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Abstract—We target a two-tier sensor network with resource-
rich master nodes at the upper tier and resource-poor sensor
nodes at the lower tier. Master nodes collect data from sensor
nodes and answer the queries from the network owner. The
reliance on master nodes for data storage and query processing
raises serious concerns about both data confidentiality and
query-result correctness in hostile environments. In particular,
a compromised master node may leak hosted sensitive data to
the adversary; it may also return juggled or incomplete data in
response to a query. This paper presents a novel spatiotemporal
approach to ensure secure range queries in event-driven two-
tier sensor networks. It offers data confidentiality by preventing
master nodes from reading hosted data and also enables efficient
range-query processing. More importantly, it allows the network
owner to verify with very high probability whether a query result
is authentic and complete by examining the spatial and temporal
relationships among the returned data. The high efficacy and
efficiency of our approach are confirmed by detailed performance
evaluations.

Index Terms—Wireless sensor networks, range query, security.

I. INTRODUCTION

DATA access in wireless sensor networks (WSNs) nor-
mally follows a push or pull model. In the push model,

the data continuously generated by sensor nodes are sent in
real time to an external data sink, where various data queries
can be resolved in a centralized fashion. The push model is
well suitable for monitoring and surveillance applications that
desire live data. In contrast, in the pull model, sensor data
are stored inside the network and await on-demand queries.
The pull model is very suitable for many civilian, commercial,
scientific, and military applications without need for live data
[2]–[6]. In addition, the pull model can greatly save the
scarce energy of sensor nodes if only a small portion of
the potentially huge amount of data produced over time may
be needed [2]–[6]. The pull model is also the only feasible
approach in remote and extreme environments where it is
impossible or prohibitive to maintain an always-on high-speed
communication connection from the WSN to the external sink
whereby sensor data can be sent in real time.
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In this paper, we target a large-scale two-tier WSN with in-
network storage and query processing as in [2], i.e., following
the pull model. The lower tier comprises a large number
of resource-constrained sensor nodes, while the upper tier
contains fewer relatively resource-rich master nodes. Sensor
nodes are mainly responsible for sensing tasks, while master
nodes perform more resource-demanding computation and
communication tasks. Master nodes also form a multi-hop
wireless mesh network via long-range high-bandwidth radios.
As in [2], every master node is equipped with several gigabytes
of NAND flash storage, which costs only a few tens of
dollars. The network field is partitioned into physical cells,
each containing a master node in charge of sensor nodes
in that cell. Master nodes collect data from affiliated sensor
nodes and store them locally for extended periods of time.
The network owner can query data through an on-demand
communication link (e.g., a satellite link) to some master
node(s). This two-tier architecture is also indispensable for
increasing network capacity and scalability, reducing system
complexity, and prolonging network lifetime [2], [7].

The reliance on master nodes for data storage and query
processing raises serious security concerns. In particular, many
target application environments of WSNs such as forests and
oceans are unattended and hostile in nature. Master nodes are
attractive targets of attack and might be compromised by the
adversary. Compromised master nodes will leak sensitive data
such as intrusion events or rare animals’ behavior patterns to
the adversary. A sound scheme is thus required to let master
nodes store encrypted data for which they do not hold the
decryption keys, while enabling efficient query processing.
In addition, the adversary may instruct compromised master
nodes to return juggled and/or incomplete data in response
to data queries from the network owner. Such attacks are
obviously more subtle and harmful than blind DoS attacks on
the WSN, especially when the query results are used as the
basis for making critical decisions. The network owner thus
cannot accept the query results at their face value. Instead, it
should be able to verify that a query result is both authentic
and complete. The term authentic means that all the data
in the result originated from the purported sources and have
not been tampered with, and complete means that the result
includes all the data satisfying the query. A WSN may need to
support many types of data queries. In this paper, we focus on
supporting range queries which are an important and common
type of queries in sensor networks and ask for data within a
certain range [8].

Despite significant progress in WSN security, secure range
queries have drawn attention only very recently. In their pio-
neering work [5], Sheng and Li apply the bucketing technique
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[9], [10] to store encrypted data at master nodes and also
ensure rang-query efficiency. If the encryption algorithm is
an OCB-like authenticated encryption primitive [11], their
scheme can ensure data confidentiality and query-result au-
thenticity. To permit query-result completeness verification,
they propose that every sensor node that has no data satisfying
the range query return some verifiable information through the
involved master node to the network owner. If the sink receives
neither data nor the verifiable information from any sensor
node, it knows that the master node must have maliciously
omitted the data from that sensor node. Their approach is
very suitable for monitoring-type WSN applications (e.g.,
temperature monitoring) in which each sensor node needs to
periodically report data to its affiliated master node. It, how-
ever, may incur unnecessarily high communication overhead
in event-driven WSN applications (e.g., target tracking) where
events occur infrequently and most sensor nodes have no data
to report. A detailed analysis of the communication overhead
of this scheme can be found in Section V-A4.

This paper, for the first time in literature, investigates
techniques to secure range queries in event-driven two-tier
WSNs with in-network storage and query processing. We
adopt the bucketing technique [9], [10] to strike a balance
between data confidentiality and query efficiency. Our major
contribution is a novel spatiotemporal approach for the net-
work owner to verify query-result completeness. In particular,
our approach consists of a spatial crosscheck technique and
a temporal crosscheck technique. The former aims to create
some relationships among data generated by sensor nodes in
charge by the same master node, while the latter aims to
embed some relationships among data produced in different
time periods. These two techniques collectively allow the
network owner to verify with high probability whether a query
result is authentic and complete by examining the spatial and
temporal relationships among the returned data. Since our
approach involves only nodes that have data to report and uses
only symmetric cryptographic primitives, it is very efficient
in both communication and computation. The efficacy and
efficiency of the proposed approach are confirmed by detailed
performance evaluations.

The rest of this paper is structured as follows. Section II
presents the adversary and event models. Section III illustrates
how to perform range queries over encrypted data based
on the bucketing technique [9], [10]. Section IV presents
our spatiotemporal approach. Section V thoroughly analyzes
and evaluates the proposed techniques. Section VI finally
concludes this paper.

II. ADVERSARY AND EVENT MODELS

A. Adversary Model

This paper focuses on thwarting attacks on secure range
queries in tiered WSNs, and we refer to the existing rich
literature for effective defenses against other attacks. We as-
sume that the adversary can compromise an arbitrary number
of master nodes. Once compromising a master node, the
adversary can access data stored there and also instruct it to
return juggled and/or incomplete data in response to range
queries from the network owner. The adversary may also

compromise sensor nodes and access any information stored
on them. Since a compromised sensor node only has very
limited information and there are many more sensor nodes
than master nodes with more important roles, the adversary
will be motivated to compromise master nodes in order to
do more damage. For lack of space, we follow the adversary
model in [5] and focus on dealing with compromised master
nodes in this paper. The impact of compromised sensor nodes
on multidimensional range queries has been addressed in [12],
in which the proposed countermeasures can apply to our work
in this paper with minimal modifications.

