
Your Song Your Way: Rhythm-Based Two-Factor
Authentication for Multi-Touch Mobile Devices

Yimin Chen∗, Jingchao Sun∗, Rui Zhang†, and Yanchao Zhang∗
∗School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University

†Department of Electrical Engineering, University of Hawaii
{ymchen, jcsun, yczhang}@asu.edu, ruizhang@hawaii.edu

Abstract—Multi-touch mobile devices have penetrated into
everyday life to support personal and business communications.
Secure and usable authentication techniques are indispensable
for preventing illegitimate access to mobile devices. This paper
presents RhyAuth, a novel two-factor rhythm-based authentica-
tion scheme for multi-touch mobile devices. RhyAuth requires
a user to perform a sequence of rhythmic taps/slides on a
device screen to unlock the device. The user is authenticated and
admitted only when the features extracted from her rhythmic
taps/slides match those stored on the device. RhyAuth is a two-
factor authentication scheme that depends on a user-chosen
rhythm and also the behavioral metrics for inputting the rhythm.
Through a 32-user experiment on Android devices, we show that
RhyAuth is highly secure against various attacks and also very
usable for both sighted and visually impaired people.

I. INTRODUCTION

Mobile devices such as smartphones, tablets, and eReaders
have penetrated into everyday life. According to a recent Cisco
report [1], the number of mobile-connected devices would
exceed the world population in 2014 and hit 10 billion in
2018. More and more mobile devices have a multi-touch
screen that can simultaneously detect more than one point of
contact. People are using mobile devices in every aspect of
life, including voice/video communications, Internet browsing,
web transactions, online banking, business operations, route
planning and navigation, personal health and wellbeing, etc.

There is urgent need for mobile authentication techniques
to prevent illegitimate access to mobile devices. On the one
hand, people are storing increasingly more private information
on multi-touch mobile devices. On the other hand, many users
do not or often forget to log out of personal accounts such as
web accounts, email accounts, and various on-device applica-
tion accounts. Therefore, illegitimate access to a mobile device
may seriously jeopardize the legitimate user’s information
and communication security. Mobile authentication techniques
allow the legitimate user to unlock a mobile device and also
deny illegitimate access. This is commonly accomplished by
letting a user input a password only the legitimate user knows.

Sound mobile authentication techniques for multi-touch
mobile devices should be both secure and usable. The security
requirement demands strong resilience to notably three attacks.
The first is the random-guessing attack in which an attacker
tries to guess or emulate the password the legitimate user
uses to unlock a mobile device; the second is the shoulder-
surfing attack in which malicious bystanders try to observe the
password of the legitimate user [2]; and the last is the smudge
attack in which an attacker tries to infer the password based on

the finger smudges the legitimate user left on the screen [3]. In
contrast, the usability requirement has two implications. First,
the authentication technique should be very easy to use by
the legitimate user. Second, it should be highly accessible to
visually impaired people with visual impairment. The second
aspect is often neglected in the literature, despite that there are
285 million people worldwhile [4] and 21.5 million US adults
aged 18 and older with visual impairment [5].

Existing authentication techniques for multi-touch mobile
devices can be broadly classified into three categories.

Something-You-Know. This category of techniques require
a user to input the correct password on the device screen to
be admitted. The legitimate user presets the correct password,
which can be an alphanumeric password or a gesture/picture
password used in Android, iOS, and Windows 8. This category
of techniques have some well-known drawbacks. Firstly, such
techniques are quite vulnerable to shoulder-surfing attacks in
public places. Secondly, these techniques require users to input
at specific positions on a touch screen. This requirement may
be a great frustration for people with fat fingers, and it may
also open the door to smudge attacks. Finally, these techniques
are not accessible to people with visual impairment.

Something-You-Have. This category of techniques require
auxiliary hardware device only the legitimate user should
possess. Examples include tMagkey/Mickey [6] and signet
rings [7]. Although resilient to shoulder-surfing attacks, these
techniques require additional hardware components to be
specifically built. Also, such techniques authenticate a hard-
ware component rather than a user to a mobile device.

Someone-You-Are. This category of techniques require phys-
iological or behavioral biometrics of mobile users. Physio-
logical biometrics relates to a person’s physical features such
as fingerprints, which are susceptible to well-known spoofing
mechanisms. For example, the fingerprint-based Touch ID
security system has been broken shortly after iPhone 5S was
launched [8]. In contrast, behavioral biometrics relates to a
user’s behavioral patterns such as location traces [9], [10], gaits
[11], [12], and touch dynamics [13]–[15]. These techniques
are best suitable as secondary authentication mechanisms sup-
plementing the primary password-based authentication mecha-
nism, as they may be vulnerable to the adversary (e.g., a close
friend) familiar with the target’s behavioral patterns.

