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Abstract—Many people maintain accounts at multiple online
social networks (OSNs). Multi-OSN user linkage seeks to link
the same person’s web profiles and integrate his/her data across
different OSNs. It has been widely recognized as the key
enabler for many important network applications. User link-
age is unfortunately accompanied by growing privacy concerns
about real identity leakage and the disclosure of sensitive user
attributes. This paper initiates the study on privacy-preserving
user linkage across multiple OSNs. We consider a social data
collector (SDC) which collects perturbed user data from multiple
OSNs and then performs user linkage for commercial data
applications. To ensure strong user privacy, we introduce two
novel differential privacy notions, ε-attribute indistinguishability
and ε-profile indistinguishability, which ensure that any two
users’ similar attributes and profiles cannot be distinguished
after perturbation. We then present a novel Multivariate Laplace
Mechanism (MLM) to achieve ε-attribute indistinguishability
and ε-profile indistinguishability. We finally propose a novel
differential privacy-preserving user linkage framework in which
the SDC trains a classifier for user linkage across different
OSNs. Extensive experimental studies based on three real datasets
confirm the efficacy of our proposed framework.

Index Terms—User linkage, differential privacy, online social
networks.

I. INTRODUCTION

The past decade has witnessed the rise of Online Social
Networks (OSNs). Given various OSNs with different features,
it is common for people to register and use multiple accounts
at different OSNs. For example, many people publish their
emotions and opinions about what they see and hear on
Twitter, write restaurant reviews on Yelp, and find career
opportunities on LinkedIn. Statistics released by Brandwatch
show that every OSN user has 7.6 OSN accounts on average.1

Besides, a recent survey shows that about 73% of OSN users
have accounts at more than one OSNs.2

User linkage—also known as user recognition, anchor
linking, user resolution, etc.—has been an important issue due
to so many multi-OSN users. The primary goal of user linkage
is to identify the same user and link his/her web profiles across
different OSNs. User linkage has been widely recognized as
the key enabler for various social network applications. For
example, it can provide better understanding of users’ interests

1https://www.brandwatch.com/blog/amazing-social-media-statistics-and-
facts/

2https://www.pewinternet.org/2018/03/01/social-media-use-in-2018/

and behaviors [1]; it can also mitigate the cold-start and data
sparsity problems of social recommendation [2] and prediction
systems [3]. User linkage has attracted growing attention from
both the academia and industry. For instance, Goga et al. [4]
recently reported a system that can accurately find identical
identities of about 30% of OSN users.

User linkage is challenged by privacy concerns about
real identity leakage and the disclosure of sensitive user
attributes [5]–[7]. In particular, attackers can infer the real
identity of an OSN user more accurately by jointly considering
his/her profiles and activities across multiple OSNs. Similarly,
attackers can learn additional information about a user by
examining his/her social activities across multiple OSNs.

This paper makes the first attempt to study privacy-
preserving user linkage across multiple OSNs. Specifically,
we consider a social data collector (SDC) introduced in [8],
which collects user data from multiple OSNs and intends
to link users across different OSNs. To protect user privacy,
each OSN perturbs its user data before sharing them with the
SDC. Given perturbed user data, the SDC predicts whether
a given pair of users on different OSNs are associated with
the same real person. After performing user linkage, the SDC
can aggregate the multi-OSN data of the same users and
resell such linked user data to end data consumers to facilitate
various network applications. One such application is privacy-
preserving recommendation and prediction systems like [9],
which take perturbed OSN user data as input and output the
recommendation or prediction results.

Privacy-preserving user linkage across multiple OSNs poses
unique challenges. Traditional countermeasures against iden-
tity leakage and attribute disclosure include k-anonymity [10],
`-diversity [11], t-closeness [12], etc., which can offer satisfac-
tory privacy protection for well-defined relational data but lack
a rigorous theoretical guarantee. Recently, Local Differential
Privacy (LDP) [13] has been widely recognized as a strong
and mathematically rigorous privacy-preserving framework
and has found success in many statistic problems [14]–[23].
However, if directly applied to privacy-preserving user linkage,
LDP suffers from a major limitation. In particular, since OSN
user attributes often have large value ranges, satisfying LDP
would require injecting large noise and then result in low data
utility and also low user-linkage accuracy. How to achieve
high linkage prediction accuracy while protecting user privacy
remains an open challenge.978-0-7381-3207-5/21/$31.00 ©2021 IEEE
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We propose a novel framework for differential privacy-
preserving user linkage across multiple OSNs. In our frame-
work, each OSN perturbs its user data with differential pri-
vacy techniques and then shares perturbed data with a semi-
trusted SDC. Given such perturbed user data, the SDC uses
a proper machine learning technique to train a classification
model to predict whether any two users from different OSNs
correspond to the same real person. To address the limitation
of LDP, we introduce two new privacy notions, ε-attribute
indistinguishability and ε-profile indistinguishability. Different
from standard LDP that aims to ensure any two users are
indistinguishable after perturbation, ε-attribute indistinguisha-
bility and ε-profile indistinguishability ensure that any two
users with similar attributes and profiles are indistinguishable
by taking the distance between their attributes and profiles
into account, respectively. The smaller the distance between
two user attributes (or profiles), the more indistinguishable
they are after perturbation, and vice versa. Relaxing the
privacy protection from LDP to ε-profile indistinguishability
can effectively reduce the amount of injected noise to improve
data utility and user-linkage accuracy. We further propose a
novel Multivariate Laplace Mechanism (MLM) which adds
correlated noise to multi-dimensional user attributes and sat-
isfies ε-attribute indistinguishability.

