SpecKriging GNN for Homogeneous Sensors

We use the graph model G = (V , E) in Section II-D to char-
acterize the spatiotemporal sensing data reports. Each anchor
or non-anchor sensor corresponds to a unique node in V .
We use sensor or node i and Vi interchangeably hereafter. The
edge set E contains an edge between any two spectrum sensors
(anchor or non-anchor). The edge weights form the Euclidean
distance-based adjacency matrix W defined in Eq. (1). We also
use X to denote all the time series of sensing data (i.e., RSS
values), and Xi ∈ X to represent the data of each node
i ∈ V . Fig. 3 illustrates the graph model where Type-n means
the configuration information of each sensor investigated in
Section III-B.

Algorithm 1 illustrates the basic SpecGriging GNN architec-
ture when all spectrum sensors are homogeneous. In this algo-
rithm, the model goes through pretraining-testing-retraining
steps, and new data reports are finally classified as either
trustworthy or malicious. Trustworthy reports are used for both
spectrum-occupancy detection and model retaining if needed,
while malicious reports are simply dropped. It is worth noting
that malicious reports are similar to wrong reports submitted
by dysfunctional but benign spectrum sensors. So it is up to
the SSP to decide whether the corresponding spectrum sensors
are excluded permanently or temporarily suspended from the
system. Note that in the testing phase, non-anchor sensors are
not added in one time. Instead, each time we add a batch of
nodes that have the nearest distance to anchor sensors (see
Step 2). Fig. 6a shows that adding all non-anchor sensors
in one time results in worse performance than our scheme

Algorithm 1 SpecKriging Algorithm for Homogeneous Sen-
sors
Require: Historical RSS data X from anchor sensors over

period [1, p] (size n×p); adjacent matrix W of these anchor
sensors; New data Xnew from both anchor and non-anchor
sensors over a short period [1, t] (t = h∗batch) (size (n+
k)× t). Parameters: parameters of the IGNNK architecture
P0.

1: Train IGNNK algorithm using X and W ; � Initial
training step

2: Sort all non-anchor sensors according to the distance
from anchor sensors, and then partition them into sets
S1, S2, . . . , SM with |S1| < |S2|, S2 < S3,…,|SM−1| <
|SM |;

3: Let the current node set Scur = Sanc, and the added node
set Sadd = ∅;

4: for m=1 : M do
5: Update Sadd = Sm. Concatenate the sensing data, Xadd

m

and Xcur
m , from Sadd and Scur during [1, t], and obtain

a new data matrix Xnew
m and adjacent matrix W new

m ;
6: Test Xnew

m with masked Xadd
m using the trained model

and W new
m ; obtain a predicted signal matrix X̂; �

Testing step
7: for xm[i, j] in Xnew

m do
8: if |x̂m[i, j] − xm[i, j]| > τ1 then
9: xm[i, j] = 0;

10: end if
11: end for
12: Make the zero elements in Xnew

m as missing values
which will not participant in the following retraining
process of MODIFIED_IGNNK algorithm;

13: Update Scur = {Sanc, S1, S2, . . . , Sm};
14: Retrain IGNNK algorithm; � Retraining step
15: end for

because too many negative samples can reduce the sensor-
classification performance.

Fig. 2 illustrates the workflow of SpecKriging. In the
training phase, we mask the anchor nodes whose reports are
trustworthy and improve the model performance by minimiz-
ing the prediction error of the masked nodes. In the testing
phase, we mask the newly added nodes for trustworthiness
classification. If the difference between the predicted and
measured value collected in one time slot exceeds a predefined
empirical threshold, the corresponding node is classified as
malicious and discarded in this time slot.

