
DroneKey: A Drone-Aided Group-Key Generation Scheme for
Large-Scale IoT Networks

Dianqi Han
dqhan@asu.edu

Arizona State University
Tempe, Arizona, USA

Ang Li
anglee@asu.edu

Arizona State University
Tempe, Arizona, USA

Jiawei Li
jwli@asu.edu

Arizona State University
Tempe, Arizona, USA

Yan Zhang
yanzhangyz@asu.edu

Arizona State University
Tempe, Arizona, USA

Tao Li
tli6@iupui.edu

Indiana University–Purdue University
Indianapolis

Indianapolis, Indiana, USA

Yanchao Zhang
yczhang@asu.edu

Arizona State University
Tempe, Arizona, USA

ABSTRACT
The Internet of Things (IoT) networks are finding massive appli-
cations in mission-critical contexts. A group key is needed to en-
crypt and authenticate broadcast/multicast messages commonly
seen in large-scale wireless networks. In this paper, we propose
DroneKey, a novel drone-aided PHY-based Group-Key Generation
(GKG) scheme for large-scale IoT networks. In DroneKey, a drone
is dispatched to fly along random 3D trajectories and keep broad-
casting standard wireless signals to refresh the group keys in the
whole network. Every IoT device receives the broadcast signals
from which to extract the Channel State Information (CSI) stream
which captures the dynamic variations of the individual wireless
channel between the IoT device and the drone. DroneKey explores
a deep-learning approach to extract the hidden correlation among
the CSI streams to establish a common group key. We thoroughly
evaluate DroneKey with a prototype in both indoor and outdoor
environments. We show that DroneKey can achieve a high key-
generation rate of 89.5 bit/sec for 10 devices in contrast to 40 bit/sec
in the state-of-art prior work. In addition, DroneKey is much more
scalable and can support 100 devices in contrast to 10 nodes in the
state-of-art prior work with comparable key-generate rates.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security.

KEYWORDS
Group-key generation, large-scale IoT network, drone
ACM Reference Format:
Dianqi Han, Ang Li, Jiawei Li, Yan Zhang, Tao Li, and Yanchao Zhang.
2021. DroneKey: A Drone-Aided Group-Key Generation Scheme for Large-
Scale IoT Networks. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21), November 15–19, 2021,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484789

Virtual Event, Republic of Korea. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3460120.3484789

1 INTRODUCTION
The Internet of Things (IoT) networks are finding massive appli-
cations in mission-critical contexts, such as critical infrastructure
monitoring, border control and protection, military reconnaissance,
and surveillance. For example, an IoT network containing thousands
of devices is being used to improve the management effectiveness
of the Pendjari National Park over 2,755 km2 [25]. Intelligent facto-
ries, such as the Tesla factory, use IoT networks with thousands of
or more devices in a large factory area to facilitate manufacturing
process workflows [15, 34]. Moreover, themilitary is actively explor-
ing IoT networks for battlefield reconnaissance and border control
[13, 26]. These IoT networks are all large-scale in terms of both the
coverage area and device count. In this paper, we consider such
a large mission-critical IoT network formed by many distributed
groups, each comprising many densely deployed nearby IoT de-
vices. These devices communicate over the open wireless channel
and frequently exchange broadcast/multicast messages with group
peers. So it is necessary to explore a unique group key to secure
broadcast/multicast messages in each group. This paper focuses on
investigating sound schemes to establish/update the group key of
each individual group in such a large-scale IoT network.

Designing group-key generation (GKG) schemes for large-scale
mission-critical IoT networks faces some essential challenges. First,
each group may contain several tens to hundreds of IoT nodes in a
densely deployed network. So the GKG scheme should be highly
scalable to an arbitrary group size. Second, the IoT network can be
totally unattended in remote non-accessible areas, last very long
time, and transmit time-sensitive information. So the GKG scheme
should be fast in quickly updating all the group keys, which can
translate into the requirement for a high group-key generation
rate. Third, but not the last, the IoT devices are mostly likely to be
battery-powered. So the GKG scheme should be efficient with low
communication and computation overhead.

Key generation based on wireless physical-layer (PHY) channel
characteristics has received tremendous attention as alternative
methods to cryptographic techniques. Most PHY-based methods
such as [17, 21, 23] target pairwise-key generation between two
wireless devices. In contrast to cryptographic techniques based

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1306

https://orcid.org/0000-0002-0105-5869
https://orcid.org/0000-0003-0298-9329
https://doi.org/10.1145/3460120.3484789
https://doi.org/10.1145/3460120.3484789
https://doi.org/10.1145/3460120.3484789

group size key-generation rate randomness test evaluation in real environments

DroneKey
10 89.5 bit/sec

passed yes50 50.0 bit/sec
100 36.2 bit/sec

Liu et al.[22] 10 40 bit/sec passed yes
Wei et al.[39] 3 80 bit/sec not provided yes
Thai et al.[35] 4 12 bit/sec not provided no
Xu et al. [42] 4 9.4 bit/sec not provided no

Table 1: The comparison between DroneKey and representative prior work.

on computational hardness assumptions, these methods rely on
channel reciprocity which refers to that two wireless devices can ob-
serve highly correlated variations of the wireless channel between
them. Such correlated channel variations can be used as a common
randomness factor for extracting a pairwise key between the two
devices. As long as the eavesdropper is at least half wavelength
away from legitimate devices, it cannot observe the same channel
variations for inferring the pairwise key [28, 37].

PHY-based GKG has also been studied as alternative methods to
cryptographic group-key generation. The most intuitive solution
is to generate many PHY-based pairwise keys to spread a group
key across the group. The number of involved pairwise keys must
be greater than the number of devices and can be as large as hun-
dreds in our context. To defeat sophisticated attacks, each group
key in a large-scale mission-critical IoT network must be frequently
updated, so are the involved massive pairwise keys. The resulting
computation and communication overhead is very high, making
this solution inefficient and impractical. Efficient PHY-based GKG
is challenging because the wireless channel variations between any
two devices cannot be measured by any other device more than
half-wavelength away from both devices due to channel reciprocity.
It is nearly impossible to find a common wireless channel for many
distributed devices to extract a group key. Some recent schemes
[16, 22, 35] try different ways to spread the measurements of se-
lected channels to the entire group of devices. These schemes all
require each device to transmit at least one probe packet, and all
the packet transmissions must be finished within the short channel-
coherence time which refers to the time duration in which the
channel condition is considered non-varying. So these schemes are
not scalable to a large group. For example, the largest group size
reported in [22] is only 10. In addition, the group-key generation
rate highly depends on the channel randomness and is often not
satisfactory. The technique in [22] is the only one we beware that
has passed the NIST randomness test and been evaluated in real
environments. Its group-key generation rate is about 40 bit/sec
according to their experimental setup with only 10 devices.

In this paper, we propose DroneKey, a novel drone-aided PHY-
based GKG scheme for large-scale mission-critical IoT networks,
which is highly scalable, fast, and efficient. DroneKey explores
drones which are increasingly popular and widely expected to be
prevalent equipment in mission-critical IoT systems [29]. Whenever
group-key establishment/rekeying is needed, one or a few drones
are dispatched to fly over the IoT network area and perform random
3D movements while broadcasting wireless signals to each group.
Most drones have embedded WiFi transceivers, which can be used

for signal broadcasting. For a drone without one, a lightweight
battery-powered WiFi router attached to the drone can perform
the broadcasting task [19]. So our scheme is practical in terms of
hardware requirements. A group of devices can receive the same
broadcast signals and each extract a Channel State Information
(CSI) stream. A device’s CSI stream characterizes the dynamic vari-
ations of the unique wireless channel between the device and drone,
which is mainly induced by fast drone movement. Although the CSI
streams of different devices in a group depend on their respective
channels with the drone, they are all correlated with the drone’s
trajectory and thus indirectly correlated with each other. DroneKey
aims to quickly establish/refresh the group key of each individual
group by mining this hidden CSI correlation.

The design of DroneKey faces two critical challenges. First, the
relation among different CSI streams is highly complex and affected
by many factors such as device locations, hardware features, chan-
nel shadowing and fading, and multipath signal propagation. So it
is challenging to extract the hidden CSI correlation for establish-
ing a group key in a distributed fashion. Second, since the drone’s
3D trajectory is the dominating randomness factor for the group
key, a powerful adversary may video-tape the drone movement
to reconstruct the drone trajectory and then the group key. This
trajectory-reconstruction threat is unique to DroneKey.

DroneKey adopts a deep-learning approach with an obfuscation
function to address the above challenges.Within a group, one device
is designated as the group head which can be chosen based on any
sophisticated cluster-head selection algorithm inmulti-hopwireless
networks [18, 36]. All the non-head devices in a group are called
peer devices. Although some existing correlation measurement
algorithms can be used to measure the correlation between the
head’s and a peer’s CSI streams, they cannot extract a common
secret key because their output is just a single number between
-1 and 1 indicating the correlation [3, 44]. Recent studies show
that the Deep Neural Network (DNN) can capture the correlation
between two signals in a more sophisticated manner. For example,
Wu et al. explore DNN to capture the correlation between the gait
observations of two wearables on the same body but at different
locations to infer one gait observation from the other [41]. So we
are motivated to adopt DNN in the DroneKey design.

DroneKey involves a one-time DNN training process in each
group during the network-initialization phase. In particular, after
IoT devices are deployed, one or a few drones are dispatched to tra-
verse the network along random 3D trajectories while broadcasting
wireless signals that can be received by all devices in each group.
Each group head trains a unique DNN for each of its peer devices

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1307

based on a confidential obfuscation function, its own CSI stream,
and the CSI stream submitted by the peer device. The group head
then sends the trained DNNs to the corresponding peer devices
over a secure channel (Section 3.2).1 Since the DNN of each peer
device is closely tied to its relative location to the group head, dif-
ferent peer devices have diverse DNNs. But these DNNs are trained
in a special way that each device in the same group can obtain
the same output as the group key by feeding its CSI stream into
its DNN. Since the obfuscation function is confidential, DroneKey
guarantees that a passive eavesdropper cannot infer the group key
from reconstructed CSI streams through the advanced trajectory-
reconstruction attack. The training and distribution of DNNs are
conducted only once during network initialization and not needed
in each subsequent GKG instance. Whenever a new group key is
needed, a drone is dispatched to perform 3D random movement
while broadcasting wireless signals to IoT devices. Each device in
a group just autonomously feeds the fresh CSI streams extracted
from new drone signals into their respective DNNs to obtain a new
group key without any interaction with each other.

Although DroneKey involves deep learning, the computational
load for each IoT device is still lightweight. In particular, the one-
time DNN training process during network initialization can be
offloaded to a remote server if needed. In each subsequent GKG
instance, each group head only needs to perform one matrix multi-
plication and a simple quantification operation to obtain the group
key, and each peer device needs to conduct one DNN forward com-
putation and a similar quantification operation to obtain the group
key. Therefore, DroneKey is a feasible solution for large-scale IoT
networks, which may contain many resource-constrained devices.