B. Event-Driven Application Model

In this subsection, we clarify the event-driven application
model used throughout the paper. Similar to [5], we assume
that time is divided into epochs and that sensor and master
nodes are loosely synchronized. We assume there are totally
𝐹 events observed in a target cell during epoch 𝑡, where 𝐹 ∈
[0, 𝐹𝑚] is a random number, and 𝐹𝑚 is the maximum number
of events that can be observed in a cell during each epoch. Let
𝑛𝑓 denote the number of distinct sensor nodes detecting event
𝑓, 1 ≤ 𝑓 ≤ 𝐹 . It is worth noting that one sensor node may
detect multiple events in the same epoch. 𝐹 and 𝑛𝑓 may vary
in different cells and epochs and follow some distributions
which depend on concrete applications.

III. RANGE QUERIES OVER ENCRYPTED DATA

In this section, we illustrate how to realize data confiden-
tiality, efficient range queries, and query-result authentication,
which is the basis for our spatiotemporal crosscheck scheme.

We assume that each epoch consists of three phases. In the
longest detection phase, each sensor node performs sensing.
In the subsequent reporting phase, each sensor node submits
to its master node all the data (if any) it produced during that
epoch. Depending on concrete applications, each data item
may comprise multiple attributes such as the weight of an
observed object, its location, its speed and moving trajectory,
and its appearance and lingering times. In the final query
phase, the network owner may issue queries for data generated
in that epoch. During the relatively much shorter reporting and
query phases, some nodes may generate some data which will
be carried over to the next epoch. In this paper, we aim to
support only epoch-based and cell-based single-attribute range
queries, e.g., “Return all the data items generated during epoch
𝑡 in cell 𝑖𝑑𝑐𝑒𝑙𝑙 whose weight attribute is between 100 and 120
pounds.”

Without loss of generality, we subsequently focus on a cell
𝑖𝑑𝑐𝑒𝑙𝑙 consisting of 𝑁 sensor nodes, denoted by {𝑆𝑖}𝑁𝑖=1, and
a master node, denoted by ℳ. It should be noted that our
techniques apply to every cell with or without a compromised
master node which is hard to predict. Each node 𝑆𝑖 is
preloaded with a distinct key 𝐾𝑖,0 known only to itself and
the network owner. At the end of epoch 𝑡 ≥ 1, 𝑆𝑖 generates
an epoch key 𝐾𝑖,𝑡 = 𝐻(𝐾𝑖,𝑡−1) and erases 𝐾𝑖,𝑡−1 from
its memory, where 𝐻(⋅) denotes a good hash function. Such
epoch keys are used to realize forward-secure encryption of
data produced in each epoch. For example, suppose that the
adversary compromises ℳ and 𝑆𝑖 during epoch 𝑡+1. He will
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not be able to read the encrypted data 𝑆𝑖 submitted to ℳ in
the past 𝑡 epochs, as all the corresponding encryption keys
{𝐾𝑖,𝑗}𝑡𝑗=1 no longer exist.

As in [5], we adopt the bucketing technique [9], [10]
to strike a balance between data confidentiality and query
efficiency. The bucketing technique partitions the queriable
attribute domain into 𝑔 ≥ 1 consecutive non-overlapping
regions (buckets), sequentially numbered from 1 to 𝑔, and
the value of 𝑔 and the partitioning rule are assumed to be
public knowledge. At the end of each epoch 𝑡, 𝑆𝑖, ∀𝑖 ∈ [1, 𝑁 ],
encrypts the data items falling into the same bucket as a
whole and then sends these encrypted blocks to ℳ. For
instance, assume that 𝑆𝑖 has 3∣2∣1 data items in buckets 1∣3∣5,
respectively. 𝑆𝑖 sends the following message to ℳ during the
reporting phase of epoch 𝑡:

𝑆𝑖 → ℳ : 𝑖, 𝑡, ⟨1, (𝑑𝑎𝑡𝑎1, 𝑑𝑎𝑡𝑎2, 𝑑𝑎𝑡𝑎3)𝐾𝑖,𝑡⟩,
⟨3, (𝑑𝑎𝑡𝑎4, 𝑑𝑎𝑡𝑎5)𝐾𝑖,𝑡⟩, ⟨5, (𝑑𝑎𝑡𝑎6)𝐾𝑖,𝑡⟩,

where (⋅)∗ denotes an OCB-like authenticated encryption
primitive [11] using the key on the subscript.

The query process is fairly simple. The network owner first
converts its desired data range into bucket IDs (denoted by 𝒬𝑡)
and then sends them together with 𝑖𝑑𝑐𝑒𝑙𝑙 and epoch number 𝑡
to ℳ. Upon receiving the query ⟨𝑖𝑑𝑐𝑒𝑙𝑙, 𝑡,𝒬𝑡⟩, ℳ returns all
the encrypted data blocks with bucket IDs in 𝒬𝑡 along with the
corresponding sensor node IDs. The network owner can then
derive all the corresponding epoch keys whereby to decrypt
the received information. Since the data range of interest may
not exactly span consecutive full buckets, the encrypted data of
the lowest and highest buckets in the query reply may contain
superfluous data items (false positives) the network owner does
not want. One way to reduce such false positives and thus the
related unnecessary communication overhead is to use finer
bucketing, i.e., increasing 𝑔. This measure, however, helps ℳ
(if compromised) more accurately estimate the distribution of
sensed data and thus may jeopardize the data confidentiality.
We refer readers to [10] for optimal bucketing strategies which
can achieve a good balance between false positives and data
confidentiality.

In addition to ensuring data confidentiality against ℳ, the
authenticated encryption primitive allows the network owner
to detect forged or juggled data in the query result, as ℳ
does not know the correct epoch keys. Unfortunately, ℳ may
still omit data of some nodes which satisfy the query, leading
to query-result incompleteness. This behavior is difficult to
detect and will be addressed in the following section.

IV. A SPATIOTEMPORAL APPROACH TO SECURE RANGE

QUERIES

In this section, we present a novel spatiotemporal approach
allowing the network owner to verify the completeness of
range queries, which includes a spatial crosscheck technique,
a temporal crosscheck technique, and their combination.

A. Spatial Crosscheck (SC)

We first introduce a novel spatial crosscheck (SC) technique.
We consider cell 𝑖𝑑𝑐𝑒𝑙𝑙 which consists of master node ℳ and
sensor nodes {𝑆𝑖}𝑁𝑖=1. The key idea of spatial crosscheck is to

embed some relationships among data generated by different
nodes during each epoch, e.g., embedding the information
about node 𝑆𝑗’s data into node 𝑆𝑖’s data buckets. Under this
technique, if ℳ omits data from some sensor nodes, the
network owner can decide with high probability that the query
result is incomplete by inspecting the spatial relationships
among the returned data. ℳ is thus forced to either return
all the data satisfying the query or none of them in order to
escape the detection.

To realize the SC technique, each node need disseminate the
information about its own data which can then be embedded
into other nodes’ data. How to disseminate such information
is critical in designing SC, which determines the efficacy and
efficiency of SC. In the following, we detail three versions
of SC, including a broadcast-based spatial crosscheck method
(BSC), a neighbor-based one (NSC), and a hybrid one (HSC)
which is the combination of BSC and NSC.

