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ABSTRACT

Verified users on online social media (OSM) largely determine the

quality of OSM services and applications, but most OSM users

are unverified due to the significant effort involved in becoming a

verified user. This paper presents SocialDistance, a novel technique

to identify unverified users that can be considered as trustworthy as

verified users. SocialDistance is motivated by the observation that

online interactions initiated from verified users towards unverified

users can translate into some sort of trustworthiness. It treats all

verified users equally and assigns a trust score between 0 and 1

to each unverified user. The higher the trust score, the closer an

unverified user to verified users. We propose various metrics to

model the interactions from verified to unverified users and then

derive corresponding trust scores. SocialDistance is thoroughly

evaluated with large Twitter datasets containing 276,143 verified

users and 19,047,202 unverified users. Our results demonstrate that

SocialDistance can produce a non-trivial number of unverified users

that can be regarded as verified users for OSM applications. We

also show the high efficacy of SocialDistance in sybil detection, a

fundamental operation performed by virtually every OSM operator.
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1 INTRODUCTION

Online social media (OSM) such as Twitter, Facebook, and Insta-

gram have penetrated into the fabric of everyday life. According

to [1], OSM users accounted for about 71% of Internet users by

the end of 2017; and there are over 330 million monthly active

users on Twitter [5], 2.38 billion on Facebook [4], and 1 billion on

Instagram [3] in Q1 2019. In addition to facilitating online social in-

teractions, OSM have found tremendous applications in public and

private sectors, including political campaigns, public relations, mar-

keting, propaganda and counter-propaganda, crisis and emergency

response, crowdsourcing, scientific and social studies, etc.

OSM users can be classified as either verified or unverified. Each

verified user is identified by a special icon that varies on differ-

ent OSM. It involves non-trivial effort to become a verified OSM

user. For example, Twitter not only requires a verification appli-

cant to confirm the phone number and email address but also

asks the applicant to provide a personal photo, a photocopy of

a government-issued ID, an associated personal/official website,

and/or other identify-proof information [2]. In addition, the verifi-

cation applicant needs to write a statement that describes his/her

impact in an associated domain and why he/she wants to be veri-

fied. Other OSM all adopt similar procedures to handle verification

requests. As a result, only high-profile OSM users—such as public

figures, celebrities, journalists, politicians, governments, organiza-

tions, and businesses—may be eligible or bother to be verified. For

instance, there are only about 306,885 verified accounts out of 336

million active users on Twitter in Q1 2018. Other popular OSM also

have a very small percentage of verified users.

Verified OSM users largely determine the quality of OSM services

and applications. For example, there are numerous fake users on

various OSM who pose probably the greatest challenge to OSM

operations and applications. Since verified users correspond to

known people or organizations, they are commonly considered

more credible and trustworthy than average unverified users. But

the very small population of verified users in contrast to unverified

users highly limits the information and services they can offer.

A natural question arises whether we can explore unveri-

fied OSM users to complement verified users for enhancing

the quality of OSM services and applications. In this paper, we

seek an interaction-based solution to this question. Our study is

motivated by the observation that online interactions initiated from

verified users towards unverified users can translate into some sort

of trustworthiness. The more interactions an unverified user re-

ceives from verified users (e.g., retweets, mentions, and replies), the
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more similar the unverified user is to a verified user with regard to

trustworthiness. Although such directional interactions on OSM

have been explored in [15, 35], they have not been used to quantify

the similarity between unverified and verified users.

We make the following contributions in this paper.

• We conduct a comprehensive study about the interactions

initiated by verified OSM users. A weighted directed interac-

tion graph is constructed from verified users, unverified users,

and the online interactions from verified users to unverified

users. We explore various link metrics for the interaction

graph and then analyze the graphical properties based on

real Twitter data.

• We propose SocialDistance, the first technique to measure

how far an unverified user is from verified users on OSM.

In SocialDistance, each verified user is treated equally, and

each unverified user is assigned a trust score between 0 and

1. The higher the trust score of an unverified user, the closer

he/she is from becoming a verified user. We explore multiple

metrics to assign trust scores based on the interaction graphs

with different link metrics.

• We thoroughly evaluate SocialDistance with large Twitter

datasets including 276,143 verified users and 19,047,202 un-

verified users in total. We show that SocialDistance can pro-

duce a non-trivial number of unverified users that can be

regarded as verified users. We also demonstrate the efficacy

of SocialDistance in sybil detection, a fundamental operation

performed by virtually every OSM operator. In particular,

with the output of Botometer [13] as the ground truth, we

confirm that the unverified users with higher (lower) So-

cialDistance trust scores are less (more) likely to be sybil

users. Finally, we discuss how SocialDistance and Botometer

can well complement each other due to their very different

technical principles.