This paper explores a new direction to authenticate a
mobile user based on her rhythmic taps/slides on the device
screen. The strong promise of this direction is firmly rooted
in some observations in daily life. First, many people tend to

1

tap/slide on something nearby with a rhythm while singing a
melody loudly or silently. Second, a user can easily repeat her
rhythmic taps/slides over time for a familiar melody. Finally,
different people are very likely to have different personal
interpretations about the same melody and thus tap/slide in
different ways; a user can even compose her own melody
in mind instead of picking up a known melody. Therefore,
rhythmic taps/slides are very difficult to emulate by an attacker
with or without knowledge of the legitimate user’s melody.

Our contributions in this paper are threefold.

• We propose RhyAuth, a novel two-factor rhythm-
based authentication scheme for multi-touch mobile
devices. RhyAuth requires a user to perform a se-
quence of rhythmic taps/slides on the device screen.
The user is authenticated and admitted only when the
features extracted from her rhythmic taps/slides match
those stored on the device. RhyAuth is a two-factor
authentication scheme because it requires both the
correct rhythm (something-you-know) and the right
way of performing the rhythm (someone-you-are).

• We theoretically analyze the security of RhyAuth.
We show that RhyAuth is much more secure than
the commonly used 4-digit PIN method, complex
alphanumeric passwords, and Android Pattern Lock.

• We report comprehensive experimental evaluations of
RhyAuth on Google Nexus 7 tablets, involving 22
legitimate users and 10 attackers. Our results show
that RhyAuth is highly secure with false-positive and
false-negative rates up to 0.7% and 4.2%, respectively.
RhyAuth is also very efficient and can authenticate a
user in less than 500 ms.

RhyAuth has many desirable features over existing tech-
niques. Firstly, RhyAuth is highly resilient to brute-forth guess-
ing attacks due to its two-factor nature. Secondly, RhyAuth is
robust to shoulder-surfing attacks because it is very difficult
for the attacker to figure out the exact rhythm by pure
observations. Thirdly, RhyAuth is immune to smudge attacks,
as the user can tap/slide on anywhere on the touch screen such
that finger smudges can be more randomly distributed. Lastly,
RhyAuth does not require the user to look at the screen while
performing rhythmic taps/slides. The last feature indicates the
high usability of RhyAuth to visually impaired people. It also
means that a discrete user can conduct authentication with
her device put under some cover (e.g., a jacket or table) to
eliminate shoulder-surfing attacks.

II. BASICS OF MULTI-TOUCH SCREENS

We introduce some background on multi-touch screens
to help illustrate the RhyAuth design. Since we implement
RhyAuth as an application on Google Nexus 7 tablets powered
by Android 4.2, our illustrations here focus on Android and
are applicable to iOS with small modifications. A multi-touch
screen can recognize two or more simultaneous contacts with
the screen. When the screen is touched, a touch event is
generated. The individual fingers or other objects, e.g., a pen,
that generate such events are referred to as pointers. Hereafter
we assume that touch events are generated by fingers for
simplicity.

Data
Processing

Feature
Extraction

Metric
Calculation

Classifier
Training

Verification
Accept
/Deny

Touch
Event

Features Metrics

Model

Enrollment Phase

Verification Phase

Fig. 1: A system overview of RhyAuth, in which the dash
and solid arrows represent the data flows in enrollment and
verification phases, respectively.

RhyAuth collects the information about a touch event as
a vector info = [t, fID, x, y, P, S], where t is the time of the
event, fID is the ID of the finger, x and y are the x and y
coordinates of the touch point on the screen, respectively, P
is the pressure generated by the finger, and S is the size of
the touch point on the screen. We refer to (x, y) as a sampled
point, or more simply, a point. Both P and S are normalized
values in the range of [0, 1]. One thing worth mentioning is
that a finger may generate a series of touch events even though
a user believes that she does not move her finger. The reason is
that a touch event will be generated whenever there is a slight
change in any of x, y, P , and S, which may be imperceptible.