In BSC, before submitting its data to ℳ, every sensor node
broadcasts the information about its data (if any) within cell
𝑖𝑑𝑐𝑒𝑙𝑙. The broadcasted information consists of its ID and a
vector of 𝑔 bits, called data index, where each bit indicates
whether the node has detected data in the corresponding bucket
or not. We denote the data index of 𝑆𝑖 at epoch 𝑡 by V𝑖,𝑡.
For example, if 𝑔 = 8 and V𝑖,𝑡 = 10101000, then 𝑆𝑖 only
detected data for buckets 1∣3∣5 during epoch 𝑡. Every node
with data for submission sets a timer to the estimated longest
end-to-end message transmission time in cell 𝑖𝑑𝑐𝑒𝑙𝑙 to allow
enough time for receiving other nodes’ data indexes. Then it
embeds its own data index and all the received ones along
with the corresponding node IDs into each of its own data
buckets. Finally, it sends the encrypted buckets to ℳ as in
Section III. For example, assume that 𝑆𝑖 has 3∣2∣1 data items
in buckets 1∣3∣5, respectively, and has data indexes {V𝑙,𝑡}𝑘𝑙=1

before submission, including the received ones and its own,
i.e., 𝑆𝑖 ∈ {𝑆𝑙}𝑘𝑙=1. It finally sends the following message to
ℳ during the reporting phase.

𝑆𝑖 → ℳ : 𝑖, 𝑡, ⟨1, (𝑑𝑎𝑡𝑎1, 𝑑𝑎𝑡𝑎2, 𝑑𝑎𝑡𝑎3, {𝑗𝑙,V𝑙,𝑡}𝑘𝑙=1)𝐾𝑖,𝑡⟩,
⟨3, (𝑑𝑎𝑡𝑎4, 𝑑𝑎𝑡𝑎5, {𝑗𝑙,V𝑙,𝑡}𝑘𝑙=1)𝐾𝑖,𝑡⟩,
⟨5, (𝑑𝑎𝑡𝑎6, {𝑗𝑙,V𝑙,𝑡}𝑘𝑙=1)𝐾𝑖,𝑡⟩ .

The effectiveness of BSC can be easily seen through the
following example. Assume that the network owner sends a
query only for bucket 5; nodes Θ ⊆ {𝑆𝑖}𝑁𝑖=1 have data in
bucket 5; and ℳ drops the data bucket of 𝑆𝑖 ∈ Θ. Since
⟨𝑖,V𝑖,𝑡⟩ is embedded in bucket 5 of every other node in
Θ ∖ {𝑆𝑖}, it can reach the network owner as long as ℳ
does not drop all the data buckets satisfying the query. If the
network owner finds ⟨𝑖,V𝑖,𝑡⟩ in any received bucket and does
not receive the bucket from 𝑆𝑖, it can determine that ℳ must
be malicious. Therefore, ℳ has to drop all the data buckets
to escape detection.

The above example also manifests some possibly unneces-
sary communication overhead. In particular, multiple copies
of ⟨𝑖,V𝑖,𝑡⟩ may reach the network owner, while one copy is
enough. Therefore, it is unnecessary for each node to store
each received data index into all its buckets. One may think of
letting each node only embed the data indexes into the buckets
which will be queried by the network owner. It is, however,
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difficult to predict the network owner’s interests. Therefore,
we propose that each node embed each received data index in
each produced bucket with equal probability 𝑝𝑒.

Now we introduce the NSC technique which can further re-
duce the communication overhead. This technique is motivated
by the essential nature of event-driven sensor networks: if one
node detects any event, it is more likely for its neighboring
nodes and less likely for those far away from it to detect
the same event and thus generate data in the same bucket.
Therefore, if one node generated data satisfying the query, it is
most likely that its nearby nodes also generated qualified data.
It is thus more cost-effective to let the data of neighboring
sensor nodes crosscheck each other.

To illustrate NSC, we take node 𝑆𝑖 as an example. Assume
that 𝑆𝑖 has generated event data in epoch 𝑡. Before submitting
its data to ℳ, 𝑆𝑖 locally broadcasts ⟨𝜇, 𝑖,V𝑖,𝑡⟩, where 𝜇 is a
system parameter specifying the maximum number of hops
for which the message should be forwarded. Each of 𝑆𝑖’s
neighbors further locally broadcasts ⟨𝜇−1, 𝑖,V𝑖,𝑡⟩ if 𝜇−1 > 0
and also inserts ⟨𝑖,V𝑖,𝑡⟩ into each of its own data buckets (if
any) with probability 𝑝𝑒. To summarize, each node locally
broadcasts not only its own data index but also other received
data indexes which have not been transmitted beyond 𝜇 hops.
A node may receive the same data index multiple times from
different neighbors, in which case it only processes the first
version.

Intuitively, NSC significantly reduces the communication
overhead in contrast to BSC, as it only requires local broad-
casting of the data indexes within 𝜇 hops instead of the whole
cell. As long as 𝜇 is small, the communication cost of NSC
will be smaller than that of BSC. However, NSC has one
flaw. Consider the circumstance that there are only a few
events observed in the whole cell, and the number of nodes
detecting each event is so small that the physical subregions
associated with those events do not overlap. Then ℳ can
escape detection by dropping all the data buckets originating
from one subregion but returning all those belong to other
subregions.

We combine NSC and BSC to remedy each method’s flaw
and refer to this new method as HSC. In HSC, a node chooses
to broadcast its data index within the cell with probability
𝑝𝑏 and locally broadcast its data index following the NSC
scheme with probability 1−𝑝𝑏. In this way, some nodes’ data
indexes are distributed in the whole cell. Since ℳ cannot
differentiate those nodes from others, it can no longer drop all
the data generated in one subregion without being detected.
The relationships among 𝑝𝑏, the detection capability, and the
communication cost of NSC will be thoroughly analyzed and
evaluated in Section V.

B. Temporal Crosscheck (TC)

Our HSC technique enables the network owner to detect
ℳ’s misbehavior with very high probability as long as it can
receive at least one data bucket. ℳ, however, can still escape
the detection by dropping all the qualified data in the cell. To
this end, we further propose a temporal crosscheck technique
as a complement to HSC.

The basic idea of temporal crosscheck (TC) is to let each
node embed some relationships among its own data produced

in different epochs. To enable TC, we require each node to
maintain a fixed-length FIFO buffer of ℒ(𝑔 + 𝛾) bits, where
𝛾 denotes the length of an epoch ID which can roll over. The
buffer can thus hold at most ℒ pairs of data indexes and epoch
IDs. At the end of each epoch 𝑡, each node, say 𝑆𝑖, inserts its
own data index V𝑖,𝑡 into the buffer with equal probability 𝑝𝑇 .
The buffer of 𝑆𝑖 thus contains the data indexes of past epochs
which are not necessarily consecutive. If 𝑆𝑖 has any data for
submission, it embeds the buffer into every bucket it wants
to submit and then encrypts the data and the buffer in each
bucket together using an OCB-like authenticated encryption
primitive [11] with its epoch key. If ℳ returns the data of 𝑆𝑖
in response to a query, the buffer of 𝑆𝑖 is also sent along with
the data to the network owner and thus can be decrypted and
authenticated by the network owner.
ℳ can become very suspicious if the network owner does

not receive any data for a few consecutive queries. Let 𝛼 ≥ 1
be a system parameter, specifying the maximum number of
consecutive droppings the network owner can tolerate. If the
network owner does not receive any data for 𝛼 consecutive
queries which span no less than 𝛼 epochs, it will suspect
that ℳ might have been compromised and thus would di-
agnose ℳ using some accurate yet expensive technique such
as software-based memory attestation [13]. To avoid raising
the suspicion, ℳ thus will not drop data for more than 𝛼
consecutive queries.