SocialDistance can be a third-party service to OSM applications

or be implemented by OSM operators themselves. For example,

OSM operators can explore SocialDistance to significantly reduce

their effort in sybil detection by focusing prohibitive human and

computational resources on those unverified users with low So-

cialDistance trust scores.

The remainder of this paper is organized as follows. Section 2

describes the construction of interaction graphs with various link

metrics. Section 3 presents the SocialDistance design. Section 4

evaluates SocialDistance with large Twitter datasets. Section 5 in-

troduces the related work. Section 6 concludes this paper.

2 CONSTRUCTING INTERACTION GRAPHS

In this section, we describe the construction of interaction graphs

for SocialDistance. Any OSM user can initiate interactions towards

others, but not all interactions can be associated with social trust.

For example, an unverified user on Twitter can be followed by

arbitrary users (even spammers), and there is even an active un-

derground market for purchasing fake followers who are almost

all unverified users. In contrast, the followings from verified users

are almost impossible to fake and thus can relate to social trust. So

we only explores interaction graphs built upon online interactions

initiated from verified users which are more trustworthy. We define

two kinds of interaction graphs: non-dynamic and dynamic.

2.1 Non-Dynamic Interaction Graphs

Non-dynamic interaction graphs characterize one-time interactions

associated with befriending requests. For an arbitrary set of veri-

fied and unverified users, we build a directed non-dynamic graph

G(U , E ′), whereU denotes the set of verified and unverified users,

and E ′ refers to the set of directed links from verified users to unver-

ified users. A link e ′i , j from a verified user i to an unverified user j is

formed when user i sent a befriending request to and was accepted

by user j. The formation of any link is just a one-time event. In

addition, a link may be broken due to unfriending or reestablished,

which can also be considered rare or non-dynamic events. So we

refer to G(U , E ′) as a non-dynamic interaction graph.

2.2 Dynamic Interaction Graphs

Dynamic interaction graphs correspond to temporal interactions

initiated by verified users towards unverified users. For example,

a verified user on Twitter may reply to, mention, or retweet an

unverified user on a dynamic basis. For the same setU of verified

and unverified users, we denote the directed dynamic interaction

graph by G (U , E), where E is the set of directed interaction links.

There is a link ei , j from a verified user i to an unverified user

j if i has ever initiated interactions with j other than sending a

befriending request. Assume that there are L types of dynamic

interactions on OSM, such as retweets, replies, and mentions on

Twitter. The dynamic interaction graph G (U , E) is weighted in

contrast to G(U , E ′). There are many ways to define the weight

wi , j for link ei , j . In this paper, we explore the following metrics

which are by no means exhaustive.

• Unit-based: This metric assignswi , j = 1 for every link ei , j ,
indicating that the verified user i has ever interacted with

the unverified user j.
• Sum-based: Intuitively speaking, the more interactions an

unverified user received from a verified user, the closer their

relationship. The sum-based metric uses the total number of

interactions through a link as the link weight. Let Iki , j denote

the number of type-k interactions (∀k ∈ [1, L]) over link ei , j .

We definewi , j =
∑L
k=1

Iki , j .

• Weighted average-based: Different types of interactions on

OSM may have diverse trust implications. For example, a

verified Twitter user may often casually retweet someone

else’s tweets, but he/she is usually more careful and selective

in mentioning other users in his/her own tweets. It is thus

meaningful to associate higher trust with mentions than

with retweets. Let λk denote the trust weight of type-k inter-

actions. We define the weighted average-based link metric

wi , j =

∑L
k=1 λk I

k
i , j

∑L
k=1 λk

.

• Consistency-based: In general, consistent interactions can

be viewed as a good representative of a stable relationship

between two persons. To capture this observation, we par-

tition a time span into epochs of equal length and then de-

termine the percentage ρ j ,i of epochs in which a verified
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user i has interacted with an unverified user j . We define the

consistency-based link metricwi , j = ρi , j
∑L
k=1

Iki , j .

• Epoch-based: This metric reflects the observation that the

temporal importance of an interaction and its implied social

trust may age with time. We split an observation time period

into equal-length epochs as well. Then we assign a time-

decay factor to each epoch i , which is defined as

Δ(i, tend, tstart) =
д(i − tstart)

д(tend − tstart)
, (1)

where tend and tstart denote the indexes of the first and last

epochs, respectively, and д(·) represents a monotone non-

decreasing function. As in [7], this paper considers the fol-

lowing three functions: (1) linear time decay: д(t) = α × t ;

(2) polynomial time decay: д(t) = tβ ; and (3) exponential

time decay: д(t) = exp(γ × t). Let
−→
Δ denote a row vector

comprising time-decay factors, one for each epoch in the

considered time span. Also let
−→
Iki , j denote a column vector,

where each element indicates the number of type-k interac-

tions from verified user i to unverified user j in one epoch

of the considered time span. Finally, we define

wi , j =

∑L
k=1

λk × (
−→
Δ ·

−→
Iki , j )

∑L
k=1

λk
. (2)

3 THE SOCIALDISTANCE SCHEME

In this section, we present the design of SocialDistance, a novel

technique that explores the weighted directed dynamic interaction

graph G (U , E) to quantify how far an unverified user is from veri-

fied users on OSM. The link weights such as wi , j can follow any

definition in Section 2.2. LetUV andUV̄ denote the set of verified

and unverified users, respectively, for which we haveU = UV ∪UV̄.