III. SYSTEM OVERVIEW OF RHYAUTH

In this section, we give an overview of the RhyAuth design.
RhyAuth consists of two subsystems, TapAuth and SlideAuth,
in which a rhythm is input via finger taps and slides on the
screen, respectively. A user needs to choose one to proceed
when RhyAuth is invoked. Whichever subsystem is chosen,
the whole authentication process comprises two phases: an
enrollment phase and a verification phase.

A. Enrollment Phase

During this phase, a user first needs to choose a melody,
of which the rhythm becomes her password. A good melody
should be sufficiently familiar to the user so that she has
little difficulty in repeating her password. It should also be
sufficiently random and thus cannot be easily figured out by
an attacker. We will come back to this issue when analyzing
the security of RhyAuth in Section V.

Fig. 2 shows an excerpt of “Amazing Grace,” which we
use to introduce some relevant musical terms. A note is a sign
used in musical notation to represent the relative duration and
pitch of a sound. A pitch is an auditory sensation in which a
listener assigns musical tones to relative positions on a musical
scale. Usually, we denote a pitch by one of the seven letters
of the Latin alphabet, i.e., A, B, C, D, E, F, and G. So a note
is a pitch with a defined duration. For example, in Fig. 2, the
first note in the first measure is a quarter note with a duration
of 1

4 and a pitch of C4, while the first note in the second
measure is a half note with a duration of 1

2 and a pitch of F4.
In this paper, we are interested in the number of “extended
notes” of a melody. An extended note refers to one note or
multiple continuous notes of the same pitch connected by ties.
A tie is a curved line connecting the heads of two notes of the
same pitch and name, indicating that they are to be played as a
single note with a duration equal to the sum of the individual
durations. In practice, an extended note probably corresponds

2

early American melody (1835)

arr. Gwyn Arch

Words by John Newton (1790)

q = c.84)

Amazing Grace - brought to you by www.malechoirmusic.co.uk

Tenor 1

Tenor 2

Baritone

Bass

Piano

 Gospel style

2. 'Twas
1. A

mf

maz
grace

- ing

that
-

 3

2. 'Twas

1. A

mf

maz

grace

- ing

that

-

 3

2. 'Twas

1. A

mf

maz

grace

- ing

that

-

2. 'Twas

1. A

mf

maz

grace

- ing

that

-

mf

3 3 3 3

6

grace,

taught

how

my

sweet

heart

the

to

sound,

fear,

that

and

saved

grace

a

my fears

wretch

like

re

 3

-

grace,

taught

how

my

sweet

heart

the

to

sound,

fear,

that

and

saved

grace

a

my fears

wretch

like

re

3

-

grace,

taught

how

my

sweet

heart

the

to

sound,

fear,

that

and

saved

grace

a

my fears

wretch

like

re

3

-

grace,

taught

how

my

sweet

heart

the

to

sound,

fear,

that

and

saved

grace

a

my fears

wretch

like

re

3

-

3 3 3

 1551 Gwyn Arch GROVE MUSIC

3

3 3

Fig. 2: An excerpt of “Amazing Grace” [16].

to one tap or sub-slide of RhyAuth, which will be explained
shortly. For simplicity, we abbreviate “extened note” to “ ex-
note.” Obviously, the number of ex-notes cannot be too small;
otherwise, an attacker may figure out the rhythm easily. We
assume that the melody has at least six ex-notes, and the user
is asked about the number of ex-notes at the beginning of the
enrollment phase.

Assume that the user chooses TapAuth. She continues to
decide which finger(s) to tap on the screen. TapAuth gives the
user full freedom to decide how she taps. A green user can
choose and stick to one finger, while an advanced user may
use multiple fingers and also switch fingers during her input.
The user has to remember how many fingers she uses for each
tap and inform RhyAuth about it. For example, if a melody
has eight ex-notes, an advanced user may input the first four
ex-notes with her middle finger, and the other ex-notes with
her index and ring fingers together. Afterwards, the user needs
to input the rhythm in the exact way. To avoid confusion, we
refer to the tapping of one finger as a touch. A user may input
an ex-note with multiple fingers, in which we refer to all the
touches of an ex-note as a tap. Therefore, a tap can have one
touch or multiple touches, and the number of taps is the same
as the number of ex-notes.

Then a user inputs the rhythm by tapping on the screen
according to her interpretation of her chosen melody. She
needs to input the rhythm multiple times until a sufficiently
good classifier can be obtained. As illustrated in Fig. 1, the
touch-event data are first sent into a Data Processing module,
which prepares the data for a Feature Extraction module. Then
multiple distinguishable features are extracted and fed into a
Metric Calculation module. Subsequently, a metric vector is
generated and sent to a Classifier Training module. Finally,
a binary classifier is generated for the verification phase to
determine whether a new input is legitimate or not.