To be more clear, assume that 𝑆𝑖 generates some data in
epoch 𝑡 which will satisfy the query made in epoch 𝑡 and
inserts V𝑖,𝑡 in its buffer. We also assume that ℳ consecutively
drops 𝛼′ query results, starting from epoch 𝑡. Because ℳ
tries to avoid raising suspicion, 𝛼′ is not larger than 𝛼. If the
network owner’s next query arrives before V𝑖,𝑡 is moved out
of the buffer and 𝑆𝑖 has data satisfying the new query, ℳ
will have to return 𝑆𝑖’s buffer as part of the query result. The
network owner can immediately catch ℳ’s misbehavior after
knowing that 𝑆𝑖 indeed had qualified data in epoch 𝑡.

C. Combination of SC and TC

HSC and TC are complementary to each other. In particular,
HSC enables the crosscheck of different nodes’ data generated
in the same epoch and thus forces the master node to either
return or drop all the data, while TC enables the crosscheck
of a node’s own data generated in different epochs and targets
detecting the drop-all misbehavior. On the one hand, without
HSC, the malicious master node can escape detection by
always dropping all the data from a fixed set of nodes and
returning all the data of other nodes. On the other hand,
without TC, the malicious master node can escape detection
by dropping all the data in one epoch and returning all the
data in the next epoch. Therefore, we require each node to
simply follow both HSC and TC and refer to the combined
technique as spatiotemporal crosscheck (STC).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our spa-
tiotemporal approach. As said before, the encoding technique
in [5] is the first and only related work on secure one-
dimensional range queries besides our scheme, and we are the
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first to notice that their approach is ill-suited for event-driven
sensor networks. To validate this observation, we also compare
our approach with the encoding technique. In addition, the en-
coding technique and our approach are both application-layer
security mechanisms independent of the underlying network
protocol stack and only require that unicast and broadcast
communications be feasible as needed. To better demonstrate
the tradeoff between security and overhead incurred by our
scheme itself, we adopt the same approach as in [5] and
just consider the additional communication overhead added
by our approach in what follows. In this way, the impact
of using different underlying network protocol stacks can be
eliminated.

A. Performance Analysis

We analyze the performance of our HSC, TC, and STC
techniques using the following metrics.

∙ 𝑃𝑑𝑒𝑡–detection probability: 𝑃𝑑𝑒𝑡 is defined as the prob-
ability that the network owner can detect the misbehavior
of ℳ in returning incomplete query results.

∙ T̄–communication cost: T̄ is defined as the total com-
munication energy consumption in bits for completeness
verification of query results from cell 𝑖𝑑𝑐𝑒𝑙𝑙. We only con-
sider the cost associated with transmitting data indexes,
which is the extra overhead incurred by our scheme.
Since master nodes have much more energy resources
than sensor nodes, we ignore the energy consumption
for transmitting data indexes from master nodes to the
network owner for simplicity. Here we assume the same
energy consumption to transmit and receive each bit
across each hop.

1) Analysis of HSC: Detection Probability
We first derive the detection probabilities of BSC and NSC,

respectively. To enable quantitative analysis, we assume on
average there are 𝐹 events observed per epoch per cell, and
each event is detected by �̄� sensor nodes. The network owner
issues a sequence of range queries in the query phase of
an epoch 𝑡 which together compose a set 𝒬𝑡 ⊆ {1, . . . , 𝑔}
of bucket IDs. Note that the bucket IDs in 𝒬𝑡 may not be
continuous. We assume that ℳ omits each data bucket from
every sensor node with equal probability 𝑝𝑑.

The following lemma 1 and lemma 2 are about the detection
probabilities of BSC and NSC, respectively.

LEMMA 1: With BSC, the network owner can detect ℳ
dropping any particular data bucket satisfying 𝒬𝑡 with prob-
ability

𝑃B
𝑑𝑒𝑡 = 1− 𝑝

(∣𝒬𝑡∣𝑁𝑝−1)𝑝𝑒
𝑑 , (1)

where
𝑝 = 1− (1− 1

𝑔

�̄�

𝑁
)𝐹 , (2)

and ∣𝒬𝑡∣ is the cardinality of 𝒬𝑡.
Proof: We first estimate the number of buckets generated

in the whole cell which satisfy the query of network owner,
denoted by Δ𝑡. We assume that the data resulting from one
event fall into a single bucket. Let E𝑓 (1 ≤ 𝑓 ≤ 𝐹 ) be the
set of nodes which have detected event 𝑓 , where ∣E𝑓 ∣ = 𝑛𝑓 .
Then the probability of any node 𝑆𝑖 detecting event 𝑓 and

belonging to E𝑓 is given by Pr(𝑆𝑖 ∈ E𝑓 ) =
𝑛𝑓

𝑁 , where Pr(∗)
denotes the probability of one event ∗ occurring. Let B𝑗 (1 ≤
𝑗 ≤ 𝑔) be the set of nodes that have data in the bucket 𝑗.
Each event falls into any bucket with equal probability 1/𝑔,
and the probability that 𝑆𝑖 has data in bucket 𝑗 is given by
Pr(𝑆𝑖 ∈ B𝑗) = 1−∏𝐹

𝑓=1(1 − 1
𝑔
𝑛𝑓

𝑁 ).
The probability 𝑝 that each node has data in each bucket can

be approximated by 1−(1− 1
𝑔
�̄�
𝑁 )𝐹 . The total number of nodes

with at least one non-empty bucket can be approximated by
𝑁𝑝, and thus we can derive Δ𝑡 as Δ𝑡 = ∣𝒬𝑡∣𝑁𝑝 = ∣𝒬𝑡∣𝑁(1−
(1 − 1

𝑔
�̄�
𝑁 )𝐹 ), where ∣𝒬𝑡∣ denotes the cardinality of 𝒬𝑡.

Now we consider the detection probability 𝑃B
𝑑𝑒𝑡 that the

network owner can detect ℳ dropping any particular data
bucket satisfying 𝒬𝑡. Assume that node 𝑆𝑖 generated some
data buckets satisfying 𝒬𝑡, and one of them has been dropped
by ℳ. The network owner can detect any particular dropped
bucket if it receives any data bucket that contains ⟨𝑖,V𝑖,𝑡⟩. De-
note by 𝑛𝑤 the number of data buckets containing ⟨𝑖,V𝑖,𝑡⟩ and
satisfying 𝒬𝑡. It is easy to see that 𝑛𝑤 can be approximated by
(∣𝒬𝑡∣𝑁𝑝−1)𝑝𝑒, where 𝑝𝑒 is the probability that a node stores a
received index in each bucket. Assume that ℳ drops each data
bucket with equal probability 𝑝𝑑, the probability that all the 𝑛𝑤
copies of the data index are dropped by ℳ is 𝑝𝑛𝑤

𝑑 . Therefore,
𝑃B
𝑑𝑒𝑡 can be derived as 𝑃B

𝑑𝑒𝑡 = 1 − 𝑝𝑛𝑤

𝑑 = 1− 𝑝
(∣𝒬𝑡∣𝑁𝑝−1)𝑝𝑒
𝑑 .