SocialDistance assigns each unverified user j ∈ UV̄ a trust score

c j ∈ [0, 1] according to the volume and features of interactions

he/she received from all verified users in UV. The higher c j , the
closer user j is to verified users, the higher trust others can have

in him/her, and vice versa. In particular, c j = 0 means that no

verified user has ever initiated any interaction to user j ∈ UV̄, and

c j = 1 indicates that user j ∈ UV̄ is the closest to verified users who

have initiated many interactions to user j. In addition, c j can be

dynamically adjusted with changing interactions. There are many

ways to derive c j . SocialDistance adopts the following trust metrics

which can certainly be further expanded.

• Strength of Interactions: In reality, we tend to spend much

more time communicating with our family, friends, or even

colleagues, rather than with acquaintances or strangers. So

the strength of interactions between an unverified user and

a verified user is a good trustworthiness indicator of the

unverified user. Based on this observation, we abuse the

notation and redefine ηj =
∑
ei , j ∈E wi , j for each unverified

user j ∈ UV̄.

• Hybrid: The hybrid metric considers both the strength of in-

teractions and the number of verified users having interacted

with each unverified user. Since the later factor is usually

much smaller than the former, we use the logarithm of the

interaction volume instead to balance these two factors. In

particular, we redefine ηj = #j log(
∑
ei , j ∈E wi , j ), where #j

denotes the number of incoming edges to each unverified

user j ∈ UV̄.

• Difference in Verified Users: This metric considers the dif-

ference among verified users for interacting with the same

unverified user. To incorporate this observation, we redefine

ηj for each unverified user j ∈ UV̄ as ηj =
∑
ei , j ∈E θi ·wi , j ,

where θi denotes the weight assigned to verified user i that
can also be defined in many ways. For example, our exper-

iments use θi as the ratio of user i’s outgoing interactions

towards all unverified users to all his/her tweets.

To alleviate skewness, we adopt the log-max root to transform

the raw trust values for each trust metric above. Let n denote the

common logarithm of the maximum trust value. We transform ηj
into η′j = (ηj )

1/n and then define the trust value c j (∀j ∈ UV̄) as

c j =
η′j

max{η′i |i ∈ UV̄}
, (3)

which is in the range of [0,1].

4 EXPERIMENTAL STUDIES

In this section, we present experimental studies of interaction

graphs and SocialDistance based on real Twitter datasets.

4.1 Datasets

We implemented a data crawler using Java based on official Twitter

APIs. Since all verified users on Twitter are followed by the account

named “Twitter Verified”, we explored the API “GET friends/ids”

and managed to get 276,143 of 301,000 verified users (about 91%).

Then we randomly partitioned them into four subsets, each includ-

ing at least 55,000 verified users. Finally, we crawled the followings,

mentions, replies, retweets, and most recent 3,200 public tweets

of each verified user. In addition, we obtained all the users who

received interactions initiated by a verified user. The data-crawling

process lasted from October 13, 2017 to December 1, 2017, and the

crawled data cover from October 2012 to October 2017. Table 1

shows the basic statistics of the four resulting datasets. As we can

see, the four datasets have very similar statistics, which confirm that

our crawled datasets are quite representative. So our experimental

results can be very trustworthy.

4.2 Construction of Interaction Graphs

Our experiments ran on a Dell OptiPlex 7010 desktop with Intel

i7-3770 3.4 GHz CPU, 16 GB memory, and Windows 10 Pro. It took

less than 3 minutes from constructing an interaction graph till gen-

erating the ranked list of trust scores for all unverified users in all

cases. So SocialDistance incurs very low computational overhead.

We built non-dynamic and dynamic interaction graphs for each

dataset. It is straightforward to build the non-dynamic interaction

graph and dynamic interaction graphs with the unit-based and

sum-based link metrics in Section 2. In contrast, it is a little more

complex to construct dynamic interaction graphs with the other

three link metrics.

To construct the weighted average-based dynamic interaction

graph, we should decide the weights for all interaction types. In
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Table 1: Dataset descriptions.