We evaluate the proposed framework and MLM with
three public real datasets from Twitter, MySpace, and
Last.fm, which include 28,199, 9,993, and 7,661 users,
respectively. Our results show that the user-linkage accuracy
under MLM is significantly higher than existing perturbation
mechanisms and improves much faster as the privacy budget
ε increases. For example, when ε = 0.5, the accuracy score of
Logistic Regression on the Twitter-MySpace dataset pair with
MLM reaches 63.55%, while those with other mechanisms are
only about 50%. Moreover, our results confirm the advantages
of adding correlated noise to different user attributes.

The rest of this paper is structured as follows. Section II
introduces the system model, adversary model, and problem
formulation. Section III briefs some background on differ-
ential privacy. Section IV presents the proposed framework.
Section V conducts the privacy analysis. Section VI presents
the evaluation results. Section VII discusses the related work.
Section VIII concludes this paper.

II. PROBLEM FORMULATION AND ADVERSARY MODEL

A. Problem Formulation

We consider an OSN user-linkage system comprising one
SDC and two OSNs denoted by U and V , respectively. Our
system can easily support more OSNs, of which user linkage
operations are individually performed for each pair. Each OSN
shares its user data to the SDC without violating its privacy
guarantees to its users. The SDC employs machine-learning
techniques to train a classifier for linking users on U and V to
the same real person. Finally, the SDC can sell linked user data
to end data consumers for various important OSN applications
such as recommendation and prediction.

While OSN users socialize with each other in various ways,
their data can commonly be classified into personal attributes
and social activity contents. Personal attributes can be in
different data formats. For example, age, weight, height, and
income are usually numeric values, while home/work address
and recent activities are usually text strings. To facilitate sub-
sequent perturbation and profile linkage, we convert every text
string into a numeric value. Specifically, we first decompose
each text string into a set of substrings via the standard n-gram
technique [24]. We then convert the resulting substring set into
a numerical value using SimHash [25]. The locality sensitivity
of SimHash indicates that two similar text strings must have
similar SimHash values, and vice versa. There could also be
user attributes in the form of categorical data such as gender
and race. We focus on numeric and text data in this paper and
leave the support for categorical data as our future work.

We use the following notations. OSN U consists of n� 1
users denoted by U = {u1, . . . ,un}. Each ui ∈ U is repre-
sented by a γ-dimension attribute vector ui = (ui,1, . . . , ui,γ),
where γ is the number of attributes, and each ui,k (1 ≤ i ≤ n,
1 ≤ k ≤ γ) is the kth attribute in [0, 1] after proper
normalization. Similarly, we assume that OSN V is composed
of m � 1 users denoted by V = {v1, . . . ,vm}, in which
each user vj ∈ V is represented by an attribute vector
vj = (vj,1, . . . , vj,γ) in which each attribute value also takes
value in [0,1] after proper normalization.

We seek to develop an effective framework for differential
privacy-preserving user linkage across U and V . In our frame-
work, U and V each employ a differential privacy mechanism
M to perturb each ui ∈ U to obtain ũi and each vj ∈ V
to obtain ṽj , respectively. Given two perturbed user datasets
Ũ = {ũi}ni=1 and Ṽ = {ṽj}mj=1, the SDC aims to determine
whether each user pair (ũi, ṽj) is associated with the same
real person for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. The detailed
requirements for M are postponed to Section III.

B. Adversary Model

We assume that each OSN is an independent, trusted entity
and has legal obligations to protect user privacy. As a standard
practice, each OSN replaces every user ID with a distinct
anonymous ID before sharing its user dataset with the SDC.
In addition, different OSNs do not share their user data with
each other due to business competition and lack of trust.

The SDC is assumed to be honest-but-curious. Specifically,
the SDC honestly performs user linkage operations. Following
the prior work [8], the SDC is curious in the sense that
it attempts to link selected anonymous IDs in the received
datasets to real IDs on the OSN platforms whereby to learn
additional social activities and other sensitive information of
the victims from available side information [26].

III. PRELIMINARIES

In this section, we introduce local differential privacy per-
taining to the proposed two privacy notions. Local differential
privacy [27] is a powerful technique to ensure data privacy
against a curious data collector, which is defined as follows.
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Definition 1. A randomized mechanism M satisfies ε-local
differential privacy if and only if

Pr[M(u) = O]

Pr[M(u′) = O]
≤ eε,

for any two inputs u, u′ and for any possible output O ∈
range(M).

Different from centralized differential privacy for which
perturbation is performed by the data collector, each OSN
perturbs its user data locally under LDP. The parameter ε is
commonly referred to as the privacy budget and can be used
to measure the achievable privacy ofM. The smaller the ε is,
the higher level of privacy M provides, and vice versa.