We prototype DroneKey and thoroughly evaluate its perfor-
mance in both indoor and outdoor settings. The experimental re-
sults show that DroneKey can achieve key-generation rates above
75 bit/sec in all the evaluated scenarios, and all the generated keys
can pass the NIST randomness test. Table 1 shows the brief com-
parisons of DroneKey with the prior work. DroneKey outperforms
the state-of-the-art PHY-based scheme [21] by more than 100% in
terms of the key-generation rate for networks of the same size and
can achieve a compatible key-generation rate for a large-scale IoT
network 10 times larger than the networks considered in previ-
ous studies. In addition, we estimate that DroneKey can update
all the 256-bit group keys in a large IoT network of 20,000 devices
over a 1 km×1 km area within 42 minutes with just one drone
and 10 minutes with five drones. We also theoretically show that
DroneKey is robust to the RF eavesdropping attack and also the
drone-trajectory-reconstruction attack.

The rest of the paper is organized as follows. Section 2 reviews
the background knowledge of CSI and discusses the feasibility of
DroneKey. Section 3 presents the system overview and the ad-
versary model. Sections 4, 5, and 6 illustrate the design details of
DroneKey. Section 7 theoretically evaluate DroneKey’s security.
Section 8 experimentally evaluates DroneKey. Section 9 discusses
the related work. Section 10 concludes this paper.

1Note that we only assume the availability of this secure channel during the network-
initialization phase, which cannot be used to distribute new group keys during network
operations (Section 3.2).

2 BACKGROUND AND FEASIBILITY STUDY
2.1 Background of CSI
The PHY wireless channel characteristic at a specific frequency can
be represented by the Channel Frequency Response (CFR). Given
a transmitted signal whose frequency-domain representation is
𝑋 (𝑓 , 𝑡), the received signal can be represented as𝑌 (𝑓 , 𝑡) = 𝐻 (𝑓 , 𝑡)×
𝑋 (𝑓 , 𝑡) +𝑁 (𝑓 , 𝑡), where𝐻 (𝑓 , 𝑡) is the CFR at frequency 𝑓 measured
at time 𝑡 , and 𝑁 (𝑓 , 𝑡) is the noise. 𝐻 (𝑓 , 𝑡) is a complex value and
can be represented as𝐻 (𝑓 , 𝑡) = 𝑎(𝑓 , 𝑡)𝑒2𝜋𝜙 (𝑓 ,𝑡) 𝑗 , where 𝑎(𝑓 , 𝑡) and
𝜙 (𝑓 , 𝑡) denote the magnitude attenuation and phase shift values,
respectively. For brevity, we shall abbreviate magnitude attenuation
and phase shift to mag and phase, respectively.

CSI measures the CFRs of a wireless channel at the carrier fre-
quency or multiple subcarrier frequencies. Researchers have pro-
posed many data-aided CSI-estimation schemes that work with all
prevalent wireless techniques [8, 24]. In those schemes, a prede-
fined pilot signal which is known to the receiver is transmitted, and
the receiver estimates the CSI from its received signal. By adopting
the existing generic CSI-estimation schemes, DroneKey can work
with all prevalent wireless techniques for IoT systems.

2.2 Feasibility Study
DroneKey depends on the premise that the CSI streams extracted
from the same broadcast signals but by different receivers are cor-
related. We use a preliminary experiment to verify this feasibility.
Our experiment uses an N210 USRP, which is attached to a DJI
Matrice 100 drone, as the transmitter and two other B210 USRPs
placed three meters apart as two receivers. All the experiments in
this paper use this DJI drone, so we omit the drone model hereafter.
We fly the drone back and forth between two receivers while the
attached USRP keeps broadcasting WiFi packets. The two receivers
keep extracting CSI from each received packet. The two resulting
CSI streams are shown in Fig. 1. For a clear illustration, we process
the raw streams with methods demonstrated in Section 4 and only
show the processed streams of the 6th subcarrier here. There are
obvious correlations between the two mag streams and also the
two phase streams. So it is quite feasible to extract a common key
from the two CSI streams.

0 100 200 300 400

sample index

0

0.2

0.4

0.6

m
a
g
 v

a
lu

e

reciever 1

reciever 2

(a) Mag streams.

0 100 200 300 400

sample index

-0.2

0

0.2

0.4

0.6

p
h
a
s
e
 v

a
lu

e

reciever 1

reciever 2

(b) Phase stream.

Figure 1: The correlated CSI streams.

In this paper, DroneKey assumes wireless techniques based on
orthogonal frequency-division multiplexing (OFDM) which is im-
plemented in all WiFi standards post 802.11b. DroneKey can be
easily extended to all other prevalent wireless techniques because
they all support the extraction of CSI. The CSI of OFDM-based
wireless networks contains information about multiple subcarriers
at different frequencies. In our scenario, the drone movement is
the dominating reason for the CSI changes, and the CSI streams of

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1308

different subcarriers at the same device are highly correlated. So
DroneKey only uses one subcarrier for group-key generation to
ensure sufficient key randomness. Hereafter, the term “CSI” refers
to the CFR of the selected subcarrier, and each CSI sample is repre-
sented with a mag value and a phase value.

3 SYSTEM OVERVIEW AND ADVERSARY
MODEL

3.1 System Model
We consider a large-scale IoT network containing thousands of
static IoT devices deployed over a large area for a mission-critical
operation. The network is divided into many distributed groups
with each containing several tens to hundreds of nearby devices.
Once the network is deployed, it can be fully unattended during
the long network lifetime.

A drone denoted by D is periodically dispatched to traverse the
entire network along planned routes to refresh the group key of
each device group in the network. Our subsequent illustrations
focus on one group of devices as shown in Fig. 2. DroneKey can
support an arbitrary number of devices in each group. Without loss
of generality, we assume that the IoT network adopts OFDM-based
WiFi for group communications on the 2.4 GHz band as in our
experimental evaluations, but DroneKey can be easily extended
to any other wireless technique (e.g., Bluetooth, Zigbee, and Lora)
because CSI measurement is universally supported.

One device in the group is selected as the group head with any
sophisticated cluster-head selection algorithm inmulti-hopwireless
networks, and the rest devices in the group are called peer devices.
The group head is denoted byH , and the 𝑖th peer device is denoted
by P𝑖 . H needs to be within the communication range of all the
peer devices, but the peer devices do not need. In addition, we
assume that the drone has a large communication range that covers
the entire group.

peer (P1)

peer (P2)

peer (Pn)

peer (Pn-1)

head (H)drone (D)

Figure 2: The system model of DroneKey.

3.2 DroneKey Workflow
DroneKey consists of a one-time initialization stage and subsequent
group-key generation stages, as shown in Fig. 3. The black solid
arrows indicate the timelines of the corresponding devices, and
the dashed arrows represent the data exchanges between devices.
The blue color indicates that a data transmission is secured with a
pairwise secret key, and the red colormeans that a data transmission
is in plain text. The workflows of all the peer devices are the same.

So we use the first peer device P1 as the example to demonstrate
our scheme hereafter.

In the initialization stage, D flies randomly within a predefined
area while continuously broadcasting WiFi packets. P1 andH each
extracts a CSI stream from the broadcast signal and processes the
stream with methods detailed in Section 4.2. We denote these two
processed CSI streams of P1 and H by 𝐶𝑅

1 and 𝐶𝑅
𝐻
, respectively.

After obtaining 𝐶𝑅
𝐻
,H acquires 𝐶𝑅

1 from P1, generates a training
dataset from𝐶𝑅

1 and𝐶𝑅
𝐻
, and finally trains a DNN. The training pro-

cess involves an obfuscation function that can enhance DroneKey’s
security. This DNN is for the group-key generation at P1, and we
denote it by 𝐺1. More details regarding the dataset generation and
DNN training are given in Section 5. Moreover,H determines the
numbers of quantification bins from𝐶𝑅

𝐻
and𝐶𝑅

1 , which is critical for
the group-key generation stage; and the details are demonstrated
in Section 6.2. Finally, H sends 𝐺1 and the quantification-bin num-
bers to P1. The transmissions of 𝐶𝑅

1 ,𝐺1, and the quantification-bin
number are secured with the pairwise key that can be established
with any cryptographic or PHY-based method [9, 10, 21].

There are two remarks to make for network initialization. First,
the training and distribution of DNNs is a one-time process. Second,
we only assume the security of pairwise keys in the very short
initialization phase to obviate the need for secure pairwise-key
update schemes. This means that such pairwise keys are unavailable
in subsequent network operations for securely delivering a new
group key randomly selected by the group head to its peer devices.

In each subsequent key-generation stage, P1 acquires the group
key𝐾 by generating its own primitive key and adjusting it according
to the Error Correction Code (ECC) broadcast byH . Particularly,
D broadcasts WiFi packets while moving randomly, and P1 and
H obtain their processed CSI streams from the broadcast signals.
We denote these two CSI streams of P1 and H by 𝐶𝐺1 and 𝐶𝐺

𝐻
,

respectively. Then H generates 𝐾 from 𝐶𝐺
𝐻

and broadcasts the
ECC of 𝐾 . Next, P1 uses 𝐶𝐺1 as the inputs to 𝐺1 and generates its
primitive group key 𝐾1 from 𝐺1’s output. Due to the impacts of
the ambient noise, hardware flaws, and DNN estimation errors,
𝐾1 may not be identical to 𝐾 . So P1 adjusts 𝐾1 according to the
ECC broadcast by H in the final reconciliation step. In the key-
generation stage, H and all the peer devices must extract their CSI
streams simultaneously so that their CSI streams are correlated
and can be used to generate a common secret key. Since we use
the indexes of WiFi packets to synchronize different devices’ CSI
streams, H and the peer devices do not need to have synchronous
clocks, which is also an advantage of our scheme over prior work.
DroneKey can renew the group key as needed by repeating the
group-key generation process.

3.3 Adversary Model
Like all prior PHY-based GKG schemes [16, 22, 35], we focus on es-
tablishing/updating group keys among randomly deployed wireless
devices to secure wireless broadcast/multicast messages. Without
loss of generality, we assume that the first peer device P1 is the
attacker’s target device, and the attacker—denoted by A—aims to
obtain the group key 𝐾 . We assume a very powerfulA with the fol-
lowing capabilities. First, A can deploy wireless monitors close to
H and P1, with which A can overhear all the wireless signals and

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1309

header
(H)

drone
(D)

peer
(P1)

CSI
extraction

broadcast

CSI
extraction

CSI stream
processing

CSI stream
processing

data set
generation

DNN
training

broadcast

CSI
extraction

CSI
extraction

CSI stream
processing

CSI stream
processing

key
generation

primitive
key

generation

ECC
calculation

key
reconciliation

initialization stage key-generation stage

C1
R E(K) G1 ,MA

and MΦ

C1
R

CH
R S1

G1 ,MA

and MΦ
CH

G

C1
G

K

K1 K

K

Figure 3: The workflow of DroneKey.

may be able to obtain similar copies ofH ’s and P1’s CSI streams.
Second, A is aware ofH ’s and P1’s locations and can obtain the
trajectories of D with a spy camera.