DS-1 DS-2 DS-3 DS-4

# of verified users 70,286 55,289 68,443 82,125

# of followings 48,551,836 44,060,094 47,793,809 80,989,248

# of mentioned users 10,701,077 9,258,628 10,393,613 14,015,006

# of mentioned unverified users 5,911,417 5,094,862 5,488,068 7,685,652

% of mentioned unverified users 55.2% 55.0% 52.8% 54.8%

# of replied users 7,502,955 6,693,586 7,681,198 10,348,813

# of replied unverified users 4,167,513 3,707,679 4,091,733 5,735,839

% of replied unverified users 55.5% 55.4% 53.3% 55.4%

# of retweeted users 6,145,964 4,870,857 4,937,427 6,104,188

# of retweeted unverified users 3,369,291 2,646,794 2,591,535 3,310,432

% of retweeted unverified users 54.8% 54.3% 52.3% 54.2%

# of mentioned+replied+retweeted users 13,576,502 11,618,797 12,811,752 16,956,141

# of mentioned+replied+retweeted unverified users 7,540,051 6,435,208 6,795,182 9,340,799

% of mentioned+replied+retweeted unverified users 55.5% 55.4% 53.3% 55.1%

Table 2: Graph density.

DS-1 DS-2 DS-3 DS-4

non-dynamic interaction graph 0.000051 0.000062 0.000047 0.000051

unit-based dynamic interaction graph 0.000031 0.000037 0.000031 0.000027
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(a) Non-dynamic interaction graph
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(b) Unit-based dynamic interaction graph

Figure 1: Average clustering coefficients of unverified users with different in-degrees.

contrast to retweeting and replying, mentioning is more like a

proactive action. People tend to be more prudent in selecting users

to mention than to retweet or reply to. In addition, retweeting is

more casual than replying. According to this observation, we assign

the highest weight to mentioning, the second highest to replying,

and the lowest to retweeting. In our experiment, we empirically

assigned 1, 0.8, and 0.5 to mentioning, replying, and retweeting,

respectively. The social-trust implications and relative weights of

these interaction types may be worthy of an independent study.

To construct the consistency-based and epoch-based dynamic

interaction graphs, we must first determine time epochs. Since our

crawled data cover October 2012 to October 2017, we chose month

as the epoch length for simplicity and obtained 60 epochs in total.

For the epoch-based dynamic interaction graph, we further set

the coefficients for linear, polynomial, and exponential time-decay

functions to α = 1, and β = 2, and γ = 1, respectively.

4.3 Analysis of Interaction Graphs

Since the topology of the five dynamic interaction graphs is the

same, we focus on comparing the topological properties of the non-

dynamic interaction graph and the unit-based dynamic interaction

graph only. Due to space constraints, we only report the graph

density

First, we check the graph density which is defined as the number

of edges divided by |UV | × |UV̄ |, where |UV | and |UV̄ | denote the

number of verified and unverified users, respectively. The results
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are shown in Table 2 for each dataset. We can see that the density

of both graphs is very low, so both graphs can be viewed as sparse

graphs. There are two main reasons for this result. First, unverified

users are a few orders more than verified users in each dataset

according to Table 1. Second, both graphs only consist of links (or

interactions) initiated from verified users to unverified users. Since

verified users are quite selective in interacting with unverified users,

the number of links in both graphs are quite limited.

Second, we compare the out-degree and in-degree cumulative

distribution functions (CDFs) of the two graphs. We found that

about 80% to 90% of unverified users received interactions from

less than 10 verified users, and most verified users initiated 100 or

more interactions with unverified users. Furthermore, we utilize the

method in [11] to fit the power-law distribution to the in-degree and

out-degree CDFs. We found that the in-degree power-law fitting

curves of the non-dynamic interaction graphs for all four datasets

have the alpha values from 3.3 to 5 and the p-values between 0.127

and 0.986. In addition, the in-degree alpha values for the unit-based

dynamic interaction graphs lie in [3.1, 3.4], with the p-values be-

tween 0.346 and 0.895. These two facts indicate that both graphs

conform to power-law distributions with regard to the in-degree,

which coincides with our observation that most unverified users on

Twitter received interactions from a relatively small number of ver-

ified users. In contrast, the alpha values of out-degree CDFs for the

non-dynamic interaction graphs lie in [2.1, 2.4], with the p-values

ranging from 0.0129 to 0.03; and the alpha values of out-degree

CDFs for the unit-based dynamic interaction graphs are all about

5.2, with the p-values all about 0.02. This later result manifests that

the out-degree distributions of both graphs are less consistent with

power-law scaling.