B. SpecKriging GNN for Heterogeneous Sensors

Now we illustrate how to modify the basic SpecKrig-
ing GNN architecture to accommodate heterogeneous spec-
trum sensors. A heterogeneous graph is associated with a
sensor-configuration mapping function φ : V → M where M
denotes the set of sensor configuration [18], [19]. For each
configuration type of sensors (e.g., those of type φi), we use
the type-specific linear transformation matrix Mφl

to project
the features of different sensor configurations into the same
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Algorithm 2 SpecKriging Algorithm for Heterogeneous Sen-
sors
Require: Historical data X from anchor sensors Sanc over

period [1, p] (size n× p); adjacent matrix W of these sen-
sors; current data Xnew from both anchor and non-anchor
sensors over a short period [1, t] (size (n + k) × t); a
configuration feature list F r containing (n + k) elements
with each of size q (the number of configuration feature).
Parameters: parameter set of the IGNNK architecture, P0;
time slot length h.

1: Create two lists, F anc
ded and T anc

ded (of size h × h), for
anchor sensors; Create two empty lists, F non

ded and T non
ded , for

current empty non-anchor sensor set; add these four lists
to MODIFIED_IGNNK algorithm as learnable parameters.

2: Train MODIFIED_IGNNK model in Training-Mode using
X and W ; update F non

ded and T non
ded ; � Initial training step

3: Sort all non-anchor sensors according to the distance from
anchor sensors; partition them into sets S1, S2, . . . , SM

with |S1| < |S2|, S2 < S3,…,|SM−1| < |SM |;
4: Let the non-anchor sensor set Snon = ∅, and the added

node set Sadd = ∅;
5: for m=1 : M do
6: Let current node set Scur = {Sanc, Snon} consisting of

anchor and current non-anchor sensor set;
7: Update Sadd = Sm. Concatenate the data from Sadd

and Scur during [1, t], Xadd
m and Xcur

m , and obtain a
new data matrix Xnew

m and adjacent matrix W new
m from

the concatenated nodes; derive a redundant configuration
feature list F add

red only from Sm

8: Test Xnew
m with masked Xadd

m using the model, W new
m ,

and FSm

red in Testing-Mode, and obtain a predicted data
matrix X̂; � Testing step

9: for xm[i, j] in Xnew
m do

10: if |x̂m[i, j] − xm[i, j]| > τ1 then
11: xm[i, j] = 0;
12: end if
13: end for
14: Make the zero elements in Xnew

m as missing values;
15: Update Snon = {S1, S2, . . . , Sm}; augment

F non
ded .append(FSm

ded) and T non
ded .append(T Sm

ded);
16: Retrain MODIFIED_IGNNK algorithm in Training-

Mode; update F anc
ded , T anc

ded , augmented F non
ded , and aug-

mented T non
ded ; � Retraining

step
17: end for

feature space as

x′
i = Mφl

· xi. (6)

Here xi and x′
i denote the original and projected feature of

sensor i, respectively.
Thus we incorporate these configuration matrices into the

model’s parameter set and update them during the training
phase. Algorithm 2 shows the brief structure of the heteroge-
neous SpecKriging GNN, where MODIFIED_IGNNK repre-
sents a new model for reconstructing sensing data based on
the IGNNK model. The key difference is MODIFIED_IGNNK

TABLE I

DEFINITIONS OF SOME VARIABLES USED IN ALGORITHM 2

Algorithm 3 MODIFIED_IGNNK in Training Mode
Require: Data matrix X and the corresponding adjacent

matrix W . Parameters: two de-duplicated lists, F anc
ded and

T anc
ded , from anchor sensors; two de-duplicated lists, F non

ded

and T non
ded , from current non-anchor sensors (if exist); P0;

1: Obtain T anc
red from anchor sensors with T anc

ded and F anc
ded ;

2: if the non-anchor sensor set is NOT empty then
3: Obtain T non

red from the non-anchor sensors with T non
ded and

F non
ded ;

4: end if
5: Concatenate T anc

red and T non
red , and obtain a new matrix list

T con
red ;

6: Multiply X with T con
red , and get X ′;