LEMMA 2: With NSC, the network owner can detect ℳ
dropping any particular data bucket satisfying 𝒬𝑡 with prob-
ability

𝑃N
𝑑𝑒𝑡 = 1− 𝑝𝑛𝑤

𝑑 , (3)

where

𝑛𝑤 =
( 𝜇∑

𝑥=1

𝑥𝜆𝑝𝑥𝑜+(∣𝒬𝑡∣(𝑁𝜇+1)−
𝜇∑

𝑥=1

𝑥𝜆𝑝𝑥𝑜 −1)𝑝
)
𝑝𝑒 , (4)

𝑝𝑜 = 1−
√

4𝜆(�̄�−1)+𝜆2−𝜆
2(�̄�−1) , and 𝑁𝜇 = 𝜇(𝜇+1)

2 𝜆.

Proof: To derive 𝑃N
𝑑𝑒𝑡, we need first estimate the number

of copies of each node’s data index. For analytical tractability,
we assume that when any node detects one event, each of
its neighbors detects the same event with equal conditional
probability 𝑝𝑜, and that when 𝜇 → ∞, the total number of
nodes that detected the same event in NSC approaches that in
BSC.

Assuming that sensor nodes are uniformly distributed and
that each node has 𝜆 neighboring nodes, the average number of
𝑥-hop neighbors of 𝑆𝑖 is approximately 𝑥𝜆. Let 𝜒 denote the
number such that 𝑝𝜒𝑜 ≪ 1. We thus have the average number
of nodes detecting the same event as

�̄� ≈ 1 +

𝜒∑

𝑥=1

𝑥𝜆𝑝𝑥𝑜 ≈ 1 +

∞∑

𝑥=1

𝑥𝜆𝑝𝑥𝑜 = 1 +
𝜆𝑝𝑜

(1 − 𝑝𝑜)2
, (5)

which holds if 𝜒 is sufficiently large. By solving Eq. (5), we

have 𝑝𝑜 = 1−
√

4𝜆(�̄�−1)+𝜆2−𝜆
2(�̄�−1) .

Now we derive 𝑃N
𝑑𝑒𝑡. Similar to 𝑃B

𝑑𝑒𝑡, 𝑃
N
𝑑𝑒𝑡 can be calculated

as 1−𝑝𝑛𝑤

𝑑 , where 𝑛𝑤 is the number of data buckets containing
⟨𝑖,V𝑖,𝑡⟩ and satisfying the query 𝒬𝑡. The number of nodes
within 𝜇 hops from 𝑆𝑖, denoted by 𝑁𝜇, is given by 𝑁𝜇 =

𝜆+ 2𝜆+ . . .+ 𝜇𝜆 = 𝜇(𝜇+1)
2 𝜆.
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There are totally ∣𝒬𝑡∣(𝑁𝜇 + 1) possible buckets satisfying
the query, among which

∑𝜇
𝑥=1 𝑥𝜆𝑝

𝑥
𝑜 + 1 resulting from the

same event are non-empty. For the other ∣𝒬𝑡∣(𝑁𝜇 + 1) −∑𝜇
𝑥=1 𝑥𝜆𝑝

𝑥
𝑜 − 1 buckets, each is non-empty with probability

𝑝. The total number of buckets satisfying the query within
𝜇-hop neighborhood is thus

∑𝜇
𝑥=1 𝑥𝜆𝑝

𝑥
𝑜 + 1 + (∣𝒬𝑡∣(𝑁𝜇 +

1) − ∑𝜇
𝑥=1 𝑥𝜆𝑝

𝑥
𝑜 − 1)𝑝. So 𝑛𝑤 can be estimated as 𝑛𝑤 =(∑𝜇

𝑥=1 𝑥𝜆𝑝
𝑥
𝑜 + (∣𝒬𝑡∣(𝑁𝜇 + 1)−∑𝜇

𝑥=1 𝑥𝜆𝑝
𝑥
𝑜 − 1)𝑝

)
𝑝𝑒.

It is easy to see 𝑃N
𝑑𝑒𝑡 ≤ 𝑃B

𝑑𝑒𝑡 from Eqs. (3) and (1). We
simply present the derivation for ∣𝒬𝑡∣ = 1 here for space
constraints. Since 𝑁𝑝 ≈ �̄� and (

∑𝜇
𝑥=1 𝑥𝜆𝑝

𝑥
𝑜 + 1 + (𝑁𝜇 −∑𝜇

𝑥=1 𝑥𝜆𝑝
𝑥
𝑜 )𝑝) approaches �̄� when 𝜇 increases, we have∑𝜇

𝑥=1 𝑥𝜆𝑝
𝑥
𝑜 + (𝑁𝜇 − ∑𝜇

𝑥=1 𝑥𝜆𝑝
𝑥
𝑜 )𝑝 ≤ (𝑁𝑝 − 1) and thus

𝑃N
𝑑𝑒𝑡 ≤ 𝑃B

𝑑𝑒𝑡.
Since each data bucket is broadcasted following BSC with

probability 𝑝𝑏 and NSC with probability 1− 𝑝𝑏, we have the
following theorem regarding the detection probability of HSC
without giving a straightforward proof.

THEOREM 1: By HSC, the network owner can detect ℳ
dropping any particular data bucket satisfying 𝒬𝑡 with prob-
ability

𝑃H
𝑑𝑒𝑡 = 1− 𝑝𝑏(1 − 𝑃B

𝑑𝑒𝑡)− (1− 𝑝𝑏)(1 − 𝑃N
𝑑𝑒𝑡) . (6)

In practice, multiple buckets may be dropped by ℳ. ℳ’s
misbehavior can be detected if the network owner can detect
at least one dropped bucket. The following theorem is about
the overall detection probability of HSC.

THEOREM 2: The network owner can detect ℳ if ℳ drops
at least one data buckets with probability

𝑃HSC
𝑑𝑒𝑡 =

1− (1 − 𝑝𝑑𝑃
H
𝑑𝑒𝑡)

Δ𝑡

1− (1− 𝑝𝑑)Δ𝑡
, (7)

where 𝑃H
𝑑𝑒𝑡 is given in Eq. (6).

Proof: 𝑃HSC
𝑑𝑒𝑡 can be interpreted as probability that given

that ℳ has dropped at least one bucket, at least one of them
can be detected by the network owner. Denote by 𝑋 and 𝑌 the
number of buckets dropped by ℳ and the number of dropped
packets detected by the network owner, respectively. We have

𝑃HSC
𝑑𝑒𝑡 = Pr(𝑌 > 0∣𝑋 > 0)

=
Pr(𝑌 > 0, 𝑋 > 0)

1− Pr(𝑋 = 0)

=

∑Δ𝑡

𝑥=1(1 − Pr(𝑌 = 0∣𝑋 = 𝑥))Pr(𝑋 = 𝑥)

1− (1− 𝑝𝑑)Δ𝑡

=

∑Δ𝑡

𝑥=1(1 − 𝑃H
𝑑𝑒𝑡)

𝑥
(
Δ𝑡

𝑥

)
𝑝𝑥𝑑(1− 𝑝𝑑)

Δ𝑡−𝑥

1− (1− 𝑝𝑑)Δ𝑡

=
1− (1− 𝑝𝑑𝑃

H
𝑑𝑒𝑡)

Δ𝑡

1− (1− 𝑝𝑑)Δ𝑡
.

From Theorem 2, we can see that the detection probability
of HSC increases as 𝑃H

𝑑𝑒𝑡 increases, which coincides with the
intuition. In addition, the larger Δ𝑡 is, the more buckets are
dropped by ℳ for given 𝑝𝑑, and thus the higher the detection
probability.
Communication Cost

Lemma 3 and lemma 4 are about the communication costs
of BSC and NSC, respectively.