Third, we study the clustering coefficients of both graphs, which

measure the extent to which nodes in a graph tend to cluster to-

gether. Our experiment adopted the definition of clustering coeffi-

cients in [19] which take values in [0, 1]. According to this definition,

the more common neighbors two users have, the higher the cluster-

ing coefficient. In other words, a high clustering coefficient indicates

that nodes tend to tightly form a small group. Table 3 shows the

average clustering coefficients of verified users, unverified users,

and all users for both graphs with respect to each dataset. We can

see that the unit-based dynamic interaction graph always has a

higher clustering coefficient than that of the non-dynamic interac-

tion graph. This result further supports our conjecture that verified

users tend to be more selective in interacting with unverified users

than in following them. In addition, the correlations of the node in-

degree and out-degree with the clustering coefficients are displayed

in Fig. 1 and Fig. 2, respectively. Since the clustering coefficients

decrease with both the in-degree and out-degree, the unverified

users receiving lots of interactions from verified users and also the

verified users initiating extensive interactions to unverified users

are quite spread out on Twitter, which follows our intuition.

To summarize our results above, both non-dynamic and dynamic

interaction graphs in our definitions are sparse graphs, but there

are many verified users with outgoing links to a non-trivial number

of unverified users. So we can explore this observation to iden-

tify those unverified users who are more trustworthy than other

unverified users.

4.4 Evaluation of SocialDistance

We evaluate SocialDistance on each dataset in Table 1. Given six

link metrics for dynamic interaction graphs and three trust metrics,

we obtained 18 lists of unverified users in the descending order of

their trust scores for each dataset. We analyze the results as follows.

4.4.1 Trust-score distribution. The absolute trust scores for differ-

ent pairs of trust and link metrics cannot be directly compared

because they have different implications. It is, however, still inter-

esting to compare their trust-score distributions. Since the results

across different datasets are quite similar, we only focus on DS-1 in

Table 4, Table 5, and Table 6 for the three trust metrics, respectively.

We have the following remarks on the results.

• For the Strength-of-Interaction trust metric, over 90% of

unverified users have their trust scores in [0, 0.2) for both

sum-based and weighted average-based link metrics. The

main reason is that most unverified users on Twitter seldom

receive interactions from verified users.

• For the Hybrid trust metric, over 90% of unverified users

also have their trust scores in [0, 0.2) for both sum-based and

weighted average-based link metrics. Since the number of

verified users is the dominating factor for the Hybrid trust

metric, this result is anticipated because most unverified

users received interactions from a limited number of verified

users.

• The majority of trust scores with the consistency-based link

metric and all three trust metrics are below 0.4, correspond-

ing to the observation that most unverified users lack con-

sistent interactions from verified users.

• The epoch-based link metrics lead to much more evenly

distributed trust scores for all three trust metrics. Therefore,

they can provide much better trustworthiness distinction

among unverified users than other link metrics.

• Although the fractions of unverified users whose trust scores

are greater than 0.4 under all metrics are relatively small, a

non-trivial number of unverified users still received a lot of

interactions from verified users and thus can be trustworthy.

4.4.2 Impact of link metrics on rankings. Now we evaluate the

impact of different link metrics on the rankings of unverified users.

Given each trust metric, we use Kendall’s tau-b [18] to conduct

pairwise comparisons among the six ranked lists. Kendall’s tau-b

measures the ordinal association between two ranked lists, and its

value ranges from −1 to +1. The larger the Kendall’s tau-b value,

the stronger agreement between two ranked lists, and vice versa.

Due to space constraints and similar results, we only present the

results for DS-1 with the three trust metrics in Table 7, Table 8, and

Table 9, respectively.

We mainly have two observations. First, since the epoch-based

link metrics take into consideration the temporal factor, they lead

to much more dissimilar rankings to those of the other link metrics.

Second, the exponential-decay metric produces the most dissimilar

list to all the others, which coincides with our observation in the

datasets that most interactions occurred in the early epochs of the

observation period.

4.4.3 Impact of trust metrics on rankings. We also evaluate how

different trust metrics affect the rankings of unverified users and
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Table 3: Cluster coefficients of non-dynamic and unit-based dynamic interaction graphs.

non-dynamic interaction graph unit-based dynamic interaction graph

average clustering coefficient DS-1 DS-2 DS-3 DS-4 DS-1 DS-2 DS-3 DS-4

verified users 0.001833 0.001607 0.001967 0.001061 0.003506 0.003801 0.003777 0.003090

unverified users 0.04601 0.05019 0.05829 0.04444 0.1420 0.1650 0.1621 0.1422

verified+Unverified users 0.04670 0.04908 0.05734 0.04386 0.1407 0.1637 0.1605 0.1409
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(a) Non-dynamic interaction graph
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(b) Unit-based dynamic interaction graph

Figure 2: Average clustering coefficients of verified users with different out-degrees.