The Laplace mechanism is a classical technique that
achieves LDP by adding the Laplace noise to user attributes.
Let 4uk be the size of attribute k’s data range for all
1 ≤ k ≤ γ. Given an arbitrary user-attribute vector ui =
(ui,1, . . . , ui,γ), the Laplace mechanism outputs the perturbed
one as

ũi = (ui,1 + Lap(
4ui,1
ε1

), . . . , ui,γ + Lap(
4ui,γ
εγ

)) ,

where Lap(λ) denotes a random sample generated from a
Laplace distribution of scale λ with the probability density
function

f(x) =
1

2λ
exp(−|x|

λ
) .

The following theorem shows the privacy guarantee offered
by the Laplace mechanism.

Theorem 1. The Laplace mechanism M satisfies εmax-local
differential privacy [28], where

εmax = max(ε1, . . . , εγ) .

IV. DIFFERENTIAL PRIVACY-PRESERVING USER LINKAGE

In this section, we first introduce two novel differential
privacy notions and then present a novel multivariate Laplace
mechanism along with its analysis. Finally, we introduce our
differential privacy-preserving user linkage framework.

A. ε-Profile/Attribute Indistinguishability

While LDP is a classical notion for privacy protection,
directly applying it to multi-OSN user linkage suffers from
one major limitation. Specifically, satisfying LDP requires that
for any two user-attribute vectors ui and uj , the ratio of their
probabilities of being transformed into any perturbed attribute
vector is upper-bounded by eε. In other words, LDP offers
the same level of privacy protection to two highly dissimilar
users as to two highly similar users. Since OSN user attributes
commonly have large value ranges, satisfying LDP would
require injecting large noise to accommodate the most diverse
pair of user-attribute vectors, which results in low data utility
and low user-linkage accuracy.

Inspired by the notions of ε-geo-indistinguishability [29]
and ε-text indistinguishability [8], we introduce two new
privacy notions in the context of user linkage, ε-attribute

indistinguishability and ε-profile indistinguishability. Instead
of ensuring that any two user-attribute vectors are indistin-
guishable after perturbation, we aim to ensure that similar
user-attribute vectors are indistinguishable after perturbation,
and the level of privacy protection depends on the similarity
or distance between two attributes or profiles. More specif-
ically, ε-attribute indistinguishability ensures that two users’
attributes, e.g., age, are indistinguishable after perturbation.
The smaller the distance between the two users’ attributes,
the more indistinguishable they are, and vice versa. Similarly,
ε-profile indistinguishability ensures two users with similar
attribute vectors are not distinguishable after perturbation.

For any user-attribute vector ui ∈ U , we denote by M(ui)
the perturbed output by the mechanismM. We also abuse the
notation to let M(ui,k) denote the kth attribute of M(ui).
We give two definitions of ε-attribute indistinguishability and
ε-profile indistinguishability below.

Definition 2. (ε-attribute indistinguishability) Given a set of
user-attribute vectors U = {u1, . . . ,un}, a mechanism M(·)
satisfies ε-attribute indistinguishability with respect to the kth
attribute if and only if ,

Pr[M(ui,k) = t]

Pr[M(uj,k) = t]
≤ eε|ui,k−uj,k|, (1)

for any pair of attributes ui,k and uj,k and any possible
perturbed attribute value t ∈ R.

The notion of ε-attribute indistinguishability indicates that
the ratio of the probabilities that any two user attributes ui,k
and uj,k are transformed by mechanism M(·) into the same
value is upper bounded by eε|ui,k−uj,k|. In other words, the
more similar the two user attributes, the more likely that they
are indistinguishable after transformation, and vice versa.

Definition 3. (ε-profile indistinguishability) Given a set of
user-attribute vectors U = {u1, . . . ,un}, a mechanism M(·)
satisfies ε-profile indistinguishability if and only if

Pr[M(ui) = ũ]

Pr[M(uj) = ũ]
≤ eεd(ui,uj), (2)

for any pair of ui,uj ∈ U and any possible perturbed user
attribute vector ũ, where

d(ui,uj) =

γ∑
k=1

|ui,k − uj,k|

is the Manhattan distance between ui and uj .

The notion of ε-profile indistinguishability indicates that
the ratio between the probabilities of two attribute vectors ui
and uj each being transformed by mechanism M into the
same ũ is upper bounded by eεd(ui,uj). The more similar
the two user attribute vectors, the smaller their Manhattan
distance, the more likely that they are indistinguishable after
transformation, and vice versa. We also note that both ε-
attribute indistinguishability and ε-profile indistinguishability
are weaker notions than ε-local differential privacy, as they
only provide strong privacy guarantee for users with similar
attributes and profiles, respectively.
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B. Multivariate Laplace Mechanism

We now introduce a novel Multivariate Laplace Mechanism
(MLM) which is based on two key observations. First, dif-
ferent user attributes have diverse sensitivity and thus desire
different privacy protections. For example, home address is
more sensitive than age or the time of last activity and thus
requires higher level of privacy protection, i.e, a smaller pri-
vacy budget and larger amount of noise. Second, we find that
adding independent noise to different attributes would result
in perturbed user-attribute vectors widely dispersed, which
would lead to lower classification accuracy and thus lower
user-linkage accuracy. So our MLM adds positively correlated
Laplace noise to different attributes. By carefully selecting
the parameters of the Multivariate Laplace Distribution, our
MLM achieves ε-attribute indistinguishability for individual
attributes while providing high user-linkage accuracy.