LEMMA 3: Assuming that the average number of hops from
any node in the cell to ℳ is �̄�, the communication cost
incurred by BSC in epoch 𝑡 of one cell is given by

T̄BSC = 𝑁(𝑙+ 𝑔)�̄�𝑡(1 + �̄�𝑔𝑝𝑝𝑒) , (8)

where �̄�𝑡 = ⌈𝑁(
1−(1−𝑝)𝑔

)⌉ is the number of nodes sending
out the data index.

Proof: T̄BSC consists of T̄BSC
𝐵 , the energy consumption

for each node broadcasting its own data index, and T̄BSC
𝑈 ,

the energy consumption for each node sending its stored data
indexes to the master node.

We first derive T̄BSC
𝐵 . Recall that each data index is of 𝑔

bits. Assuming that each node ID is of 𝑙 bits, i.e., 𝑁 ≤ 2𝑙,
each hop-wise transmission and reception of a data index and
the corresponding node ID involve 𝑙+𝑔 bits. Then the number
of nodes sending out the data indexes can be approximated as

�̄�𝑡 = ⌈𝑁(
1− (1− 𝑝)𝑔

)⌉ , (9)

where 1−(1−𝑝)𝑔 is the probability that one node generates at
least one data buckets in epoch 𝑡 and thus need broadcast data
index. We assume the simplest broadcast technique in which
each node receives and transmits a broadcast message once.
Then we have

T̄BSC
𝐵 = �̄�𝑡𝑁(𝑙 + 𝑔) , (10)

Now we estimate T̄BSC
𝑈 . Assume that the average number

of hops from any node in cell 𝑖𝑑𝑐𝑒𝑙𝑙 to ℳ is �̄�. Each node on
the average generates 𝑔𝑝 data buckets and receives �̄�𝑡 data
indexes, each of which is embedded with equal probability 𝑝𝑒
into each of its non-empty buckets. We thus have

T̄BSC
𝑈 = 𝑁𝑔𝑝𝑝𝑒�̄�𝑡�̄�(𝑙 + 𝑔) . (11)

Combining Eq. (10) and Eq. (11), we have T̄BSC = 𝑁(𝑙 +
𝑔)�̄�𝑡(1 + �̄�𝑔𝑝𝑝𝑒).

From Lemma 3, we can see that the communication cost of
BSC is proportional to the number of sensor nodes per cell.

LEMMA 4: Assuming that the average number of hops from
any node in the cell to ℳ is �̄�, the communication cost
incurred by NSC in epoch 𝑡 of one cell is given by

T̄NSC = �̄�𝑡(𝑙 + 𝑔 + ∣𝜇∣)(1 +
𝜇−1∑

𝑥=1

𝑥𝜆) + �̄�𝑡�̄�(𝑙 + 𝑔)𝑁𝜇𝑔𝑝𝑝𝑒 ,

(12)
where �̄�𝑡 is given in Eq. (9).

Proof: Similar to T̄BSC, T̄NSC consists of two parts:
T̄NSC
𝐵 , the energy consumption of 𝜇-hop broadcasting each

data index, and T̄NSC
𝑈 , the energy consumption of each node

sending its stored data indexes to the master node.
We first estimate T̄NSC

𝐵 . Each data index (in the form of
⟨𝜇, 𝑖,V𝑖,𝑡⟩) is transmitted up to 𝜇 hops. So each hop-wise
transmission and reception involve 𝑙+ 𝑔 + ∣𝜇∣ bits, where ∣𝜇∣
is the length of 𝜇. The cost incurred by broadcasting one data
index is thus (𝑙+𝑔+ ∣𝜇∣)(1+∑𝜇−1

𝑥=1 𝑥𝜆) bits. Similar to BSC,
there are �̄�𝑡 (given in Eq. (9)) nodes which have generated
data indexes. We thus have T̄NSC

𝐵 = �̄�𝑡(𝑙 + 𝑔 + ∣𝜇∣)(1 +∑𝜇−1
𝑥=1 𝑥𝜆).
We now estimate T̄NSC

𝑈 . Each of the �̄�𝑡 data indexes (in
the form of ⟨𝑖,V𝑖,𝑡⟩) has approximately 𝑁𝜇𝑔𝑝𝑝𝑒 copies, each
of which is sent along a �̄�-hop path to ℳ. Therefore, we can
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compute T̄NSC
𝑈 = �̄�𝑡�̄�(𝑙+𝑔)𝑁𝜇𝑔𝑝𝑝𝑒. Combining Eq. (10) and

Eq. (11), we have T̄NSC = �̄�𝑡(𝑙 + 𝑔 + ∣𝜇∣)(1 +∑𝜇−1
𝑥=1 𝑥𝜆) +

�̄�𝑡�̄�(𝑙 + 𝑔)𝑁𝜇𝑔𝑝𝑝𝑒.
Comparing Eq. (12) with Eq. (8), we can see that although

each data index broadcasted in NSC is longer than that in
BSC due to the addition of hop information 𝜇, the commu-
nication cost of NSC is lower than that of BSC as long as
1 +

∑𝜇−1
𝑥=1 𝑥𝜆 ≪ 𝑁 , which is the number of nodes that need

rebroadcast each received data index.
In addition, we have the following theorem regarding the

communication cost incurred by HSC without giving the
straightforward proof.

THEOREM 3: The communication cost incurred by HSC in
epoch 𝑡 of one cell is given by

T̄HSC = 𝑝𝑏T̄
BSC + (1− 𝑝𝑏)T̄

NSC, (13)

where 𝑝𝑏 is the probability that one data bucket is processed
following BSC, and T̄BSC and T̄NSC are given in Eq. (8) and
Eq. (12), respectively.

2) Analysis of TC: Detection Probability
Now we analyze 𝑃TC

𝑑𝑒𝑡 , the probability that the network
owner can detect ℳ′𝑠 misbehavior with temporal crosscheck.
To enable the theoretical analysis, we assume that the network
owner issues queries in each epoch with equal probability 𝑝𝑞 .
We consider multiple queries in each epoch as a single query
and assume that ℳ drops either none or all of data in the
query result.

Let ℐ be the time difference in epochs between the oldest
data index and the data index to be inserted. Given the FIFO
strategy, ℐ is also the longest time in unit of epochs that a data
index can stay in a buffer. ℐ is apparently a random variable
depending on 𝑝𝑇 and ℒ and no smaller than ℒ.

Without loss of generality, we assume that ℳ consecutively
drops 𝛼′ ≤ 𝛼 query results, starting from epoch 𝑡, and will
faithfully answer the (𝛼′ +1)-th query. Assume that V𝑖,𝑡, i.e.,
the data index of 𝑆𝑖 at epoch 𝑡, has been embedded into the
buffer, which happens with probability 𝑝𝑇 . Let 𝒯𝑎′+1 denote
the number of epochs covered by these 𝛼′+1 queries. We have
𝒯𝑎′+1 ≥ 𝛼′+1, where the equation holds when the queries are
made in consecutive epochs. Since V𝑖,𝑡 will stay in 𝑆𝑖’s buffer
for ℐ epochs, the network owner can detect ℳ’s misbehavior
as long as 𝒯𝑎′+1 ≤ ℐ. It is also obvious that the larger 𝛼′,
the higher probability that V𝑖,𝑡 is removed from the buffer, the
smaller probability that ℳ will be detected, and vice versa.
Therefore, hereafter we shall consider the worst-case scenario,
i.e., 𝛼′ = 𝛼 in favor of ℳ.