Table 4: Distribution of trust scores under Strength of Interaction (DS-1).

Link Metrics [0,0.2) (#) [0.2,0.4) (#) [0.4,0.6) (#) [0.6,0.8) (#) [0.8,1] (#)

sum 94.66% (7,137,256) 5.22% (393,591) 0.12% (9,116) 0.00% (84) 0.00% (3)

weighted average 92.76% (6,994,362) 7.05% (531,385) 0.19% (14,190) 0.00% (100) 0.00% (13)

consistency 4.69% (353,945) 94.48% (7,123,966) 0.82% (62,000) 0.00% (133) 0.00% (3)

linear decay (α = 1) 4.69% (353,944) 79.34% (5,982,334) 15.87% (1,196,733) 0.09% (7,014) 0.00% (25)

polynomial decay (β = 2) 5.92% (446,690) 80.36% (6,058,968) 13.62% (1,026,724) 0.10% (7,640) 0.00% (28)

exponential decay (γ = 1) 68.91% (5,196,070) 29.56% (2,228,469) 1.51% (113,677) 0.02% (1,824) 0.00% (10)

Table 5: Distribution of trust scores under Hybrid (DS-1).

Link Metrics [0,0.2) (#) [0.2,0.4) (#) [0.4,0.6) (#) [0.6,0.8) (#) [0.8,1] (#)

sum 95.98% (7,237,231) 3.92% (295,703) 0.09% (6,934) 0.00% (180) 0.00% (2)

weighted averaged 94.23% (7,104,705) 5.64% (424,974) 0.13% (10,141) 0.00% (228) 0.00% (2)

consistency 96.18% (6,911,838) 3.69% (265,481) 0.12% (8,543) 0.00% (238) 0.00% (2)

linear decay (α = 1) 75.94% (5,456,867) 23.38% (1,680,046) 0.68% (48,592) 0.01% (595) 0.00% (6)

polynomial decay (β = 2) 38.01% (2,731,368) 60.28% (4,331,845) 1.69% (121,772) 0.02% (1,113) 0.00% (8)

exponential decay (γ = 1) 61.55% (4,423,383) 36.06% (2,591,083) 2.35% (168,807) 0.04% (2,794) 0.00% (39)

report the Kendall’s tau-b values in Table 10. The results show

that all three trust metrics lead to similar trust rankings and have

relatively less impact than link metrics. In other words, there are

strong positive correlations among the three trust metrics.

4.4.4 Sybil detection. One important application of SocialDistance

is to aid the detection of fake accounts (i.e., sybil or bot detection).

Intuitively speaking, we would like that the unverified users with

higher (lower) trust scores are less (more) likely to be sybil users

and vice versa. To evaluate SocialDistance in sybil detection, the

ground truth is needed but impractical to manually obtain because

each of our ranked lists contains hundreds of millions of users.

Therefore, we use the public APIs of Botometer [13] to automati-

cally examine unverified users. Botometer is a public web service

which can be used to evaluate if a Twitter account is a sybil user.

Given a Twitter account, Botometer returns a score between 0 to 5

along with the Complete Automation Probability (CAP) which indi-

cates the confidence level. The higher the score and corresponding

CAP, the more likely the account is a sybil. To quantify the efficacy
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Table 6: Distribution of trust scores under Difference in Verified Users (DS-1).

Link Metrics [0,0.2) (#) [0.2,0.4) (#) [0.4,0.6) (#) [0.6,0.8) (#) [0.8,1] (#)

sum-based 3.23% (243,768) 93.69% (7,064,345) 3.06% (230,835) 0.01% (1,088) 0.00% (14)

weighted average-based 13.09% (987,311) 84.17% (6,346,792) 2.72% (204,772) 0.00% (1,153) 0.00% (22)

consistency-based 34.32% (2,588,010) 65.18% (4,914,789) 0.49% (37,133) 0.00% (116) 0.00% (2)

linear decay (α = 1) 4.79% (361,507) 83.67% (6,309,084) 11.46% (864,275) 0.07% (5,159) 0.00% (25)

polynomial decay (β = 2) 6.68% (503,567) 83.39% (6,287,957) 9.85% (742,833) 0.08% (5,669) 0.00% (24)

exponential decay (γ = 1) 72.37% (5,457,047) 26.60% (2,005,431) 1.01% (76,468) 0.01% (1,097) 0.00% (7)

Table 7: Comparison of rankings under Strength of Interaction (DS-1).