As demonstrated later, the one-time initialization stage is as short
as several minutes, so it is very hard for the attacker to compromise
DroneKey in this short time window. In addition, the deployment
of peer devices usually involves human effort, and the initialization
of a peer device is executed right after it is deployed. It is reasonable
to assume human aid available in the initialization stage. Therefore,
human-involved authentication schemes such as the code-based
Bluetooth-like pairing can be adopted to defeat attacks against the
initialization stage. Note that the security of the short network-
initialization phase has been assumed in the extensive literature
such as random key predistribution schemes for sensor networks
[11]. We also assume that A cannot compromise H or P1, which
is the same with all the existing GKG studies. Otherwise, A can
directly obtain the group key. However, we have minimal assump-
tions about the security of D. In particular, A can compromise D
and control D’s trajectory and the broadcast signal. A can also
impersonate D with a malicious drone. Under these assumptions,
we consider three specific attacks as follows.

• Malicious-drone attack.A compromisesD and fully controls
D’s trajectory and the broadcast signal. A can also use a
malicious drone to mimic D. By manipulating the drone’s
trajectory and broadcast signal, A hopes to infer some in-
formation about the group key 𝐾 .

• Eavesdropping attack. A eavesdrops on the WiFi channel
used by DroneKey and tries to infer the group key 𝐾 from
the overheard signals.

• Reproduction attack (or drone-trajectory-reconstruction at-
tack). A sets up an environment similar to DroneKey’s and
repeat P1’s initialization and key-generation processes to
reproduce 𝐾 . Specifically, A flies a drone in the arranged
environment in the same trajectory as D’s and measures
CSI streams at the locations corresponding to those of H
and P1. With the obtained CSI streams,A generates dataset,
trains DNN, and generates a secret key as DroneKey does,
hoping that the produced key is identical to 𝐾 .

DroneKey cannot work when the jamming attack is launched.
However, A cannot obtain 𝐾 via the jamming attack, and our
scheme still works once the jamming signals are not present. There-
fore, we do not consider the jamming attack in this paper.

4 CSI EXTRACTION AND PROCESSING
This section demonstrates the details of CSI extraction and process-
ing. H and P1 use the same method to extract and process their
CSI streams in both stages of DroneKey. Without loss of generality,
we choose the 6th WiFi subcarrier for key generation, and the CSI
sample only contains the mag and phase values of this subcarrier.

4.1 CSI Extraction
Among many existing CSI estimation schemes, DroneKey adopts
the least-square equalizer for its low computational complexity [8,
24]. Specifically, D broadcasts successive WiFi packets containing
only packet indexes. The preamble of each packet contains two
copies of a predefined training sample, denoted as 𝑋𝑇 . Given a
received packet, the corresponding CSI sample is denoted by 𝑐 and
estimated as

𝑐 =
𝑌1 + 𝑌2
2𝑋𝑇

, (1)

where 𝑌1 and 𝑌2 are the two received training samples. We use the
index of this packet as 𝑐’s index, which can be used to synchronize
different devices’ CSI streams. The CSI sample rate _, i.e., the num-
ber of CSI samples extracted within one second, equals the packet
transmission rate. The network works on the 2.4 GHz band and can
transmit around 140 continuous WiFi packets within one second.
So _ is around 140 sample/sec.

4.2 CSI Stream Processing
H ’s and P1’s raw CSI streams are heavily distorted due to the
ambient noise and hardware flaws. Figs. 4a and 4b show P1’s raw
mag and phase streams extracted in one experiment, in which D
first keeps static and then moves randomly. The mag and phase
streams are both distorted by high-frequency noise, and there is a
periodically changing offset in the phase stream. Moreover, some
CSI samples corresponding to heavily interpreted WiFi packets
are missing, so the mag and phase streams are not continuous in
time. DroneKey processes the raw mag and phase streams with the
following three steps.
Missing-sample estimation.Wedetectmissing CSI samples based
on sample indexes, estimate a missing sample with the uninter-
rupted samples around it, and insert the estimated samples to the
original stream.
Phase calibration. After obtaining the continuous CSI stream, we
calibrate the phase stream to remove the phase offset. The phase

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1310

(a) Raw mag stream. (b) Raw phase stream.

(c) Processed mag stream. (d) Processed phase stream.

Figure 4: Raw and processed mag and phase streams.

offset arises from the carrier-frequency offsets and asynchronous
clocks of the transmitter (i.e., drone D) and receiver. As shown in
Fig. 4b, the phase offset periodically changes with time. Therefore,
we use the phase samples extracted when the transmitter is static as
a profile to calibrate the phase stream. Specifically, we first estimate
the phase-offset changing cycle, denoted as 𝑇 , from the profile and
then calibrate the phase stream as

𝜙𝑛 = 𝜙𝑛 − 𝜙 (𝑛 mod 𝑇) , (2)

where 𝜙𝑛 is the 𝑛th phase sample in the stream.
For the convenience of phase calibration, we let D keep static

for a period before moving randomly when DroneKey conducts
CSI extraction. Our experimental results show that 𝑇 is always less
than two seconds. So we set the static period of D as two seconds.
The profile samples are extracted whenD is static and contain little
information useful for group-key generation. So we remove the
profile samples from the CSI stream after the phase calibration.
Low-pass filter. Finally, we remove the high-frequency noise in
the mag and phase streams with low-pass filters. The phase stream
is more sensitive to noise and environmental changes than the mag
stream. So the mag and phase filters use different cutoff frequencies.
We denote the mag and phase cutoff frequencies by 𝑓𝐴 and 𝑓𝜙 ,
respectively, which are obtained through experiments. In particular,
we use an N210 USRP attached to the drone as the transmitter and
two B210 USRPs placed together as two receivers. The distance
between the two receivers is less than three centimeters. We fly the
drone back and forth to the receivers randomly for 20 seconds while
the drone keeps broadcasting WiFi packets. Each receiver extracts
one CSI stream and processes it withmissing-sample estimation and
phase calibration. We denote these two processed CSI streams by
< 𝐴1,Φ1 > and < 𝐴2,Φ2 >, where𝐴𝑖 and Φ𝑖 are the mag and phase
streams of the 𝑖th receiver, respectively. We first determine 𝑓𝐴 with
𝐴1 and 𝐴2. The CSI sampling rate is 140 sample/sec. According to
the Nyquist–Shannon sampling theorem [31], the highest frequency
of the signals contained in the mag stream is 70 Hz. So we test 70
values ranging from 1 Hz to 70 Hz with a step of 1 Hz for 𝑓𝐴 . We

use each tested value as 𝑓𝐴 to filter 𝐴1 and 𝐴2 and calculate the
correlation between the two filtered mag streams. The distance
between the two receivers is less than half wavelength of the WiFi
signal, and their CSI streams should be highly correlated without
the noise’s impact. So a good cutoff frequency should achieve a high
correlation value. However, a low cutoff frequency may filter out
too much information useful for key generation and thus reduce
the key-generation rate. Therefore, we adopt 15 Hz as 𝑓𝐴 because
it is the maximum one among the values that achieve correlations
above 0.9. Similarly, we determine 𝑓Φ with Φ1 and Φ2 and adopt
20 Hz as 𝑓Φ. The processed mag and phase streams are shown in
Figs. 4c and 4d, respectively, which are continuous in time, smooth,
free of noise, and can thus be used for key generation.

5 KEY-GENERATION DNN
In the peer device P1’s initialization stage, the group headH trains
a DNN for P1 after obtaining P1’s CSI stream 𝐶𝑅

1 . Specifically,H
first generates a GKG dataset 𝑆1 from 𝐶𝑅

1 and H ’s own CSI stream
𝐶𝑅
𝐻
. It then trains P1’s DNN𝐺1 with 𝑆1. Apart from generating the

dataset and training the DNN, H also determines the number of
quantification bins, which is critical for subsequent key-generation
stages. However, the determination process is closely related to
the details of the key-generation stage, so we defer its details to
Section 6.2. This section first demonstrates the generation of 𝑆1 and
then details the training process of 𝐺1.

5.1 GKG Dataset Generation
We first discuss 𝐺1’s function, which determines how the GKG
dataset 𝑆1 is generated. In the key-generation stage, the group key
𝐾 is generated from H ’s CSI stream 𝐶𝐺

𝐻
. Device P1 uses its CSI

stream 𝐶𝐺1 as 𝐺1’s input and generates a primitive group key 𝐾1
from 𝐺1’s output. Therefore, 𝐺1 should be able to estimate some
information related to𝐶𝐺

𝐻
from𝐶𝐺1 , so 𝐾1 can be similar to and can

be adjusted to𝐾 in the final reconciliation step. To achieve this goal,
a training sample for 𝐺1 should contain two elements generated
from P1’s andH ’s CSI streams, respectively. In the training process,
the element related to P1 is used as 𝐺1’s input, and the element
related to H is the target output. For consistence with machine
learning concepts, we term the elements related to P1 and H as
the feature and label, respectively.

Now we illustrate the generation of one training sample, and 𝑆1
can be obtained by repeating this process. The training sample con-
tains a feature and a label, which are two vectors denoted by𝑉 𝑓 and
𝑉 𝑙 , respectively. We first randomly select a one-second segment, i.e.,
140 continuous CSI samples, from𝐶𝑅

1 and represent it by𝐶𝑅
1 . We use

the mag and phase values of the selected samples as the elements of
𝑉 𝑓 which can be represented as [𝑎 (1,1) , 𝑎 (1,2) , ..., 𝑎 (1,140) , 𝜙 (1,1) , 𝜙 (1,2) ,
..., 𝜙 (1,140)], where 𝑎 (1,𝑛) and𝜙 (1,𝑛) are the mag and phase values of
the 𝑛th CSI sample in𝐶𝑅

1 , respectively. Then we select a one-second
segment which is extracted simultaneously with 𝐶𝑅

1 from 𝐶𝑅
𝐻
. We

use the sample indexes to synchronize 𝐶𝑅
𝐻
and 𝐶𝑅

1 , and 𝐶
𝑅
1 can be

easily obtained. We denote the selected segment of 𝐶𝑅
𝐻
by 𝐶𝑅

𝐻
and

generate 𝑉 𝑙 from 𝐶𝑅
𝐻
through a more complex process.

𝐶𝑅
𝐻
cannot be directly used as the label for two reasons. First,

it is hard for 𝐺1 to accurately estimate the fine-grained channel

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1311

information contained in𝐶𝑅
𝐻
. Second, directly using𝐶𝑅

𝐻
as the label

is not secure. If we use𝐶𝑅
𝐻
as the label,𝐺1’s output is the estimation

ofH ’s CSI stream. As demonstrated later in Section 6, P1 obtains
its primitive group key 𝐾1 by quantifying𝐺1’s output. Accordingly,
we must generate the group key by quantifyingH ’s CSI stream. In
this case, a powerful attacker who has obtained a similar copy of
H ’s CSI stream can easily infer the group key.