We first briefly introduce the Multivariate Laplace Distribu-
tion [30]. Let ψ = (ψ1, . . . , ψγ) be a γ-dimensional vector.
The probability density function of a Multivariate Laplace
Distribution MLD(µ,Σ) is given by

f(ψ) =
2

(2π)γ/2|Σ|1/2
·
Kγ/2−1(

√
2q(ψ))

(
√
q(ψ)/2)γ/2−1

, (3)

where K1−γ/2(·) is the modified Bessel function of the second
kind with order 1− γ/2 and q(ψ) = (ψ − µ)TΣ−1(ψ − µ).
Substituting the Bessel function K1−γ/2(·) by the well-known
asymptotic formula [30]

Kγ/2−1(z) ≈
√

π

2z
e−z

if |z| → ∞. We can derive the probability density function
f(ψ) as

f(ψ) =
2

(2π)γ/2|Σ|1/2
·

( π

2
√

2ψTΣ−1ψ
)1/2 exp (−

√
2ψTΣ−1ψ)

(
√
ψTΣ−1ψ

2 )γ/2−1

,

(4)

where Σ is a γ × γ positive-definite covariance matrix given
by

Σ =


σ2

1 σ1σ2ρ1,2 · · · σ1σγρ1,γ

σ2σ1ρ2,1 σ2
2 · · · σ2σγρ2,γ

...
...

. . .
...

σγσ1ργ,1 · · · · · · σ2
γ

 .
The parameter σk in the above Σ is ψk’s variance for all
1 ≤ k ≤ γ, and ρi,j is the correlation coefficient between ψi
and ψj for all 1 ≤ i, j ≤ γ. When ρi,j ∈ (0, 1) (or (−1, 0)), ψi
and ψj are positively (or negatively) correlated; when ρ = 0,
they are uncorrelated.

We now detail the design of MLM. First, the OSN sets
the privacy budget εk for the kth attribute according to its
sensitivity for all 1 ≤ k ≤ γ. Second, we compute the variance
of each ψk as

σk =

√
2

εk

Algorithm 1: Multivariate Laplace Mechanism(MLM)
Input: User attribute vector ui and privacy budget

ε1, . . . , εγ ;
Output: Perturbed user attribute vector ũi;

1 foreach k ∈ {1, . . . , γ} do
2 σk ←

√
2
εk

;
3 end
4 Compute a γ × γ covariance matrix Σ as in Eq. (5);
5 Draw a γ-dimensional vector ψ from MLD(0,Σ);
6 ũi ← ui +ψ;
7 return ũi;

for all 1 ≤ k ≤ γ. Third, we set the covariance matrix as

Σ =


2
ε21

2ρ1,2
ε1ε2

· · · 2ρ1,γ
ε1εγ

2ρ2,1
ε2ε1

2
ε22

· · · 2ρ2,γ
ε2εγ

...
...

. . .
...

2ργ,1
εγε1

2ργ,2
εγε2

· · · 2
ε2γ

 (5)

where {ρi,j |1 ≤ i, j ≤ γ} are system parameters of
which the impact is evaluated in Section V. Finally, given
each user-attribute vector ui ∈ U , we draw a noise vector
ψ = (ψ1, . . . , ψγ) from the Multivariate Laplace Distribution
MLD(0,Σ) and output a perturbed vector as

ũi = ui +ψ .

We summarize MLM in Algorithm 1.

C. Proposed Framework

Fig. 1 shows an overview of the proposed framework, which
consists of three phases: data perturbation, model training, and
user-linkage prediction.

In the data-perturbation phase, each participating OSN
chooses its own privacy budgets ε1, . . . , εγ according to the
privacy sensitivity of each attribute. Consider OSN U as an
example. It then perturbs its user-attribute vector set U using
MLM to obtain a perturbed vector set Ũ . At the same time,
U also seeks agreements from a subset of its users who are
willing to share their data. This can be done through users’
voluntary participating or offering certain rewards like online
credits in exchange for their waiver of privacy protection [31].
Denote this subset of user-attribute vectors as U∗ ⊂ U , where
|U∗| � |U |. Then U sends both {(ui, ũi)|ui ∈ U∗} and
the remaining perturbed vectors {ũi|ui ∈ U \ U∗} to the
SDC. Similarly, OSN V submits {(vj , ṽj)|vj ∈ V ∗} and the
remaining perturbed vectors {ṽj |vj ∈ V \ V ∗} to the SDC.

In the training phase, the SDC first constructs a training
dataset from received user datasets. Since U∗ and V ∗ both
contain only original user-attribute vectors, the SDC can
identify the users who appear in both U∗ and V ∗ using
standard methods, such as comparing the similarities of their
social profiles, social activities, or other attributes. It is also
possible for the SDC to adopt third party services such as

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)



Perturbation Phase under MLM
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Fig. 1: Framework of differential privacy-preserving user linkage.