7: obtain reconstructed data X̂ ′ = IGNNK(X ′, W , P0);
8: return X̂ ′

Algorithm 4 MODIFIED_IGNNK in Testing Mode
Require: Data matrix X and the corresponding adjacent

matrix W . Parameters: the same parameters as that on the
Training-Mode; a redundant configuration feature list F add

red

from the new non-anchor sensors;
1: Concatenate T anc

ded and T non
ded from anchor and current non-

anchor sensors, and get a new list T con
ded ;

2: Concatenate F anc
ded and F non

ded , and obtain a new list F con
ded ;

3: Use a small NN network to learn the mapping from F con
ded

to T con
ded ; use the network to predict T add

ded from the new
non-anchor sensors with F add

red ;
4: Obtain the overall redundant configuration matrix list T o

red

from anchor, current non-anchor and added sensors using
T con

ded , F con
ded , T add

ded , and F add
ded ;

5: Multiply X with T o
red, and obtain X ′;

6: obtain reconstructed data X̂ ′ = IGNNK(X ′, W , P0);
7: return X̂

requires the data matrix to be multiplied by the linear
transformation matrix—referred to as a configuration matrix
hereafter—before feeding the data to the IGNNK model. Note
that instead of adding the redundant configuration matrices
into the model’s parameters, we add the de-duplicated config-
uration matrices. In the following, we use three new metrics
defined in Table I—Fded, Tded, and Tred—to characterize the
configuration knowledge.

In Algorithm 2, we first randomly generate a de-duplicated
list of configuration matrices for all anchor sensors corre-
sponding to their known configuration features. Then we train
MODIFIED_IGNNK model using the signal matrix, adja-
cency matrix, and configuration matrix of all anchor sensors.
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In particular, the model updates the parameters containing not
only the parameter set of the IGNNK algorithm but also the
configuration parameters of all anchor sensors, T anc

ded , as shown
in Algorithm 3. In the testing step, because the model does not
know the configuration matrices of the new nodes in advance,
we propose to use a small neural network (NN) to predict
these matrices using the matrices from the previously known
nodes, as detailed in Algorithm 4. With the predicted config-
uration matrices, MODIFIED_IGNNK could determine if the
measurements from new nodes are trustworthy or not. Then
it adds trustworthy measurements into the dataset and discard
the untrustworthy ones. Then we retrain MODIFIED_IGNNK
using the augmented dataset, the augmented adjacency matrix,
and the augmented configuration matrix list which has been
initialized in the testing step. The testing and retraining steps
are executed in batches. In summary, the training mode is
responsible for updating model parameters, while the testing
mode is responsible for predicting the configuration matrices
of new nodes and then decide if the nodes are trustworthy or
malicious.

IV. PERFORMANCE EVALUATION

In this section, we experimentally evaluate the efficacy and
efficiency of SpecKriging for both homogeneous and hetero-
geneous sensors with comparison to OK-based interpolation
techniques [5], [13].

A. Experimental Setup

We design experiments to verify that we could use SpecK-
riging to select trustworthy RSS measurements for coop-
erative spectrum-occupancy detection. We use the follow-
ing two datasets corresponding to homogeneous-node and
heterogeneous-node scenarios, respectively.

1) Real data from homogeneous sensors. We use the
datasets from [13], [20]. The sensing data are collected
on the campus of the University of Colorado Boulder
and cover an area of 1.5km×1.1km. We test the sensing
data from 100 randomly chosen sensors, and there
are 4 randomly placed transmitters emitting signals in
different time slots in the corresponding coverage area.
Three measurements are collected for each sensor in
each time slot, so we let h = 3. Here we just show the
interpolation performance because the datasets contains
only the data for transmitter presence.