To address the aforementioned concerns, we generate 𝑉 𝑙 from
𝐶𝑅
𝐻
through down-sampling and obfuscation. Specifically, we first

down-sample𝐶𝑅
𝐻
with a ratio of 1 to 10, and the down-sampled seg-

ment can be represented as a vector𝑉𝑑 = [𝑎 (𝐻,5) , 𝑎 (𝐻,15) , ..., 𝑎 (𝐻,135) ,
𝜙 (𝐻,5) , 𝜙 (𝐻,15) , ..., 𝜙 (𝐻,135)], where 𝑎𝐻,𝑛 and 𝜙𝐻,𝑛 are the mag and
phase values of the 𝑛th CSI sample in 𝐶𝑅

𝐻
, respectively. Then we

apply an obfuscation function Λ to 𝑉𝑑 to obtain the label vector
𝑉 𝑙 = Λ(𝑉𝑑). The obfuscation function can be represented as

Λ(𝑉𝑑) = 𝑉𝑑𝑂

= 𝑉𝑑

[
𝑂𝐴 0
0 𝑂Φ

]
=
[
𝐴𝐻𝑂𝐴 Φ𝐻𝑂Φ

] (3)

Here, 𝑂 is a 28 × 28 matrix and termed as an obfuscation matrix.
𝑂𝐴 and 𝑂Φ are both 14 × 14 matrices. 𝐴𝐻 and Φ𝐻 are the first
and second half parts of 𝑉𝑑 , respectively. The generated label 𝑉 𝑙

is a 1 × 28 vector. We term the whole process converting 𝐶𝑅
𝐻
to 𝑉 𝑙

as label generation and denote it by Z(𝐶𝑅
𝐻
,𝑂). H uses the same

obfuscation matrix to generate the group key-training datasets for
all the peer devices.

We have two requirements forΛ. First, the information contained
in each element of 𝑉𝑑 must be inherited by Λ(𝑉𝑑). To satisfy this
requirement,𝑂𝐴 and𝑂Φ must be full-rank matrices. Second, for the
convenience of key quantification demonstrated later, the ranges
of all the elements in 𝐴𝐻𝑂𝐴 must be the same, and Φ𝐻𝑂Φ should
fulfill the same requirement. Since the movement of D is random,
the elements in 𝐴𝐻 are independent and identically distributed
variables with the minimum value Min𝐴 and the maximum value
Max𝐴 . The elements in 𝐴Φ are also independent and identically
distributed variables with the minimum value MinΦ and the max-
imum value MaxΦ. The second requirement can thus be satisfied
by requiring that the sum of 𝑂𝐴’s elements and the sum of 𝑂Φ’s
elements in the same column both equal one. Besides, we require all
the elements in 𝑂 to be non-negative. With the carefully designed
𝑂𝐴 and 𝑂Φ, the elements in 𝐴𝐻𝑂𝐴 are within the range [Min𝐴 ,
Max𝐴], and Φ𝐻𝑂Φ’s elements are within the range [MinΦ,MaxΦ].

5.2 GKG DNN Training
We adopt a Convolutional Neural Network (CNN) as 𝐺1. Due to
the random movement of D, the relations between different CSI
samples in the same CSI stream are not significant, and CNN is thus
more suitable for DroneKey than the Recurrent Neural Network
(RNN). 𝐺1 contains four hidden layers and one output layer, and
its architecture is shown in Fig. 5. The first hidden layer is a fully
connected layer containing 280 neurons. The second hidden layer is
a 1D convolutional layer without padding. The kernel size and step
of the second hidden layer are 1 × 5 and 5, respectively. The third
layer is another fully connected layer containing 112 neurons, and

fully connected layer (280 neurons)

fully connected layer (112 neurons)

1D convolutional layer
(padding = 0, kernel = 5, step = 5)

output layer (28 neurons)

1D convolutional layer
(padding = 0, kernel = 4, step = 2)

feature vector 1 ✕280

1 ✕280

1 ✕56

1 ✕112

1 ✕55

estimated
label vector

1 ✕28

Figure 5: The architecture of a key-generation DNN.

the last hidden layer is a no-padding 1D convolutional layer whose
kernel size and step are 1 × 4 and 2, respectively. The four hidden
layers all use the ReLU function as their activation functions. The
fully connected output layer contains 28 neurons. The dimensions
of each layer’s input and output are also shown in Fig.5.

In the training of 𝐺1, we adopt the scaled Mean Square Error
Loss (MSELoss) as the loss function. As demonstrated later in Sec-
tion 6.2, H generates the group key 𝐾 by quantifying the elements
of a key-source vector, denoted as Θ. 𝐺1’s output, denoted as Θ1,
is the estimation of Θ. P1 generates its primitive group key by
quantifying Θ1’s elements. Whether a GKG instance can succeed
depends on Θ1’s worst element, i.e., the element with the largest
estimation error. Therefore, we adopt MSELoss to balance the errors
of different elements in 𝐺1’s output. Besides, the first and second
half parts of Θ are generated from the mag and phase values, re-
spectively, and they have different ranges. So does 𝐺1’s output.
Therefore, we scale the loss function so that the first and second
half parts of 𝐺1’s output evenly contribute to the loss value. In par-
ticular, given a training sample whose feature and label vectors are
𝑉 𝑓 = [𝑣 𝑓1 , ...𝑣

𝑓

280] and 𝑉
𝑙 = [𝑣𝑙1, ..., 𝑣

𝑙
28], respectively, 𝐺1’s output

is represented as 𝐺𝑖 (𝑉 𝑓) = [𝑣𝑙1, ..., 𝑣
𝑙
28], and the scaled MSELoss

𝑙 (𝑉 𝑙 ,𝐺𝑖 (𝑉 𝑓)) is calculated as

𝑙 (𝑉 𝑙 ,𝐺1 (𝑉 𝑓)) = 1
14

14∑
𝑛=1

(𝑣𝑙𝑛 − 𝑣𝑙𝑛
Max𝐴 −Min𝐴

)2

+ 1
14

28∑
𝑚=15

(𝑣𝑙𝑚 − 𝑣𝑙𝑚
MaxΦ −MinΦ

)2 .

(4)

Here, Min𝐴 and Max𝐴 are the minimum and maximum mag values
ofH ’s CSI samples, respectively. MinΦ and MaxΦ are the minimum
and maximum phase values of H ’s CSI samples, respectively.

The training process of𝐺1 consists of multiple epochs. We adopt
the Stochastic Gradient Descent (SGD) optimizer to update 𝐺1’s
parameters in each epoch and adopt cross-validation to avoid over-
fitting. In particular, we equally divide the training dataset into 10
subsets and randomly select one of them as the validation set in
each epoch. Once the validation set is chosen, we iteratively use
every training sample in the rest nine subsets to calculate the gra-
dients of𝐺1’s parameters and update these parameters accordingly.

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1312

To accelerate the training process, we use the average gradients
calculated with 20 training samples to update 𝐺1’s parameters. At
the end of each epoch, we calculate the averaged loss value with
the training samples in the validation set and stop the training if
the decrease of the loss value after this epoch is not significant, e.g.,
when the loss value decreases by less than five percent.

6 KEY GENERATION AND RECONCILIATION
In the key-generation stage, H and P1 first manage to obtain two
related CSI streams from the same broadcast signals of D and then
obtain the group key 𝐾 through key generation and reconciliation.
We denote H ’s and P1’s processed CSI streams by 𝐶𝐺

𝐻
and 𝐶𝐺1 ,

respectively. 𝐶𝐺
𝐻

and 𝐶𝐺1 are synchronized with sample indexes.
Assume that 𝐶𝐺

𝐻
and 𝐶𝐺1 are extracted within one second such

that they each contains 140 CSI samples. We demonstrate how to
generate𝐾 from𝐶𝐺

𝐻
and𝐶𝐺1 in this section. To generate a group key

from CSI streams longer than one second,H and P1 can obtain the
key by segmenting their CSI streams, generating a key fragment
from each CSI segment, and finally piecing all the key fragments
together in the order of time.

H can directly generate 𝐾 from𝐶𝐺
𝐻
, and P1 acquires 𝐾 with the

aid ofH . In particular,H first generates a group key-source vector
Θ𝐻 from 𝐶𝐺

𝐻
. Then H acquires 𝐾 by quantifying Θ𝐻 ’s elements.

Similarly, P1 also first generates its group key-source vector Θ1
and then acquires its primitive group key 𝐾1 by quantifying Θ1’s
elements. Finally, P1 adjusts 𝐾1 according to the ECC broadcast
by H and acquires 𝐾 after key reconciliation. In what follows, we
first illustrate the generation of key-source vectors, then how to
quantify them, and finally the key reconciliation process.

6.1 Key-source Vector Generation
P1’s group key-source vector Θ1 must be similar to that of H ’s
(i.e., Θ𝐻) so that the difference between the extracted 𝐾1 and 𝐾 is
subtle and can be mitigated by ECC. To fulfill this requirement, we
use Z(𝐶𝐺

𝐻
,𝑂) as Θ𝐻 and use 𝐺1 (𝐶𝐺1) as Θ1. Here, Z and 𝑂 are

the label-generation process and obfuscation matrix explained in
Section 5.1, respectively. 𝐺1 (𝐶𝐺1) is the output of 𝐺1 with 𝐶𝐺1 as
the input. As introduced in Section 5.2,𝐺1 (𝐶𝐺1) is the estimation of
Z(𝐶𝐺

𝐻
,𝑂), so they are very close. In addition, Θ1 and Θ𝐻 are both

1 × 28 vectors.

6.2 Key-source Vector Quantification
H obtains 𝐾 by quantifying the elements of Θ𝐻 , and P1 obtains 𝐾1
by quantifying Θ1’s elements. We use Θ𝐻 ’s first element, denoted
by \ (𝐻,1) , as an example to illustrate the element quantification.
We denote the the minimum and maximum values of \ (𝐻,1) by
Min\1 andMax\1 , respectively, and divide the range [Min\1 ,Max\1]
to multiple bins. These bins are represented with a vector 𝐵1 =

[𝑏 (1,0) , 𝑏 (1,1) , 𝑏 (1,2) , ..., 𝑏 (1,𝑀1)], where 𝑏 (1,𝑚−1) and 𝑏 (1,𝑚) are the
upper and lower bounds of the𝑚th bin, respectively. 𝑏 (1,0) equals
Min\1 , and 𝑏 (1,𝑀) equals Max\1 .𝑀1 is the number of quantification
bins for \ (𝐻,1) . In practice, Min\1 and Max\1 are estimated, and
\ (𝐻,1) may be outside the range [Min\1 ,Max\1]. Therefore, we

quantify \ (𝐻,1) as

𝑄 (\ (𝐻,1)) =

0, if \ (𝐻,1) < Min\1 ,
𝑚, if 𝑏 (1,𝑚) < \ (𝐻,1) ≤ 𝑏 (1,𝑚+1) ,

𝑀 − 1, if \ (𝐻,1) > Max\1 .
(5)

H can extract log2 (𝑀1) key bits from 𝑄 (\ (𝐻,1)) with the gray cod-
ing technique [43]. Since Θ1’s first element \ (1,1) is the estimation
of \ (𝐻,1) , we also quantify \ (1,1) with 𝐵1.