Link Metrics sum weighted average consistency linear decay polynomial decay exponential decay

sum — 0.87992 0.85469 0.63266 0.56051 0.26496

weighted average 0.87992 — 0.77105 0.67446 0.58925 0.26061

consistency 0.85469 0.77105 — 0.73408 0.65693 0.34668

linear decay (α = 1) 0.63266 0.67446 0.73408 — 0.90595 0.54717

polynomial decay (β = 2) 0.56051 0.58925 0.65693 0.90595 — 0.63463

exponential decay (γ = 1) 0.26496 0.26061 0.34668 0.54717 0.63463 —

Table 8: Comparison of rankings under Hybrid (DS-1).

Link Metrics sum weighted average consistency linear decay polynomial decay exponential decay

sum — 0.89782 0.89724 0.72650 0.65980 0.33111

weighted average 0.89782 — 0.84290 0.76507 0.68653 0.33117

consistency 0.89724 0.84290 — 0.75724 0.68718 0.33051

linear decay (α = 1) 0.72650 0.76507 0.75724 — 0.91426 0.51266

polynomial decay (β = 2) 0.65980 0.68653 0.68718 0.91426 — 0.59323

exponential decay (γ = 1) 0.33111 0.33117 0.33051 0.51266 0.59323 —

Table 9: Comparison of rankings under Difference in Verified Users (DS-1).

Link Metrics sum weighted average consistency linear decay polynomial decay exponential decay

sum — 0.88898 0.86520 0.68350 0.60733 0.29757

weighted average 0.88898 — 0.78823 0.71670 0.62793 0.28899

consistency 0.86520 0.78823 — 0.78256 0.69992 0.37326

linear decay (α = 1) 0.68350 0.71670 0.78256 — 0.90139 0.53222

polynomial decay (β = 2) 0.60733 0.62793 0.69992 0.90139 — 0.62408

exponential decay (γ = 1) 0.29757 0.28899 0.37326 0.53222 0.62408 —

of SocialDistance, we adopt quite conservative parameters: if the

Botometer score of a user is above 2 with CAP no less than 70%,

he/she is considered a sybil user in the ground truth. Since Table 10

shows that the ranked list based on the exponential-decay link met-

ric and the Difference-in-Verified-Users trust metric is overall most

similar to those with other combinations of link and trust metrics,

we focus on this list for sybil detection due to space constraints.

Figs. 3 and 4 show the number and fraction of sybil users with

the top-K trust scores for different Ks and CAPs. According to our

evaluations, the number of top-K sybil users remains zero until

K = 543 and then undergoes a sudden jump when K is between

965 and 1,000 for all three CAPs. It is anticipated to see that the

number of top-K sybil users increases with K . In addition, a larger

CAP leads to a smaller number top-K users labeled as sybil users

by Botometer with higher confidence. Furthermore, the fraction of

top-K sybil users is sufficiently small for all cases, and it does not

monotonically increase with K because the number of top-K sybil

users grows slower than K .
Figs. 5 and 6 show the number and fraction of sybil users with

the bottom-K trust scores for different Ks and CAPs. As expected,

there are a significant number and fraction of sybil users among

the unverified users with very low SocialDistance trust scores. In

particular, about 47.84%, 35.36%, and 24.11% of the bottom-8000

unverified users are labeled as sybils by Botometer with CAPs

equal to 70%, 80%, and 90%, respectively.

To sum up, the SocialDistance trust score is a highly cred-

ible indicator of the trustworthiness of an unverified user.

OSM operators can explore SocialDistance to significantly
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Table 10: Comparison of rankings under different trust metrics (DS-1).

Link Metrics Trust Metrics Strength of Interactions Hybrid Difference in Verified Users

sum

Strength of Interactions — 0.88268 0.79652

Hybrid 0.88268 — 0.88315

Difference in Verified Users 0.79652 0.88315 —

weighted average

Strength of Interactions — 0.87885 0.82420

Hybrid 0.87885 — 0.87935

Difference in Verified Users 0.82420 0.87935 —

consistency

Strength of Interactions — 0.91016 0.77067

Hybrid 0.91016 — 0.91016

Difference in Verified Users 0.77067 0.91016 —

linear decay

Strength of Interactions — 0.88944 0.86065

Hybrid 0.88944 — 0.88944

Difference in Verified Users 0.86065 0.88944 —

polynomial decay

Strength of Interactions — 0.88905 0.87911

Hybrid 0.88905 — 0.88905

Difference in Verified Users 0.87911 0.88905 —

exponential decay

Strength of Interactions — 0.94776 0.97424

Hybrid 0.94776 — 0.94776

Difference in Verified Users 0.97424 0.94776 —
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Figure 3: Number of top-K sybil users.
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Figure 4: Fraction of top-K sybil users.

reduce their effort in sybil detection by focusing on those

unverified with lower social scores. The parameter K that
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Figure 5: Number of bottom-K sybil users.
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Figure 6: Fraction of bottom-K sybil users.

marks the region of most trustworthy users may be trained
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throughmachine learningmethods.We postpone this study

to an extended version of this work.