Everypost3, Buffer4, and Hootsuite5 that allow users to link
and synchronize multiple social media accounts. For every pair
of user attribute vectors (ui,vj) where ui ∈ U and vj ∈ V ,
if they belong to the same real person, then the corresponding
perturbed attribute vector pair (ũi, ṽj) is considered a positive
instance. Otherwise, they are considered a negative instance.
Subsequently, the SDC trains a classifier from the training
dataset using standard machine learning techniques. In this
paper, we consider and compare four machine learning meth-
ods, including Linear Regression, XGboost, Adboost with the
linear kernel function, and Logistic Regression.

In the user-linkage prediction phase, for each pair of per-
turbed user attribute vectors (ũi, ṽj) such that ui ∈ U\U∗ and
vj ∈ V \ V ∗, the SDC uses the trained classifier to determine
whether they belong to the same real person.

V. DIFFERENTIAL PRIVACY ANALYSIS

In this section, we analyze the differential privacy guaran-
tees offered by MLM. We first have the following theorem
regarding the privacy protection for individual attributes.

Theorem 2. The MLM mechanismM(·) satisfies εk-attribute
indistinguishability for all 1 ≤ k ≤ γ.

Proof. Consider any two attribute vectors ui =
(ui,1, . . . , ui,γ) and uj = (uj,1, . . . , uj,γ). We abuse
the notation to let M(ui,k) denote the kth attribute of
perturbed vector output by M(·) for all 1 ≤ k ≤ γ. For any
possible perturbed attribute tk ∈ R, we have

Pr[M(ui,k) = tk]

Pr[M(uj,k) = tk]
=

Pr[ui,k + ψk = tk]

Pr[uj,k + ψk = tk]

=
Pr[ψk = tk − ui,k]

Pr[ψk = tk − uj,k]
.

(6)

3http://everypost.me/
4https://buffer.com/
5https://hootsuite.com/

Since the marginal distribution of each ψk of MLD(0,Σ) is
an Laplace distribution as f(x) = 1

σ e
− |x|σ [30], and we set

σ = 1/εk, it follows that

Pr[ψk = tk − ui,k]

Pr[ψk = tk − uj,k]
=
eεk|tk−ui,k|

eεk|tk−uj,k|

= eεk(|tk−ui,k|−|tk−uj,k|)

≤ eεk|uj,k−ui,k|.

(7)

We further have the following theorem regarding ε-profile
indistinguishability of MLM.

Theorem 3. MLM satisfies max({εk}k∈[1,γ])-profile indistin-
guishability if ρi,j = 0 for all 1 ≤ i, j ≤ γ.

Proof. Consider any two attribute vectors ui =
(ui,1, . . . , ui,γ) and uj = (uj,1, . . . , uj,γ). Let
t = {t1, . . . , tγ} be an arbitrary perturbed attribute vector. If
ρi,j = 0 for all 1 ≤ i, j ≤ γ, then ψ1, . . . , ψγ output by the
MLM are independent of each other. We therefore have

Pr[M(ui) = t]

Pr[M(uj) = t]
=

∏γ
k=1 Pr[Mk(ui,k) = tk]∏γ
k=1 Pr[Mk(uj,k) = tk]

=

∏γ
k=1 Pr[ui,k + ψk = tk]∏γ
k=1 Pr[uj,k + ψk = tk]

=

∏γ
k=1 Pr[ψk = tk − ui,k]∏γ
k=1 Pr[ψk = tk − uj,k]

=

∏γ
k=1 e

εk|tk−ui,k|∏γ
k=1 e

εk|tk−uj,k|

=

γ∏
k=1

eεk(|tk−ui,k|−|tk−uj,k|)

≤
γ∏
k=1

eεk(|uj,k−ui,k|)

= e
∑γ
k=1 εk(|uj,k−ui,k|)

≤ emax({εk}k∈[1,γ])d(ui,uj).

(8)
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We can further generalize the above theorem into user-
attribute vector pairs across two OSNs. Assume that two OSN
operators each choose {ε1,1, . . . , ε1,γ} and {ε2,1, . . . , ε2,γ} as
their respective privacy budgets for γ attributes. The following
theorem shows that any user attribute vector pair should be
indistinguishable from another pair after perturbation.

Theorem 4. Assume that two OSN operators each
choose {ε1,1, . . . , ε1,γ} and {ε2,1, . . . , ε2,γ} as their respec-
tive privacy budgets for γ attributes. MLM satisfies ε-
profile indistinguishability for profile pairs, where ε =
max({εj,k}j∈{1,2},1≤k≤γ).

Proof. Consider any two pairs of user attribute vectors
(ui1 ,vj1) and (ui2 ,vj2). Let (ux,vy) be an arbitrary pair
of perturbed user attribute vectors. We have

Pr[M(ui1) = ux,M(vj1) = vy]

Pr[M(ui2) = ux,M(vj2) = vy]

=
Pr[M(ui1) = ux] · Pr[M(vj1) = vy]

Pr[M(ui2) = ux] · Pr[M(vj2) = vy]

≤ emax({ε1,k}k∈[1,γ])d(ui1 ,ui2 ) · emax({ε2,k}k∈[1,γ])d(vj1 ,vj2 )

≤ emax({ε1,k,ε2,k})(d(ui1 ,ui2 )+d(vj1 ,vj2 ))

= emax({ε1,k,ε2,k})d((ui1 ,vj1 ),(ui2 ,vj2 )).
(9)

Furthermore, we examine the relationship between ε-profile
indistinguishability and ε-text indistinguishability [8], which
is a similar privacy notion defined over the Euclidean dis-
tance. ε-text indistinguishability is defined over text vectors,
which are transformed into real-value vectors as mentioned in
Section II-A. In particular, a mechanism M(·) satisfies ε-text
indistinguishability if and only if

Pr[M(ui) = ũ]

Pr[M(uj) = ũ]
≤ eεd(ui,uj),

where ui and uj are any two user-attribute vectors, and
d(ui,uj) is their Euclidian distance. The following theorem
establishes the connection between these two notions.