2) Synthetic data from homogeneous sensors. We use the
RF signal-analysis tool SPLAT! [21] and the terrain
database of US Geological Survey [22] to generate the
path-loss model for spectrum sensors. We consider a
geographic area of 1 km by 1 km where we randomly
deploy 100 spectrum sensors with the PU at the center.
Actually, if the PU moves during a sensing period,
we can collect the time-varying sensing reports and train
a new spatiotemporal GNN model, which could be our
future work. We also simulate spatially correlated noise
samples of the same number as the signal samples for
sensor selection and spectrum-occupancy detection.

TABLE II

DEFAULT EXPERIMENT PARAMETERS

3) Synthetic data from heterogeneous sensors. We adopt
the simulation data in [4], which defines 36 different
sensor-configurations with each corresponding to a tuple
(N, NFFT). Here N denotes the number of I/Q samples,
and NFFT denotes the resolution of the FFT algorithm.
Because there is only one energy value in every location,
we can only generate a 1-dimensional feature vector
which is not sufficient for spectrum-sensing experiments.
Therefore, we augment the dataset by adding some
Gaussian noise of power -80dBm.

In our experiments, we claim that a malicious sensor
launches an attack with attack strength T dB if it reports xi+T
instead where xi denotes the true RSS value [1], [23]. Table II
lists the default experiment parameters.

B. Classification and Interpolation Performance for
Evaluating Sensor Trustworthiness

Fig. 4 compares SpecKriging with OK-based interpola-
tion techniques [5], [13] for distinguishing between benign
and malicious non-anchor sensors. The performance metric
here is the classical classification accuracy defined as the
number of correct predictions divided by the total number
of predictions. Fig. 4a and Fig. 4b show the results for
homogeneous spectrum sensors. For both methods, the clas-
sification accuracy increases with the attack strength because
benign and malicious sensors are obviously much easier to
tell apart for larger attack strength. In addition, SpecKriging
and the OK-based methods have comparable classification
performance. Fig. 4c shows the results for heterogeneous
sensors. It is clear that SpecKriging outperforms the OK-based
techniques regardless of the attack strength. The reason is that
the OK algorithm calculates the weights between two nodes
based on the prediction variance, but the sensor-configuration
information is unpredictable and not related to the variance
matrix constructed by the OK algorithm. This issue makes
the OK-based methods less applicable when spectrum sensors
have highly heterogeneous hardware configurations.

Fig. 5 compares the interpolation performance of
SpecKriging and the OK-based methods when all the
non-anchor sensors are benign. The performance metric
here is Mean Absolute Error (MAE), which indicates the
difference between the interpolated (predicted) and measured
data values. We test the real data with 30 sensors during
the training phase. As shown in Fig. 5a, the MAE values of
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Fig. 4. Sensor-classification accuracy for homogeneous and heterogeneous sensors.

Fig. 5. MAEs of homogeneous sensors corresponding to real data.

Fig. 6. MAEs of homogeneous and heterogeneous sensors corresponding to
synthetic data.

SpecKriging algorithm decrease sharply in the first several
epochs and finally reach a lower extreme (smaller than 6)
than that of the OK-based algorithm. This result verifies the
effectiveness of SpecKriging in real scenarios.

Recall that SpecKriging adds non-anchor sensors in batches
during the testing and model-retraining phases. Next, we test
the MAE changes because of the batch processing. We assume
that non-anchor sensors are partitioned into random batches for
the model training. The dataset contains 50 new non-anchor
sensors with each reporting 3 RSS values (i.e., covering 3/h =
1 time slots). These sensors are used for validation and thus
not used in the model-training phase. We use the trained model
to predict the data values of these sensors and then compute
the average MAE. Each data point in Fig. 5b represents the
average of 100 runs. Other experiment parameters follow
Table II.