We first analyze 𝑃TC
𝑑𝑒𝑡,𝑖, i.e., the probability that the network

owner can detect ℳ has dropped 𝑆𝑖’s data. Let 𝒬𝑡 and 𝒬𝑡′

denote the sets of bucket IDs queried in epochs 𝑡 and 𝑡′,
respectively, where 𝑡′ = 𝑡+𝒯𝛼+1−1. Then the probability that
𝑆𝑖 generates data buckets in 𝒬𝑡 and also embeds V𝑖,𝑡 into its
buffer is 𝑝𝑇 ⋅

(
1−(1−𝑝)∣𝒬𝑡∣). In epoch 𝑡′, V𝑖,𝑡 is still stored in

the buffer with the probability Pr(𝒯𝛼+1 ≤ ℐ) and 𝑆𝑖 generates
data buckets in 𝒬𝑡′ with probability 1 − (1 − 𝑝)∣𝒬𝑡′ ∣. So the
probability that the network owner finds that 𝑆𝑖 did have data
in epoch 𝑡 satisfying 𝒬𝑡 can be derived as follows.

𝑃TC
𝑑𝑒𝑡,𝑖 = 𝑝𝑇 ⋅

(
1−(1−𝑝)∣𝒬𝑡∣)⋅(1−(1−𝑝)∣𝒬𝑡′ ∣)⋅Pr(𝒯𝛼+1 ≤ ℐ) ,

(14)

where

Pr(𝒯𝛼+1 ≤ ℐ)
=

∑∞
𝑌=ℒ Pr(𝒯𝛼+1 ≤ ℐ∣ℐ = 𝑌 ) ⋅ Pr(ℐ = 𝑌 )

=
∑∞

𝑌=ℒ

∑𝑌

𝑋=𝛼+1
Pr(𝒯𝛼+1 = 𝑋) ⋅ Pr(ℐ = 𝑌 ) .

(15)

Since ℐ ≥ ℒ and thus 𝑌 ≥ ℒ, we can get Pr(ℐ = 𝑌 ) =
𝑝𝑇

(
𝑌−1
ℒ−1

)
𝑝ℒ−1
𝑇 (1−𝑝𝑇 )

(𝑌−ℒ). We also have Pr(𝒯𝛼+1 = 𝑋) =

𝑝𝑞
(
𝑋−1
𝛼

)
𝑝𝛼𝑞 (1− 𝑝𝑞)

(𝑋−𝛼−1).
Finally we have the following theorem regarding the detec-

tion probability of TC without giving a straightforward proof.
THEOREM 4: With TC, assuming that ℳ consecutively

drops all the data for no more than 𝛼 epochs, the network
owner can detect ℳ with probability

𝑃TC
𝑑𝑒𝑡 = 1− (1− 𝑃TC

𝑑𝑒𝑡,𝑖)
𝑁 , (16)

where 𝑃TC
𝑑𝑒𝑡,𝑖 is given in Eq. (14).

Communication Cost
The following theorem is about the communication cost

incurred by TC.
THEOREM 5: The communication cost incurred by TC in

epoch 𝑡 of one cell is given by

T̄TC = �̄�ℒ(𝑔 + 𝛾)�̄�𝑡𝑔𝑝 , (17)

where �̄�𝑡 and 𝑝 are given in Eq. (9) and Eq. (2), respectively.
Proof: Recall that �̄� denotes the average number of hops

from any node to ℳ, and each buffer is of ℒ(𝑔 + 𝛾) bits.
Similar to spatial crosscheck technique, there are �̄�𝑡 nodes
generating data at each epoch, each of which on average gen-
erates 𝑔𝑝 data buckets, where �̄�𝑡 and 𝑝 are given in Eq. (9) and
Eq. (2), respectively. We thus have T̄TC = �̄�ℒ(𝑔 + 𝛾)�̄�𝑡𝑔𝑝.

3) Analysis of STC: Since STC is a simple combination of
HSC and TC, we have the following theorem regarding the de-
tection probability of STC without giving the straightforward
proof.

THEOREM 6: Under STC, the network owner can detect
ℳ’s misbehavior with probability

𝑃 STC
𝑑𝑒𝑡 = 1− (1 − 𝑃HSC

𝑑𝑒𝑡 )(1− 𝑃TC
𝑑𝑒𝑡) , (18)

where 𝑃HSC
𝑑𝑒𝑡 and 𝑃TC

𝑑𝑒𝑡 are given in Eq. (7) and Eq. (16),
respectively.

Likewise, we have the following theorem regarding the total
communication cost of STC.

THEOREM 7: The communication cost incurred by STC in
each epoch of one cell is given by

T̄STC = T̄HSC + T̄TC , (19)

where T̄HSC and T̄TC is given in Eq. (13) and Eq. (17),
respectively.

4) Analysis of the Encoding Technique: We have briefly
discussed the encoding technique, denoted by ENCODE, in
Section I. Here we present more details about it to facili-
tate its comparison with our techniques. The main idea of
ENCODE is to let each sensor node return some unforgeable
proof for each empty bucket. Under this technique, for each
bucket 𝑗 ∈ [1, 𝑔], node 𝑆𝑖 generates an encoding number
as 𝑛𝑢𝑚(𝑖, 𝑗, 𝑡) = 𝐻𝐿𝑒(𝑖∣∣𝑗∣∣𝑡∣∣𝐾𝑖,𝑡), where 𝐻𝐿𝑒(⋅) denotes
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a good hash function of 𝐿𝑒 bits and 𝐾𝑖,𝑡 is the epoch key
of 𝑆𝑖 introduced in Section III. Each 𝑛𝑢𝑚(𝑖, 𝑗, 𝑡) needs to be
sent to the master node ℳ. Given a query 𝒬𝑡, ℳ generates
a condensed certificate as

𝐶𝐸𝑅𝑇𝑡 = 𝐻𝐿𝑐(∣∣𝑆𝑖∈𝒰𝑡,𝑗∈𝒱𝑖,𝑡𝐻(𝑖∣∣𝑗∣∣𝑡∣∣𝑛𝑢𝑚(𝑖, 𝑗, 𝑡))),

where 𝐻𝐿𝑐(⋅) denotes a good hash function of 𝐿𝑐 bits, 𝒰𝑡 ⊆
{𝑆𝑖}𝑁𝑖=1 denotes the set of nodes having at least one data
buckets not satisfying 𝒬𝑡, and 𝒱𝑖,𝑡 denotes the empty bucket
IDs within the range of 𝒬𝑡. ℳ need return the query result
and 𝐶𝐸𝑅𝑇𝑡 to the network owner. Since the network owner
knows all the epoch keys, it can recompute 𝐶𝐸𝑅𝑇 ′

𝑡 based on
the query result and the query 𝒬𝑡, and then compares 𝐶𝐸𝑅𝑇 ′

𝑡

with 𝐶𝐸𝑅𝑇𝑡. If the results match, it considers ℳ legitimate
and malicious otherwise.