SlideAuth follows the same system architecture and only
differs in some implementation details. Firstly, the rhythm in
SlideAuth is input via continuous finger sliding on the screen.
Therefore, the user does not switch the finger(s) while she is
inputting the rhythm. Secondly, we need to divide a continuous
slide into multiple sub-slides, each corresponding to an ex-
note. The end of each ex-note is marked by an abrupt change
of the sliding direction. Finally, some features of SlideAuth
are different from those of TapAuth.

B. Verification Phase

In this phase, the user first chooses between TapAuth and
SlideAuth, and then the user inputs her rhythm by tapping or
sliding. The input goes through the same Data Processing, Fea-
ture Extraction, and Metric Calculation modules in sequence.
The resulting metric vector is finally fed into the Verification
module, where the established classifier is applied to determine
whether the user is legitimate or not.

IV. ILLUSTRATION OF RHYAUTH MODULES

In this section, we detail each module of RhyAuth.

A. Data Processing

This module checks the consistency of the user input and
prepares data for feature extraction. The steps below apply to
each finger involved in either TapAuth or SlideAuth.

1) Data Processing for TapAuth: Firstly, as mentioned in
Section II, a touch of a finger on the screen generates multiple
info vectors of format [t, fID, x, y, P, S]. These info vectors
have the same fID and are slightly different in other fields.
Let x̄, ȳ, P̄ , and S̄ denote the average x, y, P , and S values,
respectively. To reduce the data redundancy, we merge these
info vectors into a single one with the same fID, x̄, ȳ, P̄ , S̄,
and all the t values remain intact.

Secondly, the number of taps and the number of fingers
in each tap are extracted. If these numbers are not consistent
with the user’s setting in the enrollment phase, the user input
is immediately considered invalid and not further processed.

2) Data Processing for SlideAuth: Firstly, we need to
adjust the orientation of the slide to ensure that the device
orientation and the starting direction of the slide have little
effect on the authentication result. The orientation adjustment
allows the user to input the rhythm more freely. We denote the
coordinates of the slide as {(xi, yi)}li=1, where l denotes the
number of points of the slide. The slide orientation is adjusted
such that the starting direction is aligned with the x axis, which
is defined with the screen in the portrait mode. This is achieved
in three steps. We first move the whole slide to make the
coordinate of the first point (0, 0) and change the coordinates
to be {x′i, y′i}

l
i=1, where x′i = xi − x1, y

′
i = yi − y1. Then we

calculate the angles of (η1−1) vectors which start from (0, 0)
and end at {(x′i, y′i)}

η1
i=2, respectively, denoted by {θi}η1i=2. The

starting direction of the slide is denoted by θs and defined as
the average of {θi}η1i=2. Finally, the coordinates of a slide are
transformed to {x′′i , y′′i }

l
i=1, where x′′i = x′i cos θs + y′i sin θs,

y′′i = −x′i sin θs+y′i cos θs. Here η1 is an empirical parameter,
and it should be chosen such that the resulting θs is a good
estimation of the direction of the first sub-slide. Note that η1

cannot be too small, e.g., two or three, to avoid instability. We
use η1 = 5 in our implementation.

Secondly, we smooth the trajectory of the slide because
the collected data usually exhibit a jagged trajectory. We use
a 10-point simple moving average (SMA) [17] filter for this
purpose. After filtering, the coordinates become {xi, yi}

l
i=1.

Thirdly, we divide the whole smoothed slide into multiple
sub-slides, each corresponding to an ex-note. This is equivalent
to locating the last point of each sub-slide. Consider Fig. 3a as
an example, where the slide consists of two sub-slides. A sharp
change in the sliding direction indicates the end of the current
ex-note or the beginning of the next ex-note. Given {xi, yi}

l
i=1,

we first calculate the angles of the vectors connecting two
consecutive points, i.e., ψi = arccos(xi+1−xi√

(xi+1−xi)2+(yi+1−yi)2
),

i = 1, . . . , l − 1. If a sequence of vectors are associated with
the same sub-slide, the corresponding ψs should be similar.
Fig. 3b is the corresponding plot of ψ. We can see that ψ
switches from one stable value to another through a sharp

3

3 0 0 4 0 0 5 0 0 6 0 07 2 0
6 8 0
6 4 0
6 0 0
5 6 0

y

x
(a) Trajectory of a slide.