Now we demonstrate how to obtain 𝐵1. We first look into the
distribution of \ (𝐻,1) . Since Θ𝐻 and the label vectors in 𝑆1 are
all generated from H ’s CSI streams with the same process, we
use the distribution of the label vector’s first element 𝑣𝑙1 in 𝑆1 as
the estimated distribution of \ (𝐻,1) . Let 𝐹\ (𝐻,1) (𝑥) = 𝑃 (\ (𝐻,1) ≤
𝑥) denote \ (𝐻,1) ’s Cumulative Distribution Function (CDF). We
use the minimum and maximum values of 𝑣𝑙1 as Min\1 and Max\1 ,
respectively. So 𝑏 (1,0) and 𝑏 (1,𝑀) are obtained. Given the number
𝑀1 of the quantification bins, the rest elements of 𝐵1 are determined
as 𝐹\1 (𝑏 (1,𝑚)) =𝑚/𝑀1. As demonstrated in Section 5.1, the first 14
elements of Θ𝐻 are related to the mag values of 𝐶𝐺

𝐻
with the same

ranges. So we adopt the same number of quantification bins for
the first 14 elements of Θ𝐻 , which is denoted by𝑀𝐴 . For the same
reason, the number of quantification bins for the last 14 elements of
Θ𝐻 is the same, which is denoted by𝑀Φ. SinceH uses𝑀𝐴 and𝑀Φ

to quantify its key-source vector, the peer devices in the network
all use𝑀𝐴 and𝑀Φ for key-source vector quantification.
𝑀𝐴 and 𝑀Φ significantly affect the group key-generation rate.

For example, we can extract log2 (𝑀𝐴) valid key bits from \ (𝐻,1) ,
and a large 𝑀𝐴 results in a high key-generation rate. However,
with the increase of𝑀𝐴 , the key-mismatch rate betweenH and P1
also increases. Specifically, \ (1,1) is the estimation of \ (𝐻,1) with a
deviation 𝛿 (1,1) . With the increase of𝑀𝐴 , the sizes of quantification
bins decrease, the possibility that \ (1,1) and \ (𝐻,1) fall to different
bins increases, and the number of mismatched key bits increases.
If the mismatched key bits cannot be corrected by the ECC, the
group-key generation instance fails.

We determine the optimal values of𝑀𝐴 and𝑀Φ for P1 based on
the success rate ofP1’s group-key generation and obtain the specific
values with experiments. For convenience of presentation, we term
the key bits extracted from the first 14 elements of Θ𝐻 and Θ1 as
mag bits and term the key bits extracted from the rest elements
of Θ𝐻 and Θ1 as phase bits. A group key-generation instance is
successful for P1 only if the mismatched key bits between 𝐾1 and
𝐾 can be corrected by the ECC, requiring that mismatched mag
and phase bits be corrected. We determine𝑀𝐴 based on the mag-
part success rate, i.e., the possibility that the mismatched mag bits
are correctable. Specifically, we test multiple values for 𝑀𝐴 and
estimate the mag-part success rate for each tested value with 𝑆1.
Among the tested values whose mag-part success rates are above a
predefined threshold 𝜏𝑠 , we select the maximum one as 𝑀𝐴 . The
value of𝑀Φ can be obtained with a similar experiment using the
same threshold value 𝜏𝑠 . The determined values of 𝑀𝐴 and 𝑀Φ

guarantee that P1 can succeed with a probability above 𝜏2𝑠 in a
group key-generation instance. The details of the experiments and
the numerical results in different scenarios are given in Section 8.

The values of 𝑀𝐴 and 𝑀Φ determined with different peer de-
vices’ CSI streams may be different. After all the peer devices being

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1313

initialized, DroneKey adopts the minimum one among the many
obtained values of 𝑀𝐴 as the final 𝑀𝐴 value and determines the
final𝑀Φ value similarly.

6.3 Reconciliation
We use the final reconciliation step to mitigate the deviations be-
tween H ’s and P’s secret keys. Specifically, H calculates 𝐾 ’s ECC,
denoted by 𝐸 (𝐾), and broadcast it. Then P1 adjusts 𝐾1 according
to the received ECC. DroneKey adopts the BCH(31,15) code [7] in
the evaluation, which allows three mismatched key bits for every
16 key bits.

7 SECURITY ANALYSIS
7.1 Security against Malicious-drone Attack
In DroneKey,D merely keeps broadcasting wireless signals to serve
as a source for correlated channel randomness and has no other
interaction with either the group head or peer devices. This means
that the attacker A gets no information about the group key 𝐾
from the compromised D.

A may also manipulate the drone’s trajectory by either com-
promising D or mimicking D with a malicious drone, hoping to
manipulate 𝐾 . As long as the predefined signal is broadcast, the cor-
relation among devices’ CSI streams exists, and a group key can be
obtained by the head and all peer devices. Although the generated
group key is manipulated, A cannot infer the group key without
knowing the key-generation DNN and the obfuscation matrix.

In addition, A may manipulate the broadcast signal. In this case,
the correlation among devices’ CSI streams is broken. The number
of unmatched bits between H and P1 increases and cannot be
corrected with the ECC. The GKG instance fails, and all the devices
stay with the old group key until a legitimate drone starts a new
GKG instance. The old group key is unknown to A, so DroneKey
is not compromised either.

7.2 Security against Eavesdropping and
Reproduction Attacks

Before analyzing DroneKey’s security against eavesdropping and
reproduction attacks, we first discuss how to launch these two
attacks effectively. We assume thatA is aware of DroneKey’s work-
flow and the locations ofH and P1, so A can obtain similar copies
ofH ’s and P1’s CSI streams through eavesdropping or reproduc-
tion attacks. Moreover, we assume that A has inferred 𝑀𝐴 and
𝑀Φ, which are the numbers of quantification bins demonstrated
in Section 6.2, through the reproduction attack. Since the group
key 𝐾 is generated from H ’s CSI stream 𝐶𝐺

𝐻
, A tries to infer 𝐾

from the obtained copy of 𝐶𝐺
𝐻
. In addition, we assume that A is

lucky enough to obtain an identical copy of𝐶𝐺
𝐻
. However,A has no

information about the obfuscation matrix and can only try random
matrices.

We aim to give a lower bound for the number of attempts after
which A can certainly find a matrix, denoted by �̂� , that is close
enough to𝑂 and can thus be used as the replacement of𝑂 to gener-
ate group keys. With the same format as𝑂 , �̂� can be represented as

�̂� =

[
�̂�𝐴 0
0 �̂�Φ

]
. Since each element of the key-source vector is the

dot product of 𝑉𝐺
𝑑

and the corresponding column of 𝑂 , A can find
�̂� by searching for all the columns, i.e., the columns of �̂�𝐴 and �̂�Φ.
Here,𝑉𝐺

𝑑
is the vector obtained by down-sampling𝐶𝐺

𝐻
and is repre-

sented as [𝑎𝐺(𝐻,5) , 𝑎
𝐺
(𝐻,15) , ..., 𝑎

𝐺
(𝐻,135) , 𝜙

𝐺
(𝐻,5) , 𝜙

𝐺
(𝐻,15) , ..., 𝜙

𝐺
(𝐻,135)],

where 𝑎𝐺
𝐻,𝑛

and 𝜙𝐺
𝐻,𝑛

are the mag and phase values of the 𝑛th CSI
sample in 𝐶𝐺

𝐻
, respectively.

We first investigate how many attempts are needed for the at-
tacker to find �̂�𝐴’s first column, which can be denoted by �̂� (𝐴,1) =
[𝑜1, 𝑜2, ..., 𝑜14] ′. Also, we represent the mag values of 𝑉𝐺

𝑑
as 𝑉𝐴 =

[𝑎𝐺(𝐻,5) , 𝑎
𝐺
(𝐻,15) , ..., 𝑎

𝐺
(𝐻,135)].A uses𝑄 (𝑉𝐴�̂� (𝐴,1)) to estimate𝑄 (\ (𝐻,1))

and generates key bits from𝑄 (𝑉𝐴�̂� (𝐴,1)) with gray coding. Here,𝑄
denote the quantification function, and \ (𝐻,1) is the first element of
the group key-source vector Θ𝐻 . We can know \ (𝐻,1) = 𝑉𝐴𝑂 (𝐴,1) ,
where𝑂 (𝐴,1) is the first column of𝑂𝐴 . We denote the key bits gener-
ated from \ (𝐻,1) and𝑉𝐺

𝑑
𝑂 (𝐴,1) as^ and ˆ̂ , respectively. The number

of mismatched bits between ^ and ˆ̂ must be less than
3 ∗ len(^)

16
so that ˆ̂ can be corrected to ^ according to its ECC. Here, len(^)
is the number of key bits in ^. Our experiments show that len(^)
is always less than 32, so ^ and ˆ̂ differ by at most one bit. In gray
coding, two integers’ codes differ in one bit only if they are adjacent,
so we can get 𝑄 (\ (𝐻,1)) − 1 ≤ 𝑄 (𝑉𝐴�̂� (𝐴,1)) ≤ 𝑄 (\ (𝐻,1)) + 1. For
simplicity, we assume that the quantification bins for 𝑄 (\ (𝐻,1))
are of the same size. According to Eq. (5), �̂� (𝐴,1) must satisfy the
following requirement

𝑉𝐴�̂� (𝐴,1) −𝑉𝐴𝑂 (𝐴,1) ≤
Max𝐴 −Min𝐴

𝑀𝐴
, (6)

where Min𝐴 and Max𝐴 denote the minimum and maximum mag
values ofH ’s CSI samples, respectively. We denote �̂� (𝐴,1) −𝑂 (𝐴,1)
as `, then we can know

𝑉𝐴` = 𝑉𝐴 · ` ′

= |𝑉𝐴 | |` ′ | cos𝜔

≤ Max𝐴 −Min𝐴
𝑀𝐴

,

(7)

where ` ′ is the transpose of ` and 𝜔 is the angle between vectors
𝑉𝐴 and ` ′. Since the drone D’s movement is quite random, the
𝑉𝐴’s direction and the angle 𝜔 are random. 𝑉𝐴’s elements are non-
negative, and our experimental results show that 𝑀𝐴 is always
more than eight. So we reformulate the requirement as

| (�̂� (𝐴,1) −𝑂 (𝐴,1))′ | ≤
Max𝐴 −Min𝐴
𝑀𝐴 ∗ |𝑉𝐴 |

≤ Max𝐴 −Min𝐴
𝑀𝐴 ∗min(|𝑉𝐴 |)

=
1

√
14

∗ Max𝐴 −Min𝐴
𝑀𝐴 ∗Min𝐴

=
1

8
√
14

∗ Max𝐴 −Min𝐴
Min𝐴

.