Assume that ℳ drops some data from some nodes. Since
ℳ does not know their epoch keys, it can only escape the de-
tection by guessing encoding numbers for the dropped buckets
or 𝐶𝐸𝑅𝑇𝑡. It is assumed in [5] that 𝐿𝑐 is sufficiently large
such that the probability of a successful guess, i.e., 1/2𝐿𝑐,
is negligible. The only option left for ℳ is thus to guess
correct encoding numbers. The average number of buckets
satisfying 𝒬𝑡 is ∣𝒬𝑡∣𝑁𝑝, where 𝑝 is given in Eq. (2), and
each bucket is dropped with equal probability 𝑝𝑑. Therefore,
ℳ need guess 𝑁𝑔 = ∣𝒬𝑡∣𝑝𝑑𝑁𝑝 encoding numbers, which
succeeds with probability 1

2𝐿𝑒𝑁𝑔
. The network owner can thus

detect ℳ with probability 𝑃 ENCODE
𝑑𝑒𝑡 = 1 − 1

2𝐿𝑒𝑁𝑔
≈ 1, and

ENCODE can be considered as a deterministic method.
The communication cost of ENCODE, denoted by

T̄ENCODE, comes from transmitting the encoding numbers of
sensor nodes to ℳ. Since each node 𝑆𝑖 has 𝑔(1 − 𝑝) empty
buckets on the average, the same number of encoding numbers
need be generated and sent to ℳ. We thus have

T̄ENCODE = �̄�𝐿𝑒𝑁𝑔(1− 𝑝) . (20)

We can see that the communication cost of ENCODE is
proportional to the number of empty buckets, which makes
it inefficient for event-driven sensor networks, where events
occur infrequently and most nodes have no data to report.

B. Numeric Results

We assume that 𝑁 sensor nodes are uniformly distributed in
a cell of regular shape and that the master node is at the center
of the cell. According to [14], the average number of hops
from any node to its master node is �̄� = 𝑂(

√
𝑁). To enable

quantitative evaluations, we assume that �̄� ≈ ⌈√𝑁/2 + 1⌉.
Fig. 1 shows the impact of 𝐹 on HSC and ENCODE, where

the communication cost is in log10 scale. Here we assume
that the network owner queries two buckets in epoch 𝑡, i.e.,
∣𝒬𝑡∣ = 2. The following parameters are used: 𝑁 = 500;
𝑔 = 10; �̄� = 6; 𝑝𝑑 = 0.8; for HSC, 𝑝𝑒 = 0.6, 𝜇 = 3,
𝜆 = 5, and 𝑝𝑏 = 0.1; for ENCODE, 𝐿𝑒 = 10. Fig. 1(a)
shows that ENCODE has a detection probability close to 1,
while the detection probability of HSC is very close to that
ENCODE, say higher than 0.95 when 𝐹 is larger than 6.
In addition, the detection probability of HSC increases as 𝐹
increases. The reason is that the larger 𝐹 , the more non-empty
buckets each node has, and the more nodes embed other nodes’

(a) detection probability (b) communication cost

Fig. 1. Impact of 𝐹 .

(a) detection probability (b) communication cost

Fig. 2. Impact of �̄�.

(a) detection probability (b) communication cost

Fig. 3. Impact of 𝑔.

data indexes. Fig. 1(b) shows that the communication cost of
HSC is lower than that of ENCODE when 𝐹 is small. This
coincides with the intuition since the communication costs of
HSC and ENCODE are determined by the numbers of non-
empty buckets and empty ones, respectively, which makes
HSC more suitable for event-driven WSN where events occur
infrequently. In addition, the communication costs of HSC
increases as 𝐹 increases because more nodes will have data
indexes to broadcast.

Fig. 2 shows the impact of �̄� on HSC and ENCODE, where
𝐹 = 10 and other parameters are the same as those in Fig. 1.
Similar to 𝐹 , the larger the �̄� is, the higher the detection
probability and communication cost of HSC, while ENCODE
is almost unaffected. The reason is that as �̄� increases, the
number of non-empty buckets increases, so does the detection
probability and communication cost of HSC. At the same time,
when 𝐹 is small, the number of empty buckets is much larger
than that of non-empty ones, so the communication cost of
ENCODE is relatively unaffected.

Fig. 3 shows the impact of 𝑔, where 𝐹 = 10, �̄� = 6, and
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(a) detection probability (b) communication cost

Fig. 4. Impact of 𝜇 on HSC.

(a) detection probability (b) communication cost

Fig. 5. Impact of 𝑝𝑇 and ℒ on TC.

(a) detection probability (b) communication cost

Fig. 6. STC vs. ENCODE.

other parameters are the same as those in Fig. 1. We can see
from Fig. 3(a) that as 𝑔 increases, the detection probability
of HSC slightly decreases. The reason is that given other
parameters fixed, the number of nodes have data in the same
buckets decreases as 𝑔 increases, so does the number of nodes
satisfying a given query. HSC relies on other nodes that have
qualified data and have also embedded the data index about
the missing data bucket, so the detection probability slightly
decreases as 𝑔 increases. In addition, Fig. 3(b) shows that the
communication costs of HSC and ENCODE both increase as
𝑔 increases, which can be easily understood.

Fig. 4 shows the impact of 𝜇 on HSC. ENCODE is not
affected by 𝜇, whose performance is plotted for reference only.
We can see from Fig. 4(a) and Fig. 4(b) that the larger the 𝜇 is,
the higher the detection probability and communication cost of
HSC. This coincides with the intuition, since under NSC, the
number of copies of a given data index embedded increases as
𝜇 increases, leading to the increase in the detection probability
and communication cost of HSC.

Fig. 5 shows the impact of the buffer length ℒ and 𝑝𝑇 on

TC. Here we assume that the network owner queries data in
each epoch with probability 𝑝𝑞 = 0.8, 𝛼 = 4, and ∣𝒬𝑡∣ = 2.
Other parameters are 𝐹 = 25, �̄� = 10, and 𝑔 = 10. We can
see from Fig. 5(a) that the detection probability of TC slightly
increases as ℒ increases for the same 𝑝𝑇 . In addition, the larger
the 𝑝𝑇 is, the higher the detection probability. These coincide
with the intuition, as the higher the 𝑝𝑇 is, the more likely a
data index is inserted into the buffer, and the larger ℒ is, the
longer the inserted data index will stay in the buffer. Both
cases will lead to the increase in the detection probability of
TC. In addition, Fig. 5(b) shows that the communication cost
of TC is independent of 𝑝𝑇 and only increases as ℒ increases,
which is also anticipated.

Fig. 6 compares the performance of STC and ENCODE,
where the following parameters are used: �̄� = 6; for HSC,
𝜆 = 5, 𝜇 = 3, and 𝑝𝑏 = 0.1; for TC, ℒ = 3, 𝑝𝑇 = 0.6,
𝛼 = 4. We can see from Fig. 6(a) and Fig. 6(b) that STC
achieves comparable detection probability but incurs much
lower communication overhead in comparison with ENCODE
when 𝐹 is small. These results highlight the suitability of STC
for event-driven WSNs.

VI. CONCLUSION

In this paper, we presented a novel spatiotemporal tech-
nique to secure range queries in event-driven two-tier sensor
networks. Our technique can prevent compromised master
nodes from reading hosted data and also achieves high query
efficiency. In addition, our technique allows the network
owner to verify the authenticity and completeness of any
query result. Compared with prior work, our technique can
achieve a comparable detection probability with much lower
communication overhead in even-driven WSNs. The efficacy
and efficiency of our technique are confirmed by detailed
evaluations.
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