4.4.5 Comparison with Botometer. Botometer provides a proba-

bilistic assessment about whether a given Twitter user is a sybil.

Now we briefly discuss how our SocialDistance scheme can well

complement Botometer in sybil detection.

First, Botometer needs to access the most recent 100 tweets of a

Twitter user to be evaluated. In practice, many users choose to keep

their tweets private or seldom post tweets, but their interaction data

are still much easier to obtain. So Botometer cannot evaluate such

users, but SocialDistance can. For example, we found that Botometer

cannot evaluate 11 users in the top-1000 unverified users output

by SocialDistance. We manually confirmed that seven of them are

non-sybil users and can be trustworthy.

Second, Botometer is a machine-learning technique that incorpo-

rates 1,200 features, while SocialDistance is a measurement-based

technique purely based on interaction data. Neither technique is

perfect and can have different false positives and/or negatives. Nat-

urally speaking, we could consolidate their results for better sybil

detection. For instance, we manually checked the first 100 unver-

ified users (ranked high to low with regard to their trust scores)

that are considered sybils by Botometer with CAP equal to 90%. We

found that 49 of them are actually not sybils and can be trustworthy.

4.4.6 Practical interpretation of trust scores. Ideally speaking, we

would like SocialDistance trust scores to coincide with real identi-

ties to some extent. For this evaluation, wemanually checked the oc-

cupations of the top-1000 unverified users based on the exponential-

decay link metric and the Difference-in-Verified-Users trust metric.

There are about 100 of them whose occupations are difficult to tell.

Most of the rest are in the categories of organizations, celebrities,

politicians, and journalists. According to their tweets and number

of followers, we can safely say that these users tend to be influential

in their respective domains. So they could easily become verified

users per Twitter’s criteria as long as they apply. This result further

confirms the value of SocialDistance.

5 RELATEDWORK

This section outlines the prior work most related to SocialDistance.

There has been significant research on modeling, measuring, and

analyzing the interactions in OSM. For instance, the topological

structure of the following graph on Twitter is analyzed in [21] and

shown to exhibit the structural characteristics of both an infor-

mation network and a social network. In addition, the interaction

graph on Facebook is studied in [27] and demonstrated to carry

a much more accurate representation of meaningful peer connec-

tivity on social networks. In [16], the authors investigated latent

user interactions such as profile browsing on Renren, which used

to be the largest online social network in China. These studies

[16, 21, 27] focus on static or seldom-changing interactions typi-

cally associated with befriending requests. In contrast, Viswanath

et al. [25] and Yang et al. [30] both presented an in-depth look at the

changing dynamics of user interactions on Facebook. To the best

of our knowledge, we are the first to build and study a weighted di-

rected interaction graph built upon dynamic interactions (retweets,

replies, and mentions) initiated by verified users towards unverified

users on Twitter. Our graph analysis results may provide important

insights to other relevant OSM research.

People have also explored interaction data on OSM for vari-

ous applications. For example, the work in [28] infers hidden tie

strength from online interactions, and the predictive model in [17]

explores online interactions to identify strong ties. Other work

[6, 10, 22] tries to measure online influence based on interactions.

In addition, Zhang et al. [35] built an interaction graph on mutual

interactions on Twitter and explored it to achieve sybil-resilient

influence measurement. They also applied the similar interaction

graph to social botnet detection [37], hidden location inference

[34], and hidden age inference [33] on Twitter. Our work differs

significantly from these elegant studies in both how the interaction

graph is built and the research objective.

Also relevant is the extensive effort on sybil detection or defenses

in various distributed systems, e.g., [9, 12, 24, 26, 31, 32]. There are

two common assumptions. First, each node can be mapped into

a vertex in an undirected social network graph where every edge

corresponds to a human-established trust relation which is quite

easy to fake. Second, the honest region is fast mixing and separate

from the sybil region. These two assumptions have been challenged

by many recent studies such as [8, 14, 20, 23, 29, 36]. In addition,

these schemes [9, 12, 24, 26, 31, 32] cannot be directly applied to

directed graphs. By comparison, SocialDistance explores a weighted

directed graph built upon online interaction data only without

any strong assumption, and its high efficacy in sybil detection is

corroborated by Botometer [13], a practical online tool.

6 CONCLUSION

The qualify of OSM services and applications rely on the availabil-

ity of many trustworthy OSM users. In this paper, we proposed

SocialDistance, a novel scheme to identify unverified users on OSM

that can be trusted as verified users. Thorough evaluations on large

Twitter datasets confirmed that SocialDistance can produce a large

list of unverified yet trustworthy users to well complement very

limited verified users for rendering high-quality OSM services and

applications. We also showed the high efficacy of SocialDistance in

sybil detection.
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