(8)

Now we talk about A’s strategy searching for �̂� (𝐴,1) . With-
out any information about 𝑂 (𝐴,1) , A’s best strategy is brute-force

searching with a grain of
1
𝛾
, where 𝛾 is a positive integer. Specifi-

cally, knowing that the sum of �̂� (𝐴,1) ’s elements equals one,A tries

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1314

all the vectors like [𝑛1
𝛾
,
𝑛2
𝛾
, ...,

𝑛14
𝛾

] ′, where 𝑛𝑖 is called the grain-

amount of 𝑖th element. All the grain-amounts are non-negative

integers, and
∑14
𝑖=1 𝑛𝑖 = 𝛾 . Given a grain

1
𝛾
, the number of vectors

in the searching space can be calculated as

𝐶 (𝛾 + 13, 13) = (𝛾 + 13)!
𝛾 ! ∗ 13! , (9)

where 𝛾 must be sufficiently small so that at least one of the vectors
in the searching space is close enough to 𝑂 (𝐴,1) and meets the
requirement in Eq. (8). Among all the vectors in the searching
space, we denote the one that is closest to 𝑂 (𝐴,1) as 𝑉𝑐 . The largest

possible value of | (𝑉𝑐 −𝑂 (𝐴,1)))′ | is
√
14
2𝛾

. Therefore, we formulate

the requirement for 𝛾 as
√
14
2𝛾

≤ 1
8
√
14

∗ Max𝐴 −Min𝐴
Min𝐴

, (10)

i.e.,

𝛾 ≥ 56 ∗Min𝐴
Max𝐴 −Min𝐴

. (11)

In our experiments, the value of
Min𝐴

Max𝐴 −Min𝐴
is always greater

than 0.3, so 𝛾 must be greater than 17. According to Eq. (9), the
searching space contains more than 1 × 108 vectors. Therefore, A
needs to try at least 14× 108 vectors to obtain a replacement matrix
for 𝑂𝐴 and try even more vectors to obtain a replacement matrix
for 𝑂 , which is extremely hard. In practice, there is a nontrivial
deviation between 𝐶𝐺

𝐻
and A’s copy, which makes it even harder

to obtain a replacement obfuscation matrix. Therefore, DroneKey
is robust to the eavesdropping and reproduction attacks.

8 EVALUATION
We evaluate DroneKey in this section. In what follows, We first in-
troduce our prototype implementation and thenmeasureDroneKey’s
key-generation rates in different scenarios. We also evaluate the
randomness and entropy of the generated keys with the standard
NIST runs test and the system overhead of our scheme. Finally,
we give a theoretical estimation of the time consumed to generate
and update the group keys for a large-scale network based on our
experimental results.

8.1 Implementation
We implement the system in Fig. 2 with three USRPs and a DJI
Matrice 100 drone. Specifically, We attach one N210 USRP to the
drone and use them together as D. We use one B210 USRP as the
group head H and another B210 USRP as the peer device P1. The
N210 USRP is connected to a laptop with an Ethernet cable, and the
two B210 USRPs are connected to a desktop which has two Intel
4.2 GHz i5 processors where all the computations are executed. We
implement our CSI-estimation tool on GNU Radio [2] by modifying
the open source code of the Wime project [6] and implement the
group key-generation DNN with PyTorch [1]. Our prototype is for
the purpose of evaluation. In practice, D can use its embedded
WiFi transceiver or an attached lightweight battery-powered WiFi
router, instead of the USRP, for signal broadcasting.

8.2 Performance Metrics
We use three performance metrics, including the key-generation
rate, the group-success rate, and the randomness of the generated
keys. We define the key-generation rate as the number of key bits
generated from the CSI samples collected within one sec. This
definition is also adopted in previous studies [4, 22, 32, 35]. We
define the group-success rate as the possibility that all the peer
devices in the group can obtain a common key identical to the
key generated by H . Correspondingly, we term the possibility that
a specific peer device can obtain the key generated by H as the
peer device’s individual-success rate. Without loss of generality,
we assume that P1 is the peer device whose individual-success rate
is the lowest. As recommend by NIST [27], we use the runs test for
randomness checking and also measure the entropy of generated
key bits.

We conduct experiments with different configurations to eval-
uate DroneKey’s performance in various scenarios. These experi-
ments have the basic procedure and only differ in specific settings.
To avoid redundancy, we use a basic experiment to demonstrate
the common experimental procedure and then present the results
for specific additional settings.

8.2.1 Basic Experiment. We conduct the basic experiment in a
regular one-story residential house. P1 is placed 3 m away from
H . Since D’s movement is limited by the cable connecting USRP
to the laptop, we fly the drone within a 2 m×2 m×2 m cubic area
whose center is around 4 m away from both P1 andH . Hereafter,
we refer to the center of D’s moving area as D’s location.

We first extract H ’s and P1’s CSI streams for 5 min and obtain
around 40,000 CSI samples for each of them. Then we generate
10,000 training samples for the training dataset 𝑆1 and train the
group key-generation DNN 𝐺1.

We also determine the quantification bins’ numbers, i.e., 𝑀𝐴

and𝑀Φ, from 𝑆1 through massive virtual key-generation instances.
For each virtual instance, we randomly select two synchronized
CSI segments, termed as a CSI-segment pair, with each containing
140 CSI samples from H ’s and P1’s CSI streams. By repeating this
process, we obtain 2,000 CSI-segment pairs. Then the 20 integers
between 1 and 20 are used as𝑀𝐴 in turn to generate group keys from
the 2,000 CSI-segment pairs. We consider a virtual instance mag-
part successful if the mag bits generated from P1’s segment can be
corrected to those generated fromH ’s segment with BCH(31,15).
Finally, we choose𝑀𝐴 as the highest value whose mag-part success
rate is above a threshold 𝜏𝑠 . Similarly, we use the same threshold
to determine𝑀Φ, and P1’s individual-success rate is thus 𝜏2𝑠 . Since
group-success rate decreases exponentially with the decrease of
the individual-success rate, we adopt 99.5% as 𝜏𝑠 so that DroneKey
can achieve an individual-success rate above 99% for P1.𝑀𝐴 and
𝑀Φ are thus set to 12 and 9, respectively, and the corresponding
key-generation rate is around 95 bit/sec.

Finally, we conduct real key-generation instances to verify that
DroneKey can indeed achieve the expected success rate and also
check the randomness of the generated keys. We extractH ’s and
P1’s CSI streams for 500 sec, which can be considered 500 contin-
uous key-generation instances. For each instance, we extract and
compare H ’s and P1’s keys. Only three of the 500 instances fail,

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1315

and P1’s individual-success rate is 99.4%, which is above the expec-
tation. Then we piece together the 497 keys from the successful
instances in the order of time and obtain a binary sequence contain-
ing around 47,000 bits. This binary sequence passes the runs test
with a p-value of 0.69, which is much larger than the threshold 0.1,
and the entropy of each key bits was 0.99. Therefore, DroneKey can
generate around 95 random key bits per sec for a peer device while
guaranteeing the individual-success rate of the device is above 99%.

We also measure the DNN training time in the basic experiment.
A desktop which has two Intel 4.1 GHz i5 processors can finish the
training within 50 sec. Considering that each peer device requires
a unique DNN, the whole DNN training task for a large group can
cost several hours. This issue can be addressed by offloading the
training task to a remote server. A Dell 7920 Tower server with a
Quadro RTX 5000 GPU can finish the DNN training within 5 sec.
For a group containing 100 devices, all the peer devices’ DNNs can
be trained within 8 min, which is acceptable for the one-time group
initialization.

We repeat the basic experiment in the outdoor environment,
which is a backyard. With the same requirement for individual-
success rate, DroneKey achieves a key-generation rate of 99 bit/sec,
slightly better than in the indoor environment. This is because
the impact of multipath signals is less significant in the outdoor
environment, and the correlation betweenH ’s andP1’s CSI streams
is thus more significant. The generated keys also pass the runs test
with p-value of 0.73, and the entropy of each key bits is 0.99.

8.2.2 Impact of Network Scale. DroneKey’s performance also re-
lates to the group size and the group-coverage area.
Impact of Group Size. Since the key generations at different
peer devices are independent, the group size does not impact the
individual-success rate of a specific device. However, when the
group size increases, the group-success rate may decrease signif-
icantly. Therefore, we use the time consumed to generate 1,000
key bits as the metric to evaluate the impact of the group size and
denote it by 𝑇𝑡 . Although a large-scale IoT network may contain
thousands of devices, the number of devices that are within the
communication range of a drone is much smaller. In this evalua-
tion, we assume that the group size is at most 100, which is much
larger than the maximum group size of 10 reported in previous
studies. We also consider the outdoor environment which is com-
mon for large-scale IoT network. We adopt the individual-success
rate obtained in the aforementioned experiment as the minimum
individual-success rate of any peer devices and can thus estimate
the time consumption as𝑇𝑡 = 1000/(99∗0.99𝑁) sec, where 𝑁 is the
group size. The corresponding values of 𝑇𝑡 for 𝑁 equaling 10, 50,
and 100 are 11.17 sec, 20.01 sec, and 27.6 sec, respectively. With the
group size increasing by 400% and 900%, the time consumption only
increases by 79.05% and 147.09%, respectively. For a dense network
containing 100 devices, DroneKey can still generate 1,000 key bits
within 30 sec. Therefore, DroneKey is scalable with the group size.
Impact of Group-coverage Area. To cover as many devices as
possible, H should be close to the center of the group, and so
shouldD. Therefore, we measure the group-coverage area with the
distance between P1 andD. We first evaluate the group-coverage’s
impact in the indoor environment. In particular, we fix the distance
betweenH andD as 3 m and increase the distance between P1 and

5 10 15 20 25

distance between the drone and peer device (m)

60

80

100

120

K
G

R
 (

b
it
/s

e
c
)

outdoor

indoor

Figure 6: The impact of the group-coverage area.

D from 3 m to 7 mwith a step of 0.5 m. Due to the constraints in the
environment, we are unable to evaluate longer distance settings. For
each location of P1, we measure the corresponding key-generation
rate and show the results in Fig. 6. Then we repeat the experiment
in the outdoor environment and test 45 distance settings ranging
from 3 m to 25 m with a step of 0.5 m. The results are also shown
in Fig. 6. All the generated keys have passed the randomness check
with p-values above 0.65. The results show that the impact of the
group-coverage area is not significant. For a peer device 25 m away
from D, DroneKey can still achieve a key-generation rate above
80 bit/sec. Therefore, DroneKey is scalable in terms of the group-
coverage area.