Theorem 5. If a mechanism M satisfies ε-profile indistin-
guishability, then it also satisfies

√
γε-text indistinguishability.

Proof. Consider any two γ-dimensional user attribute vectors
ui and uj . Let d(ui,uj) and d(ui,uj) be their Manhattan
and Euclidian distances, respectively. By definition, we have

d(ui,uj) =

γ∑
k=1

|ui,k − uj,k|

and

d(ui,uj) = (

γ∑
k=1

(ui,k − uj,k)2)
1
2 .

Let 4uk = |ui,k − uj,k| for all 1 ≤ k ≤ γ. It follows that

d2(ui,uj)

d2(ui,uj)
=

(
∑γ
k=14uk)2∑γ
k=14u2

k

.

The above ratio takes the maximum value γ when 4u1 =
· · · = 4uγ . It follows that the maximum ratio d(ui,uj)

d(ui,uj)
is
√
γ,

and therefore d(ui,uj) ≤
√
γd(ui,uj). Now assume that a

mechanismM satisfies ε-profile indistinguishability. We have

Pr[M(ui) = t]

Pr[M(uj) = t]
≤ eεd(ui,uj) ≤ eε

√
γd(ui,uj). (10)

We also analyze the impact of injected noise on user-
attribute vectors. Theorem 6 estimates the expected Manhattan
distance between a user attribute vector and the corresponding
perturbed one under MLM.

Theorem 6. Let ui and ũi be an original user attribute vector
and the corresponding perturbed output by MLM, the expected
Manhattan distance between ui and ũi is

∑γ
k=1

2
εk

, where εk
is the privacy budget of the k-th attribute.

Proof. Let ψ = (ψ1, . . . , ψγ) be the noise vector output
by the MLM. The Manhattan distance between u and ũ is
given by d(ui, ũi) =

∑γ
k=1 |ψk| Since ψ is sampled from

MLD(0,Σ), and the marginal probability distribution of each

ψk is f(ψk) = 1
σk
e
− |ψk|σk , we have

E(|ψk|) =

∫ ∞
−∞

εke
−εk|ψk||ψk|dψk

= 2εk

∫ ∞
0

e−εkψkψkdψk

= 2εk(− 1

εk
ψke

−εkψk |∞0 −
1

ε2k
e−εkψk |∞0 )

=
2

εk
.

It follows that

E(d(ui, ũi)) = E(

γ∑
k=1

|ψk|) =

γ∑
k=1

E(|ψk|) =

γ∑
k=1

2

εk
.

VI. EXPERIMENT RESULTS

A. Datasets, Parameter Setting, and Performance Metrics

We use three public OSN datasets published in [32], in-
cluding Twitter, MySpace and Last.fm. The number
of users in the Twitter, MySpace and Last.fm datasets
are 28,199, 9,993, and 7,661, respectively. Each user has 6,
9, and 9 attributes in three social datasets, respectively. We
also use the 19,126 and 5,002 pairs of users as the ground-
truth for two linked social datasets Twitter-MySpace and
MySpace-Last.fm, which were originally collected by Per-
ito et al. [33] through the Google Profiles service.

We preprocess the datasets by converting all text data into
numeric data. Specifically, we first utilize the standard 2-gram
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TABLE I: User-Linkage Prediction Performance.

Twitter-MySpace MySpace-Last.fm
Precision AUC Recall F1 Precision AUC Recall F1

Linear Rregression 0.6494 0.5689 0.5668 0.5736 0.6742 0.6003 0.5848 0.6087
XGboost 0.6669 0.5445 0.6436 0.5691 0.6231 0.5841 0.6412 0.5988
Adboost 0.7061 0.5650 0.6504 0.5680 0.6898 0.5835 0.6699 0.6092

Logistic Rregression 0.6861 0.5672 0.6496 0.5742 0.7100 0.5848 0.6742 0.6087
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(d) Logistic Regression

Fig. 2: Prediction accuracy on the Twitter-MySpace dataset.
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(d) Logistic Regression

Fig. 3: Prediction accuracy on the MySpace-Last.fm dataset.
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Fig. 4: Impact of ρ on different machine learning methods.

to convert each text string into a set of substrings and then
use the Simhash library [25] to compute a hash value for
the substring set. As we mentioned in Section II, SimHash
is locality sensitive, which guarantees that two similar text
strings must have similar SimHash values, and vice versa.