We also test the performance of synthetic data of homo-
geneous and heterogeneous sensors. The dataset contains
55 new non-anchor sensors with each reporting 100 RSS
values (i.e., covering 100/h time slots). Fig. 6a plots the MAE
for homogeneous sensors. we can clearly see SpecKriging
has much better performance when batch processing is used.
In addition, the larger the batch size, the more non-anchor

Fig. 7. REMs for homogeneous sensors.

sensors contributing to the model training, the better the
interpolation accuracy, the lower the MAE, and vice versa.
In addition, SpecKriging starts to outperform the OK-based
methods when the batch size exceeds 7. Similar results can be
observed in Fig. 6b for heterogeneous sensors. Note that the
MAE of SpecKriging decreases significantly with the batch
size, while the MAE of the OK-based methods has little
change. The main reason is that the OK-based methods do
not take sensor configuration into consideration, resulting in
prediction errors for new sensors.

C. Performance for Spectrum-Occupancy Detection

In this section, we compare the performance of
SpecKriging and the OK-based methods for spectrum-
occupancy detection in the presence of malicious sensors. For
this set of experiments, we use classification accuracy and
also the reconstructed Radio Environmental Map (REM) as
the main performance metrics. In this context, a classification
error is said to happen if a present (or absent) PU is
classified as absent (or present). We use two popular machine
learning methods—SVM and Random Forest [24], [25]—for
detecting spectrum occupancy based on trustworthy data
reports output by SpecKriging or the OK-based methods.
Each data sample is a time sequence of RSS measurements,
and there can be missing measurements after SpecKriging or
the OK-based methods are applied to detect and then discard
malicious measurements. Since the data samples with missing
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Fig. 8. Spectrum-occupancy classification accuracy with homogeneous spectrum sensors.

measurements cannot be directly used, we use the interpolated
measurements to substitute the discarded measurements.

1) Homogeneous Sensors: This section reports the results
with homogeneous spectrum sensors. In this group of experi-
ments, we have 100 samples (each of size k + n) with the
PU present and 100 noise samples of the same size. The
simulation is done in Python, and anchor/benign/malicious
sensors are picked randomly. Each point in Fig. 8 is the
average of 100 runs. We also show the results without any
countermeasure as a reference.

Fig. 7 visualizes the REMs when all nodes are benign
(Fig. 7b), there are malicious sensors without any defense
(Fig. 7c), and SpecKriging is adopted to counteract malicious
sensors (Fig. 7d). Because the PU is at the center of the sensing
region, its signal strength decreases gradually from the center
to the corners. Malicious sensors report high RSS values to
change the signal distribution in REM significantly. We can
clearly see that SpecKriging could exclude the malicious sen-
sors and reconstruct accurate measurements in their locations.

Fig. 8a demonstrates the classification accuracy with dif-
ferent numbers of anchor sensors. Both SpecKriging and the
OK-based methods achieve comparably very high classifica-
tion accuracy when malicious sensors are present. In addi-
tion, the classification accuracy increases with the number of
anchor sensors because more trustworthy measurements could
train a better model for evaluating sensor trustworthiness.
In addition, even though the sensor-classification accuracy is
relatively low for low attack strength as shown in Fig. 4b,
the spectrum-occupancy classification accuracy can still be
very high. The reason is that with the lower attack strength,
malicious measurements escaping the detection are also more
similar to benign measurements and thus have a weaker
negative impact on spectrum-occupancy classification.

Fig. 8b shows the classification accuracy with different
numbers of malicious sensors. As we can see, the classification
accuracy decreases with the number of malicious sensors. This
result coincides with our intuition but is still much better than
without any defense. The good news is that even when there
are more malicious sensors than benign ones (40 vs. 30),
SpecKriging can still achieve classification accuracy over 90%
better than that of the OK-based methods.

Fig. 8c illustrates the classification accuracy as the attack
strength varies. When the attack strength becomes 0, the
classification accuracy is clearly the highest. In addition,
no matter whether the attacker reports higher or RSS values,
the classification accuracy always drops. The reason is that

Fig. 9. REMs of heterogeneous nodes.

higher RSS values increase the false positive rate (FPR) when
the PU is absent, while lower RSS values increase the false
negative rate (FNR) when the PU is present. In all simulated
scenarios, SpecKriging can still achieve classification accuracy
over 90%.