8.2.3 Impact of Environmental Factors. Since CSI is sensitive to
environment changes, we evaluate the impact of environmental fac-
tors with experiments. Environment changes are usually caused by
the relocation and movements of objects. We consider two common
objects including persons and furniture for the indoor environment,
as well as two common objects including persons and vehicles for
the outdoor environment.
Impact of Indoor Environment Changes.We first measure the
key-generation rate of DroneKey in a static indoor environment
and use the result as the reference for comparison. In the experi-
ments,H are placed 3 m away from P1, and D is 4 m away from
bothH and P1. One person stands still during the experiment, and
there is a 2.5m (H)×2m(W)×1m(D) cabinet in the room. The per-
son and the cabinet do not block the Line On Sight (LOS) channel
betweenH and D, denoted as channel H2D, or the LOS channel
between P1 and D, denoted as channel P2D. Then we let the per-
son move to three new locations, denoted as locations A, B, and
C. Location B blocks channel H2D; location C blocks the channel
P2D, and location A does not block either channel. We measure
DroneKey’s key-generation rate with the person standing still in
each location. Specifically, we conduct 200 GKG instances for each
location and still uses the key-generation DNN obtained in the
reference experiment to extract the group key. Due to the per-
son’s relocation, unmatched bits between H and P1 increase, and
many GKG instances fail with the key-generation rate equal to
0 bit/sec. We calculate the average key-generation rate for each
location and show the result in Table 2. After that, the person re-
turns to the original location in the reference experiment, and we
measure DroneKey’s key-generation rates with the cabinet moved
to locations A, B, and C. Finally, we let the person move in the
area where DroneKey is deployed along two trajectories and mea-
sure DroneKey’s key-generation rates accordingly. The person does
not block the two LOS channels along trajectory 1 but frequently

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1316

cuts off the two channels along trajectory 2. Table 2 shows the
results measured in different settings. In the indoor environment,
DroneKey’s key-generation rate slightly decreases due to environ-
ment changes. Human movement has the most significant impact,
but DroneKey can still achieve a key-generation rate of 91 bit/sec.
Therefore, DroneKey is robust to indoor environment changes.
Impact of Outdoor Environment Changes. We first measure
DroneKey’s key-generation rate in a reference outdoor setting.
Then we change some environmental factors and measure the cor-
responding key-generation rates. The locations of H , D, and P1
are fixed in all the experiments. H is placed 3 m away from P1,
and D is 4 m away from both H and P1. There are one person
standing still and a static vehicle in the reference setting, and nei-
ther blocks channel H2D or P2D. In the following experiments, we
first let the person stand still in three different locations, denoted
as A, B, and C, and measure the corresponding key-generation
rates. Location B blocks channel H2D; location C blocks the chan-
nel P2D; and location A does not block either channel. Then we let
the person return to the original location in the reference setting,
move the vehicle to locations A, B, and C, and measure the corre-
sponding key-generation rates. Finally, we measure DroneKey’s
key-generation rates with a person or a vehicle moving around.
We evaluate trajectories 1 and 2 for the person and 3 and 4 for the
vehicle. Trajectories 1 and 3 do not block the two LOS channels,
while trajectories 2 and 4 do. Table 2 shows the key-generation rates
measured in different settings. The movements and relocation of
small objects such as humans have no obvious impact on DroneKey
in the outdoor environment. In contrast, the movement and relo-
cation of large objects, especially metal objects with flat surfaces
such as vehicles, can slightly decrease DroneKey’s key-generation
rate. However, DroneKey still achieves a key-generation rate of
90 bit/sec in the worst case, which significantly outperforms the
existing GKG schemes.

Indoor factors Key-generation rate (bit/sec)
indoor reference 95

human locations A/B/C 95/95/94
cabinet locations A/B/C 95/92/93
human trajectories 1/2 93/91

Outdoor factors Key-generation rate (bit/sec)
outdoor reference 99

human locations A/B/C 99/99/97
vehicle locations A/B/C 97/93/92
human trajectories 1/2 99/96
vehicle trajectories 3/4 95/90

Table 2: The impact of environment changes.

8.3 Overhead of DroneKey
This section evaluates DroneKey’s overhead, including the memory
cost, the energy consumption, and the computation and communi-
cation overhead.
Memory Cost. D stores the broadcast signal, which is less than
1 KB.H stores the obfuscation matrix𝑂 ,𝑀𝐴 , and𝑀Φ.𝑀𝐴 and𝑀Φ

are two float-type numbers, and 𝑂 has 392 float-type none-zero
elements. So the memory cost forH is less than 2 KB. A peer device
stores a key-generation DNN, 𝑀𝐴 , and 𝑀Φ. The DNN contains
around 86,000 parameters, each of which is a float-type number. So
the memory cost for a peer device is less than 0.5 MB. The memory
cost is trivial for any of the devices involved in DroneKey.
Energy Consumption. In DroneKey, D can return to a support
station for battery charging or get battery changes after each key-
generation instance. So the energy consumption is not a constraint
for D. We only evaluate the energy consumption of the head and
peer devices. The energy consumption mainly results from the
computation and communication, so we evaluate the computation
and communication overhead of the head and peer devices instead.
Computation and Communication Overhead. Since the ini-
tialization is conducted once, we only consider the key-generation
stage. In one key-generation instance,H broadcasts the ECC for one
time, and no transmission is needed at the peer device. Therefore,
the communication overhead for the whole group is one transmis-
sion per instance. Existing PHY-based GKG schemes all require
each device to transmit at least one probe packet [22, 35, 39, 42].
The communication overhead of these schemes is at least 𝑛 trans-
missions per GKG instance, where 𝑛 is the number of devices in the
group. So our scheme has much lower communication overhead
than existing GKG schemes.

For each key-generation instance, H needs to perform a matrix
multiplication, and a peer device needs to calculate the output of the
key-generation DNN, which involves three matrix-multiplication
operations. The computation overhead of DroneKey is slightly
higher than that of existing PHY-based GKG schemes, which only
involve quantification operations. However, the sizes of the in-
volvedmatrices are not large, and the computation task can be easily
handled by the processor of most IoT devices. Therefore, the com-
putation overhead does not impact the deployment of DroneKey.

8.4 Whole-network Group-key Generation
A large-scale IoT network consists of many distribute device groups,
each of which needs to refresh its group key from time to time.
We can estimate the total time it takes to generate or update the
group keys for the entire network based on previous results for a
single group. Assume that the network covers a 1 km×1 km square
region in which 20,000 IoT devices are deployed. Our goal is to
generate a group key of 256 bits for each device group, which is a
recommended key size of the Advanced Encryption Standard (AES).
Assume that a drone can cover a circle region with a diameter of
100 m (i.e., the typical WiFi transmission range at 2.4 GHz), each
corresponding to the coverage area of a group. The whole network
can then be divided into 196 device groups, each containing about
100 IoT devices. We first discuss the scenario in which only one
drone is available. In this case, the drone flies to each device group
one by one to help generate a group key. The distance between
the centers of two adjacent device groups is around 71 m, and
the speed of a COTS drone can be above 15 m/sec [12]. So the
drone movement between two adjacent groups can be finished
within 5 sec. According to our previous experimental results, the
expected time of the drone’s random movement for generating 256
key bits is 7.07 sec. Since the key-generation and reconciliation

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1317

steps do not involve the drone, the drone only needs to stay with
each group for no more than 8 sec. The total time consumption for
generating the group keys of all the groups can thus be estimated
as 196 × (5 sec + 8 sec) = 2, 548 sec, which is around 42 minutes.
The communication range of the drone can be increased by using
a more powerful transmitter. In addition, multiple drones can be
dispatched to assist different groups in parallel. For example, if
five drones are used, DroneKey can update the group keys of the
entire network within 10 minutes, which is short enough for most
application scenarios.

9 RELATEDWORK
Recently, researchers have proposed many GKG schemes for IoT
networks. In addition, a number of earlier GKG schemes proposed
for wireless sensor networks can also be applied to the IoT network.
Those schemes mainly fall into two categories based on cryptogra-
phy and PHY information, respectively.

The schemes in the first category rely on cryptographic methods
to secure the group-key distribution or agreement. Tubaishat et al.
propose a scheme based on the multi-party Diffie–Hellman protocol
[38]. In this scheme, a head device generates the group key after
accumulating the rest devices’ partial keys. The transmissions of
both partial keys and the final group key to each device rely on
pairwise key-based encryption. Public key cryptography is used to
distribute the group key in [30] and [5]. Zhu et al. propose a scheme
that first establishes pairwise keys between the head device and
each other device, and then the group key can be distributed [46]. In
the context of large-scale IoT networks, a large amount of pairwise
keys and public-private key pairs involved in [5, 30, 38, 46] must be
updated for each group-key update instance, making those schemes
impractical in our considered context. In contrast, DroneKey also
uses pairwise keys to secure the very short initialization stage and
has no need for pairwise-key updates, so it is a more practical GKG
solution for large-scale IoT networks.

Researchers have also proposed many cryptographic schemes
not involving pairwise keys. Wen et al. propose a Bloom’s matrix-
based GKG scheme, in which a matrix is pre-shared among a group
of devices and can be used for subsequent group-key generation
[40]. Teo et al. explore the Burmester-Desmedt group-key agree-
ment method to generate a common key for devices forming a
circular hierarchical group [33]. Those schemes require multiple
rounds of communications involving all the devices and also incur
heavy computation load when the group size is large. By compari-
son, DroneKey is efficient in both communication and computation.
In terms of the communication overhead, DroneKey only requires
the group head to broadcast the ECC in the group-key generation
stage. As for the computation load, the group head performs a ma-
trix multiplication and a simple quantification operation to obtain
the group key, and each peer device conducts the DNN forward
computation for one time and a similar quantification operation to
obtain the group key. All the involved calculations are lightweight
and suitable for resource-constrained IoT devices.

The PHY-based GKG schemes adopt the channel variations of
one or multiple channels in the network as the randomness factor,
fromwhich the group key is generated. The PHY information is first
explored to establish pairwise keys between two devices, and many

secure and efficient schemes have been proposed [14, 21, 28, 45].
There is also effort to achieve PHY-based GKG. The most intuitive
solution is generating enough pairwise keys which can be used to
distribute a group key from device to device. The scheme in [20]
follows this idea. The authors propose to first establish pairwise
keys between a virtual center node and each of the rest nodes in a
star network or between each node and its two neighbors in a chain
network. Then the pairwise keys are used to securely transmit
a random group key from device to device. Their scheme is not
practical for large-scale IoT networks because a huge number of
pairwise keys must be established in each group-key generation
instance, which can consume significant time. Researchers have
also proposed to spread the measurements of selected channels
to the entire group of devices. Specifically, each device broadcasts
a signal which can be obtained by fusing the measurements of
multiple channels [21, 35] or splitting the measurement of one
channel [42]. A legitimate device can infer the measurements of
selected channels from the broadcast signals, while an attacker
cannot. However, these methods require that each device transmit
at least one probe packet in a group-key generation instance, and all
the packets must be transmitted within the short channel coherent
time without interfering with each other. So these schemes are not
scalable to a large group in a dense IoT network either.

10 CONCLUSION
In this paper, we propose DroneKey, a drone-aided PHY-based GKG
scheme for large-scale mission-critical IoT networks. We use a
randomly moving drone to introduce a common randomness factor,
which can be acquired by the entire group of devices and thus be
used as the common randomness source for generating group keys.
In particular, the CSI streams extracted from the same broadcast
signals but by different devices are all correlated to the drone’s
movement and thus inherently correlated with each other.We adopt
the deep-learning technique to capture the correlations among
the CSI streams of different devices in a group, which guarantee
the consistency of their individually generated keys. DroneKey
involves a single broadcast message by the group head and no other
message exchange within the group, so it is highly scalable with the
group size. In case that a powerful attacker may obtain the drone’s
trajectory and further infer the group key, we adopt an obfuscation
function to enhance DroneKey’s security and theoretically prove
that DroneKey is robust against both eavesdropping and trajectory-
reproduction attacks.