We use the following parameters in our experiments. We
set the privacy budget εk = ε for all 1 ≤ k ≤ γ,
where ε is chosen from {0.5, 1, 1.5, 2, 2.5, 4, 8}. We also set
ρi,j = ρ for all 1 ≤ i, j ≤ γ, where ρ is chosen from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Four machine learning methods are evaluated in our frame-
work, including Linear Regression, XGboost, Adboost with the
linear kernel function, and Logistic Regression. We also com-
pare our framework with Laplace Mechanism [34], Duchi [35],
Piecewise Mechanism [36], and Zhang’s work [8]. The perfor-
mance metrics include Precision, Area under the ROC Curve

(AUC), Recall, and the F1 score.

B. Performance of Prediction without User Privacy

Table I lists user-linkage prediction results on two original
dataset pairs without considering user privacy. As we can see,
the prediction accuracy of the four machine learning methods
on different datasets is different. This is reasonable because the
same machine learning technique typically exhibits different
performance on different datasets.

Due to similar results and space limitation, we do not
present all the performance metrics but only show the precision
under various machine learning methods. Figs. 2 and 3 show
the precision with different perturbation mechanisms, where
each point represents the average of 100 runs, each with a
random perturbation, and the correlation coefficient ρ under
MLM is set to 0.9. We can see that the precision increases as
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Fig. 5: Mean Manhattan distance vs. privacy budget ε.
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Fig. 6: Standard deviation of Manhattan distance vs. privacy
budget ε and correlation coefficient ρ.

ε raises. This is expected because the larger the privacy budget
ε, the smaller the injected noise, the higher precision, and vice
versa. Besides, the precision of Linear Regression and Lo-
gistic Regression methods under MLM is significantly higher
than that under other four mechanisms, including Laplace
Mechanism [34], Duchi [35], Piecewise Mechanism [36], and
Zhang’s work [8]. Moreover, the precision of XGBoost and
AdBoost under MLM is only slightly higher than that under
other four mechanisms. This is expected, as the correlation
of injected noise under MLM is larger than that under other
mechanisms, and Linear Regression and Logistic Regression
methods are more sensitive to the correlation among injected
noise than XGBoost and AdBoost. To evaluate the impact of
ρ on the precision under MLM, we fix ε to 2 and vary the
correlation coefficient ρ from 0.1 to 0.9. Fig. 4 shows that the
precision increases as ρ increases from 0.1 to 0.9. In addition,
when ρ is close to 0, the precision is the lowest. Generally
speaking, the stronger the correlation of injected noise, the
better the prediction accuracy, and vice versa. In summary, the
privacy budget ε and the correlation coefficient ρ both affect
the prediction performance.

Furthermore, we evaluate the impact of ρ and ε on the mean
of Manhattan distance between perturbed and original user-
attribute vectors. First, we fix ρ as 0.9 and vary ε from 0.5
to 8. As we can see from Figs. 5a, 5b, and 5c, the mean
Manhattan distance between perturbed and original attribute
vectors under our MLM is smaller than that under other
perturbation mechanisms when ε is smaller than 4. In addition,
the mean Manhattan distance under MLM is larger than that
under PM [36], which is also similar to what we have seen
in Figs. 2 and 3. This is also anticipated, as the smaller the
injected noise, the smaller the Manhattan distance between the

original and perturbed user-attribute vectors, and vice versa.
Second, we fix ε as 2 and vary ρ from 0.1 to 0.9 to evaluate
the impact of ρ on the mean Manhattan distance. Fig. 5d
shows that the mean Manhattan distance between perturbed
and original user-attribute vectors is not affected by the change
in ρ, which coincides with Theorem 5. Moreover, the mean
distance for MySpace and Last.fm datasets are the same
and higher than that in Twitter. This is reasonable because
the more attributes, the smaller the privacy budget, the larger
the mean Manhattan distance, and vice versa.

Finally, we evaluate the impact of ρ and ε on the standard
deviation of the Manhattan distance between perturbed and
original user-attribute vectors. We first fix ρ to 0.9 and vary
ε from 0.5 to 8 and then fix ε to 2 and vary ρ from 0.1 to
0.9. Figs. 6a and 6b show that the standard deviation of the
Manhattan distance decreases as ε increases and increases as ρ
increases. Moreover, the results for MySpace and Last.fm
datasets are the same and higher than that for the Twitter
dataset. The reason is that that both MySpace and Last.fm
datasets have 9 user attributes while the Twitter dataset has
only 6 user attributes.

C. Defense Against User-Linkage Attack

Our mechanism is developed for defending against the user-
linkage attack. The notions of ε-attribute indistinguishability
and ε-profile indistinguishability in Definitions 2 and 3 indicate
that similar attributes (or profiles) should be perturbed into
the same attribute (or profile) with similar probabilities. By
satisfying the two notions, our mechanism makes it harder for
the attacker to carry out the user-linkage attack.