2) Heterogeneous Sensors: Now we report the results with
heterogeneous spectrum sensors. In this group of experiments,
we feed the energy data with sensor-configuration information
into the SpecKriging model.

We first show the REMs with benign sensors only (Fig. 9b),
with malicious sensors but without any defense (Fig. 9c),
and with SkecKriging adopted to detect malicious sensors
(Fig. 9d). We can clearly see the high performance of SpecK-
riging in excluding malicious measurements and reconstruct
accurate substitutes.

Fig. 10a shows the classification accuracy with differ-
ent numbers of anchor sensors. SpecKriging achieves very
high classification accuracy and significantly outperforms
the OK-based methods which cannot accommodate sensor-
configuration heterogeneity. Also as expected, the more anchor
sensors, the higher the classification accuracy.

Fig. 10b illustrates the impact of different numbers of mali-
cious sensors. SpecKriging always outperforms the OK-based
methods and maintains high performance even when malicious
sensors are more than benign ones (40 vs. 30).

Fig. 10c demonstrates the classification accuracy as the
attack strength varies. SpecKriging always outperforms the
OK-based methods and maintains high performance even
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Fig. 10. Spectrum-occupancy classification accuracy with heterogeneous spectrum sensors.

Fig. 11. Classification accuracy vs. sensor density.

when the attack strength is very high. Since high attack
strength can significantly increase the attacker’s cost, SpecK-
riging can significantly raise the bar of launching effective
spectrum-sensing attacks.

Fig. 11 shows the effect of sensor density on the classifi-
cation accuracy. As we can see, a large number of sensors
can boost the classification performance, which also verifies
that trustworthy anchor sensors alone are not enough for
high-quality spectrum analytics.

D. Computational Time

We also evaluate the computational time (mainly the dom-
inating model-training latency) of SpecKriging and compare
it with the OK-based methods. We train the model on a Dell
desktop with 3.19 GHz CPU, 16 GB RAM, and Windows 10
64-bit Professional. As shown in Fig. 12a, SpecKriging has
similar model-training latency to the OK-based methods when
the data size is small and is significantly better when the data
size ((especially the number of sensors) becomes large. This
result is anticipated due to their different computational com-
plexity. For the OK-based methods, the computational com-
plexity is O(n4) with n denoting the number of sensors [15].
Since IGNNK constructs three layers of DGCNs [17] with
computational complexity O(n2) in our scenario, SpecKriging
also has computational complexity O(n2) for each time slot.
Therefore, SpecKriging outperforms the OK-based schemes in
large-scale CSS systems.

We also evaluate the effect of the number of measurements,
h, in each time slot for SpecKriging with heterogeneous
sensors. This parameter h also denotes the size of the linear
transformation matrix assigned to the input data. It determines
the granularity of the data after being multiplied by h. Fig. 12
shows the classification accuracy with different h. As we can
see, when h increases, the classification accuracy decreases

Fig. 12. Efficiency analysis of SpecKriging.

due to the coarser data segmentation during linear transfor-
mation. However, a small h value means high computational
complexity. Therefore, there is a trade-off between classifica-
tion accuracy and computational complexity with regard to h.

V. RELATED WORK

In this section, we briefly outline the prior work most
germane to SpecKriging.

There are various countermeasures to identify the false
sensing reports. The first category is anomaly detection [7],
[8], [26], [27]. Some methods identify false sensing reports by
differentiating them from other measurements of the normal
nodes in their neighborhood. For example, in [8], the authors
use a moving box window to detect the abnormal locations
where the measurement is very different from that submit-
ted by its neighbors. Some other techniques use machine
learning-based methods to predict attacking behaviors based
on the legitimate sensors’ previous patterns. For example,
in [26], the authors use one-class SVM to learn the pattern of
normal sensors’ previous behavior and predict future abnormal
reports from attackers. These methods fail when the malicious
nodes become the majority in the sensing region. The second
category detects adversaries based on the reputation scores
from historical logs or statistical results [9]–[11]. In [9], the
authors propose to use sensors’ reputation levels as their fusion
weights during spectrum detection. However, reputation-based
methods cannot handle the sudden change in mobile sensors’
behaviors and are thus vulnerable to instantaneous attacks.