We build a prototype and evaluate DroneKey’s performance in
multiple scenarios. DroneKey can achieve a group-key generation
rate over 85 bit/sec in most evaluated scenarios, significantly out-
performing the state-of-the-art prior work. According to the exper-
imental results, DroneKey is scalable in terms of the group size and
network scale. Moreover, we estimate the time consumption of gen-
erating and updating group keys for an extremely large-scale IoT
network covering a region of 1 km2 and containing 20,000 devices.
According to our estimation, the group-key update can be finished
within 43 minutes, and the time consumption can be further re-
duced to 10 minutes by involving multiple drones that are equipped
with signal amplifiers. In summary, DroneKey is a scalable, fast,
and efficient GKG solution for large-scale IoT networks.

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1318

REFERENCES
[1] 2004. PyTorch. https://pytorch.org/.
[2] 2020. GNU Radio. https://www.gnuradio.org/.
[3] Herve Abdi. 2007. The Kendall Rank Correlation Coefficient. Encyclopedia of

Measurement and Statistics (2007), 508–510.
[4] Ortal Arazi and Hairong Qi. 2005. Self-certified group key generation for ad hoc

clusters in wireless sensor networks. In IEEE INFOCOM. Miami, FL.
[5] Xirong Bao, Jin Liu, Lihuang She, and Shi Zhang. 2014. A key management

scheme based on grouping within cluster. (2014), 3455–3460.
[6] Bastian Bloessl, Michele Segata, Christoph Sommer, and Falko Dressler. 2018. Per-

formance assessment of IEEE 802.11p with an open source SDR-based prototype.
IEEE Transactions on Mobile Computing 17, 5 (2018), 1162–1175.

[7] Chandra Bose and Dwijendra Ray-Chaudhuri. 1960. On a class of error correcting
binary group codes. Information and control 3, 1 (1960), 68–79.

[8] Sinem Coleri, Mustafa Ergen, Anuj Puri, and Ahmad Bahai. 2002. Channel
estimation techniques based on pilot arrangement in OFDM systems. IEEE
Transactions on Broadcasting 48, 3 (September 2002), 223–229.

[9] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography.
Transactions on Information Theory 22, 6 (1976), 644–654.

[10] Wenliang Du, Jing Deng, Yunghsiang Han, Pramod Varshney, Jonathan Katz, and
Aram Khalili. 2005. A pairwise key predistribution scheme for wireless sensor
networks. Transactions on Information and System Security (TISSEC) 8, 2 (2005),
228–258.

[11] Laurent Eschenauer and Virgil Gligor. 2002. A key-management scheme for
distributed sensor networks. In ACM CCS. Washington, DC, 41–47.

[12] Jonathan Feist. 2018. How fast can a drone fly. https://dronerush.com/.
[13] Phil Goldstein. 2016. DHS, Border protection and marines want commercial IoT

devices on the battlefield. https://fedtechmagazine.com/article/2016/05/dhs-
border-protection-and-marines-want-commercial-iot-devices-battlefield.

[14] John Hershey, Amer Hassan, and Rao Yarlagadda. 1995. Unconventional crypto-
graphic keying variable management. IEEE Transactions on Communications 43,
1 (1995), 3–6.

[15] Texas Instruments. 2021. Engineering smarter factory automation control designs.
https://www.ti.com/applications/industrial/factory-automation/overview.html.

[16] Harshan Jagadeesh, Rohit Joshi, and Manish Rao. 2021. Group secret-key genera-
tion using algebraic rings in wireless networks. IEEE Transactions on Vehicular
Technology 70, 2 (2021), 1538–1553.

[17] Suman Jana, Sriram Premnath, Mike Clark, Sneha Kasera, Neal Patwari, and
Srikanth Krishnamurthy. 2009. On the effectiveness of secret key extraction from
wireless signal strength in real environments. In ACM MobiCom. Beijing, China.

[18] Sang Kang and Thinh Nguyen. 2012. Distance based thresholds for cluster head
selection in wireless sensor networks. IEEE Communications Letters 16, 9 (2012),
1396–1399.

[19] KasaSmart. 2021. AC750 Wireless Travel Router. https://www.tp-link.com/us/
home-networking/wifi-router/tl-wr902ac/.

[20] Guyue Li, Liangjun Hu, and Aiqun Hu. 2019. Lightweight group secret key
generation leveraging non-reconciled received signal strength in mobile wireless
networks. In IEEE ICC. Shanghai, China, 1–6.

[21] Hongbo Liu, Yang Wang, Jie Yang, and Yingying Chen. 2013. Fast and practical
secret key extraction by exploiting channel response. In IEEE INFOCOM. Turin,
Italy.

[22] Hongbo Liu, Jie Yang, Yan Wang, Yingying Chen, and Can Koksal. 2014. Group
secret key generation via received signal strength: Protocols, achievable rates, and
implementation. IEEE Transactions onMobile Computing 13, 12 (2014), 2820–2835.

[23] Suhas Mathur,Wade Trappe, NarayanMandayam, Chunxuan Ye, and Alex Reznik.
2008. Radio-telepathy: Extracting a secret key from an unauthenticated wireless
channel. In ACM MobiCom. San Francisco, California.

[24] Michele Morelli and Umberto Mengali. 2001. A comparison of pilot-aided channel
estimation methods for OFDM systems. IEEE Transactions on Signal Processing
49, 12 (December 2001), 3065–3073.

[25] Pendjari National Park. 2021. Management and Infrastructure. https://www.
africanparks.org/our-work/Management-Infrastructure.

[26] IoBT Reign. 2020. IoBT: EMPOWERING READINESS TO MEET COMMANDER
INTENT. https://iobt.illinois.edu/.

[27] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker.
2001. A statistical test suite for random and pseudorandom number generators
for cryptographic applications. https://csrc.nist.gov/publications/detail/sp/800-
22/rev-1a/final.

[28] Akbar Sayeed and Adrian Perrig. 2008. Secure wireless communications: Secret
keys through multipath. In ICASSP. Las Vegas, NV.

[29] Lukas Schroth. 2020. The drone market size 2020-2025: 5 key takeaways. https:
//droneii.com/the-drone-market-size-2020-2025-5-key-takeaways.

[30] Seung-Hyun Seo, Jongho Won, Salmin Sultana, and Elisa Bertino. 2014. Effec-
tive key management in dynamic wireless sensor networks. Transactions on
Information Forensics and Security 10, 2 (2014), 371–383.

[31] Claude Shannon. 2001. A mathematical theory of communication. ACM SIGMO-
BILE mobile computing and communications review 5, 1 (2001), 3–55.

[32] Tianyu Tang, Ting Jiang, and Weixia Zou. 2017. Group secret key generation in
physical layer, protocols and achievable rates. In IEEE ISCIT. Cairns, Australia.

[33] Joseph Teo and Chik Tan. 2005. Energy-efficient and scalable group key agree-
ment for large ad hoc networks. In Proceedings of the 2nd ACM international
workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous
networks. 114–121.

[34] Tesla. 2021. Tesla Factory. https://www.tesla.com/factory.
[35] Chan Thai, Jemin Lee, and Tony Quek. 2015. Secret group key generation in

physical layer for mesh topology. In IEEE GLOBECOM. San Diego, CA.
[36] Ma Thein and Thandar Thein. 2010. An energy efficient cluster-head selection

for wireless sensor networks. In IEEE ISMS. Liverpool, UK, 287–291.
[37] Michael Tope and John McEachen. 2001. Unconditionally secure communications

over fading channels. In IEEE MILCOM. McLean, VA.
[38] Malik Tubaishat, Jian Yin, Biswajit Panja, and Sanjay Madria. 2004. A secure

hierarchical model for sensor network. Sigmod Record 33, 1 (2004), 7–13.
[39] Yunchuan Wei, Changmin Zhu, and Jun Ni. 2012. Group secret key generation

algorithm from wireless signal strength. In IEEE ICICSE. Zhengzhou, China,
239–245.

[40] Mi Wen, Yan-Fei Zheng, Wen jun Ye, Ke-Fei Chen, and Wei-Dong Qiu. 2009. A
key management protocol with robust continuity for sensor networks. Computer
Standards & Interfaces 31, 4 (2009), 642–647.

[41] Yuezhong Wu, Qi Lin, Hong Jia, Mahbub Hassan, and Wen Hu. 2020. Auto-Key:
Using autoencoder to speed up gait-based key generation in body area networks.
ACM, Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1 (2020), 1–23.

[42] Peng Xu, Kanapathippillai Cumanan, Zhiguo Ding, Xuchu Dai, and Kin Leung.
2016. Group secret key generation in wireless networks: algorithms and rate
optimization. IEEE Transactions on Information Forensics and Security 11, 8 (2016),
1831–1846.

[43] Chunxuan Ye, Alex Reznik, and Yogendra Shah. 2006. Extracting secrecy from
jointly Gaussian random variables. In IEEE ISIT. Seattle, WA.

[44] Jerrold Zar. 2005. Spearman rank correlation. Encyclopedia of Biostatistics 7
(2005).

[45] Junqing Zhang, Alan Marshall, Roger Woods, and Trung Duong. 2016. Efficient
key generation by exploiting randomness from channel responses of individual
OFDM subcarriers. IEEE Transactions on Communications 64, 6 (2016), 2578–2588.

[46] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia. 2006. LEAP+: Efficient security
mechanisms for large-scale distributed sensor networks. Transactions on Sensor
Networks 2, 4 (2006), 500–528.

Session 5A: Control System Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1319

https://pytorch.org/
https://www.gnuradio.org/
https://dronerush.com/
https://fedtechmagazine.com/article/2016/05/dhs-border-protection-and-marines-want-commercial-iot-devices-battlefield
https://fedtechmagazine.com/article/2016/05/dhs-border-protection-and-marines-want-commercial-iot-devices-battlefield
https://www.ti.com/applications/industrial/factory-automation/overview.html
https://www.tp-link.com/us/home-networking/wifi-router/tl-wr902ac/
https://www.tp-link.com/us/home-networking/wifi-router/tl-wr902ac/
https://www.africanparks.org/our-work/Management-Infrastructure
https://www.africanparks.org/our-work/Management-Infrastructure
https://iobt.illinois.edu/
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://droneii.com/the-drone-market-size-2020-2025-5-key-takeaways
https://droneii.com/the-drone-market-size-2020-2025-5-key-takeaways
https://www.tesla.com/factory

	Abstract
	1 Introduction
	2 Background and Feasibility Study
	2.1 Background of CSI
	2.2 Feasibility Study

	3 System Overview and Adversary Model
	3.1 System Model
	3.2 DroneKey Workflow
	3.3 Adversary Model

	4 CSI Extraction and Processing
	4.1 CSI Extraction
	4.2 CSI Stream Processing

	5 Key-generation DNN
	5.1 GKG Dataset Generation
	5.2 GKG DNN Training

	6 Key Generation and Reconciliation
	6.1 Key-source Vector Generation
	6.2 Key-source Vector Quantification
	6.3 Reconciliation

	7 Security Analysis
	7.1 Security against Malicious-drone Attack
	7.2 Security against Eavesdropping and Reproduction Attacks

	8 Evaluation
	8.1 Implementation
	8.2 Performance Metrics
	8.3 Overhead of DroneKey
	8.4 Whole-network Group-key Generation

	9 Related Work
	10 Conclusion
	References