We conduct the following experiment to evaluate the ef-
fectiveness of our mechanism against the user-linkage attack.
For each user u in one dataset, we first calculate its K-nearest
neighbor set denoted by Su. We then model the strength of
the attacker by assuming that he/she knows κ randomly chosen
attribute values of user u, where κ ranges from 0 to γ for an
individual victim and from 0 to

∑2
k=1 γk for a pair of linked

users. Next, we calculate the K-nearest neighbor set of u with
respect to the κ known attributes, denoted by Su′ . Finally, we
calculate the inference rate as |Su

⋂
Su′ |/K. An inference of

one indicates that the attacker is able to identify the user from
the κ known attributes. We repeat the above process 100 times
for each user in the dataset each with a different subset of κ
attributes and calculate the average rate over all the users.
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Fig. 7: Performance of user-linkage attack on original datasets.
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Fig. 8: Performance of user-linkage attack on linked dataset.

Figs. 7a to 7c show the inference rate for Twitter,
MySpace and Last.fm datasets with 〈ε, ρ〉 set to 〈1, 0〉,
〈1, 0.9〉, 〈2, 0〉, and 〈2, 0.9〉, where κ ranges from 0 to 6
and K = 2. We can see that the inference rate increases
as κ increases in all five cases. For example, the inference
rate under the perturbed MySpace dataset increases from
12% to 45% as κ increases from 6 to 8. This is expected,
as the more attributes the adversary knows, the more likely
he/she can identify the real user. Moreover, the inference
rate under the proposed mechanism is much lower than that
for the original dataset without perturbation. In addition, the
inference rate increases as ε increases for the same ρ. The
reason is that the smaller the ε, the more likely two similar
attributes being perturbed to the same one, the stronger defense
against the user-linkage attack, and vice versa. Similarly, the
inference rate increases as ρ increases for the same ε as the
larger the ρ, the stronger correlations of among attributes, the
weaker defense against the user-linkage attack. In addition,
Fig. 8 shows the inference rate for two linked datasets with
K = 2. We can draw similar conclusions as those from
Twitter, MySpace and Last.fm datasets. We omit the
detailed discussions here due to the space limitations.

VII. RELATED WORK

A. Local Differential Privacy

LDP [13] is a strong and rigorous mathematical privacy-
preserving framework that provides semantic and information-
theoretic guarantees on individuals’ privacy. Compared to the
centralized differential privacy model, LDP assumes that the
data curator is semi-trusted or even malicious.

Early work on LDP focuses on statistical estimation. Er-
lingsson et al. [27] introduced a Randomized Aggregatable
Privacy-Preserving Ordinal Response (RAPPOR) mechanism

for collecting statistics over a set of binary values with LDP
guarantee, which requires the dictionary to be known in
advance. To overcome this limitation, Fanti et al. [37] pro-
posed an improved mechanism to support more sophisticated
statistics like joint distribution. Duchi et al. [14] studied two
kinds of statistical estimators under LDP, including mean
estimation and convex risk minimization. Kairouz et al. [38]
introduced the staircase mechanism to maximize data utility,
which can be reduced to solving a linear optimization problem.
Gu et al. [39] devoted to the correlation of key-value pairs,
and proposed a novel framework PCKV with two protocols
(i.e., PCKV-UE and PCKVGRR) whereby to tighten privacy
budget and achieve better utility.

Recent years have also witnessed the success of LDP
applied in various data analytics problems, including proba-
bility distribution estimation [14], heavy hitter discovery [15],
percentile statistics [16], frequent new term discovery [17], fre-
quency estimation [18], frequent itemset mining [19], marginal
release [20], clustering [21], location privacy [22], [23], and
so on. Since we tackle a totally different problem, none of
these works are directly applicable.

Directly applying LDP to multi-dimension OSN data suffers
from the curse of dimensionality [8]. To overcome these lim-
itations, Andrés et al. [29] first proposed the notion of ε-geo-
indistinguishability, which provides weaker privacy protection
than LDP by taking the distance between two locations into
account. Later, Zhang et al. [8] introduced a related privacy
notion ε-text indistinguishability for privacy-preserving social
data publishing. Both of these works satisfy the corresponding
privacy notions by adding a noise vector with length drawn
from a Laplace distribution, but they cannot satisfy indistin-
guishability for individual attributes.

B. Privacy-Preserving Data Publishing

Privacy-preserving data publishing has been extensively
studied. Classical techniques include k-anonymity [10], `-
diversity [11] and t-closeness [12]. Therein, k-anonymity is
proposed to defend against re-identification attacks, in which
every user identity should be indistinguishable with at least
k − 1 other users’ identities. However, it cannot prevent
probabilistic attack [40] in which an attacker infers sensitive
information without recovering the user’s identity. `-diversity
and t-closeness were proposed to address the limitations of k-
anonymity. These privacy-preserving mechanisms can achieve
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satisfactory privacy protection for well-defined relational data
but lack a rigorous theoretical framework.

VIII. CONCLUSION

In this paper, we studied the problem of differential privacy-
preserving user linkage across multiple OSNs. In view of
the limitation of LDP, we first introduce two novel privacy
notions of ε-attribute indistinguishability and ε-profile indis-
tinguishability, which offer privacy protection while taking
the distance between user-attribute vectors into account. We
further presented a novel Multivariate Laplace Mechanism
(MLM) to achieve these privacy notions and a differential
privacy-preserving user linkage framework based on the MLM
and machine learning techniques. Detailed theoretical analysis
confirmed the privacy guarantee of the proposed MLM, and
experimental studies using three real datasets demonstrated the
significant advantages of our framework over prior solutions.
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