Researchers also use the trusted nodes/anchors to detect the
false measurements from the crowdsourcing users [1], [12],
[13]. In [12], the authors observe that given the real signal
propagation information from PU, neighboring cells can help
to correct the sensing decision. In [1], the relationship between
anchors and normal nodes are established to exclude abnormal
nodes. However, the performance degrades if the propagation
model is not accurate enough.
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Recently, some papers propose interpolation techniques,
such as Inverse Distance Weighting (IDW) and Ordinary
Kriging (OK), to detect malicious nodes [5], [13], [14]. The
intuition is that measurements from good nodes can be used to
“interpolate” the measurements from unknown sensors. If the
reports from some sensors are significantly different from the
interpolated results, these sensors are probably malicious. For
example, in [5], the authors use OK to select the proper
sensors for the spectrum occupancy query. In [13], the authors
use OK to select the normal sensors to construct the radio
environment map. These methods are promising for sensor
selection but they have some limitations as mentioned in I.
First of all, these methods become less effective when the
sensors have heterogeneous features (e.g., various sampling
rates or different number of antennas) that affect the sensing
reports. In contrast, SpecKriging explores a GNN model for
the interpolation task and incorporates sensors’ heterogeneous
information into the model. By combining the spatial-temporal
and configuration features, we can obtain good interpolated
results from the unknown sensors. In addition, the existing
interpolation methods are applied to spatial or temporal inter-
polation solely. Therefore, each time when a new dataset
arrives, all sensors are required to update the interpolation
matrix. SpecKriging, by contrast, does not need extra training
efforts when new nodes are added once the model is trained.

Researchers have also explored the sensor heterogeneity
in cooperative spectrum sensing [4], [28]–[32]. In [28], [29],
[32], the authors consider the heterogeneity of SUs in terms of
the SNR values, reporting errors, and data transmission rates.
Besides, the authors in [30] investigate the heterogeneous sens-
ing abilities including detection and false alarm rates. In addi-
tion, authors in [31] discuss the CSS performance of SUs with
different antenna numbers and sampling rates. The most recent
work [4] considers the scenario when spectrum sensors have
heterogeneous sensing capabilities including sampling rates
(i.e., the number of FFT bins) and sample numbers in one time
slot. Similar to the work in [4], we also incorporate spectrum
heterogeneity into SpecKriging, with regard to sampling rates
and sample numbers. As far as we know, SpecKriging is the
first work that takes spectrum-sensor heterogeneity into con-
sideration for interpolation-based trustworthiness evaluation of
spectrum sensors. In our setting, because the sample number
and FFT bin number are both discrete values, we could classify
each sample number (i.e., an FFT bin number pair) as one
sensor type and assign it a type-specific linear transformation
matrix. As for other heterogeneous configuration information
such as SNR, discretization is needed before such information
is assigned a transformation matrix and fed into the GNN
model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the design and evaluation of
SpecKriging, the first work that explores GNNs and considers
sensor heterogeneity for secure cooperative spectrum sensing
(CSS). Extensive experiments show that SpecKriging main-
tains very high spectrum-occupancy detection accuracy even
when the majority of spectrum sensors are malicious. We also
show that besides its unique support for sensor heterogeneity,

SpecKriging has comparably high performance for trustworthy
spectrum-occupancy detection and much lower computational
complexity than the state-of-the-art prior work in large-scale
CSS systems with homogeneous spectrum sensors.
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