0 2 0 4 0 6 0 8 0
0

1

2

3

ψ
 (ra

d)

i(b) ψ

0 2 0 4 0 6 0 8 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

∆ψ
 (ra

d)

i

(i 1 , ∆ψm a x)

(c) ∆ψ

0 2 0 4 0 6 0 8 0
0 . 0 0
0 . 0 4
0 . 0 8
0 . 1 2
0 . 1 6

∆t
(s)

i
(d) ∆t

Fig. 3: An example on dividing a slide into two sub-slides.

transition phase, indicating a noticeable change of the sliding
direction. To locate the last point of the first sub-slide, we
further calculate ∆ψi = ψi+1−ψi, i = 1, . . . , l− 2. Fig. 3c is
the plot of ∆ψ in our example. Denote the index of the point
with the largest ∆ψ by i1. Then {i1− η2, . . . , i1, . . . , i1 +η2}
are indices of the points and include the last point of the first
sub-slide. Here η2 is an empirical parameter, and η2 = 10
is adopted in our implementation. We proceed to calculate the
time difference ∆t of two consecutive points as ∆ti = ti+1−ti
as shown in Fig. 3d. The largest ∆t corresponds to the last
point. The above process can be easily extended to a slide with
two or more sub-slides, in which case we just need to look for
the last points of multiple sub-slides.

Finally, the number of fingers and the number of sub-slides
are compared with the user’s setting in the enrollment phase.
If these numbers are not consistent, the sliding input is deemed
invalid and not further processed.

Some parameters need to be adjusted to properly divide
a slide in practice. First, we need to decide when a change
of ψ (or sliding direction) occurs. A straightforward solution
is that when ∆ψ is larger than some threshold ϕ, a change
of ψ occurs. In general, the suitable ϕ for different users is
different, and we can train it during the enrollment phase. More
specifically, we let ϕ = π

2 at the beginning of the enrollment
phase, and the number of sub-slides set by the user is n. After
slide division as described above, the number of sub-slides,
denoted by n′, is the number of changes of ψ plus one. If
n = n′, the training of ϕ ends, and the current ϕ is used
during the verification phase. If n > n′, ϕ is decreased by π

32
and increased by π

32 otherwise until n = n′.

B. Feature Extraction

This module takes the processed data from the Data
Processing module as input and extracts the features used in
RhyAuth. Depending on which of TapAuth and SlideAuth is
chosen, the corresponding features are different. Most features
are extracted from the data of each individual fID, while others
are extracted by combining the data of multiple fIDs. The
following descriptions apply to each fID involved in either
TapAuth or SlideAuth.

1) Features of TapAuth: Below, n denotes the number
of ex-notes (or equivalently taps), each corresponding to an
integrated info vector formed in Data Processing.

• Intra-tap and inter-tap intervals: We denote the intra-
tap interval by {∆t1,i}ni=1 and the inter-tap interval
by {∆t2,i}n−1

i=1 . Let tf,i and tl,i denote the time of
the first and last touch events associated with the ith
tap, respectively. Then we have ∆t1,i = tl,i− tf,i and
∆t2,i = tf,i+1 − tl,i.

• Maximum and minimum pressure: These two features
are denoted by Pmax and Pmin, respectively. Then
Pmax = max{P i}ni=1 and Pmin = min{P i}ni=1.

• Maximum and minimum size: We denote maximum
and minimum size by Smax and Smin, respectively. We
have Smax = max{Si}ni=1 and Smin = min{Si}ni=1.

• Maximum and minimum distance: We denote them
by Dmax and Dmin, respectively. Suppose that the ith
tap is associated with m fIDs and thus m coordinates.
The distance of the ith tap is defined as the average
Euclidean distance of each pair of coordinates, and it
equals zero if m = 1. Then Dmax and Dmin are the
maximum and minimum of the n tap-distance values.

• Maximum and minimum areas: We denote them by
Amax and Amin, respectively. Suppose that the ith tap
is associated with m fIDs and thus m coordinates. If
m ≥ 3, the area of the ith tap is defined as the area
of the convex hull determined by the m coordinates;
otherwise, it is defined as zero. Amax and Amin are
the maximum and minimum of the n tap-area values.

2) Features of SlideAuth: Below, n denotes the number
of ex-notes (or equivalently the number of sub-slides) and N
denotes the number of touch events.

• Intra-slide and inter-slide intervals: We denote them
by {∆t3,i}ni=1 and {∆t4,i}n−1

i=1 , which are defined
similarly to those of TapAuth.

• Maximum and minimum pressure: They are defined
as Pmax = max{Pi}Ni=1 and Pmin = min{Pi}Ni=1.

• Maximum and minimum sizes: They are define as
Smax = max{Si}Ni=1 and Smin = min{Si}Ni=1.

• Maximum and minimum slide length: We denote them
by Lmax and Lmin, respectively. For each sub-slide,
we define its slide length as the distance between
the coordinates of the first and last associated touch
events. Then Lmax and Lmin are the maximum and
minimum of the n slide lengths, respectively.

• Slide direction: For the ith (i ∈ [1, N − 1]) point of
the slide, we denote its slide direction by the angle,
θi, of the vector from the ith point to the (i + 1)th
point. Therefore, {θi}N−1

i=1 can be calculated as

θi = arccos(
xi+1 − xi√

(xi+1 − xi)2 + (yi+1 − yi)2
).

• Curvature: It is denoted by {κi}N−1
i=2 and computed as

κi =
4Ψy

i∆x
i − 4Ψx

i ∆y
i

((∆x
i)2 + (∆y

i)2)3/2
,

4

where ∆x
i = (xi−1 +xi+1)/2,∆y

i = (yi−1 +yi+1)/2,
Ψx
i = (xi+1 − 2xi + xi−1), and Ψy

i = (yi+1 − 2yi +
yi−1).

• Velocities along the x axis and y axis: We denote them
by {υx}N−1

i=1 and {υy}N−1
i=1 , respectively and compute

them as

υx,i =
xi+1 − xi
ti+1 − ti

and υy,i =
yi+1 − yi
ti+1 − ti

.

• Accelerations along the x axis and y axis: We de-
note them by {ax,i}N−2

i=1 and {ay,i}N−2
i=1 , respectively,

which are computed as

ax,i =
υx,i+1 − υx,i
ti+1 − ti

and ay,i =
υy,i+1 − υy,i
ti+1 − ti

.

• Distance: We denote it by D. Suppose that the slide is
associated with m fIDs. If m ≥ 2, D is defined as the
average pairwise Euclidean distance among the first
points of all the trajectories. If m = 1, we let D = 0.

• Area: We denote it by A. Suppose that the slide is
associated with m fIDs. If m ≥ 3, A is defined as the
area of the convex hull determined by the first points
of their trajectories; otherwise, we let A = 0.

C. Metric Calculation

This module is to consolidate the output from the
Feature Extraction module into a metric vector. For TapAuth,
the extracted features include {∆t1,i}ni=1, {∆t2,i}

n−1
i=1 ,

Pmax, Pmin, Smax, Smin, Dmax, Dmin, Amax, and Amin;
for SlideAuth, the extracted features include {∆t3,i}ni=1,
{∆t4,i}n−1

i=1 , Pmax, Pmin, Smax, Smin, Lmax, Lmin, {θi}N−1
i=1 ,

{κi}N−1
i=2 , {υx,i}N−1

i=1 , {υy,i}N−1
i=1 , {ax,i}N−2

i=1 , {ay,i}N−2
i=1 ,

D, and A. Features like {∆t1,i}ni=1 are in the vector form,
and we would like to use a real number to denote each such
feature for integration with non-vector features. This can be
done by computing the distance between any vector feature
and a reference vector. The comparison result (or the vector
distance) is the real number we seek.

The vector features can also be divided into two categories,
which require different comparison methods. Specifically, each
feature vector of TapAuth is of length n, while that of
SlideAuth is of length n or N . Both TapAuth and SlideAuth
require two matching inputs to have the same number of ex-
notes. This consistency check is done in the Data Processing
module. Therefore, we can use statistical models to compare
such feature vectors of the same length. In contrast, different
inputs in SlideAuth most likely generate different numbers of
touch events, leading to feature vectors of different lengths. We
adopt Dynamic Time Warping (DTW) [18] to compare such
feature vectors of variable lengths.

1) Comparison Based on Statistical Model: We take
{∆t1,i}ni=1 as an example to explain how to calculate the
distance based on the statistical model. Suppose that there are
Q samples from one user with the same n. We treat each
element of {∆t1,i}ni=1 as a Gaussian random variable. Given Q
samples of {∆t1,i}ni=1, we can calculate the mean and variance
of each element. That is, we will have {(µ1, σ

2
1), . . . , (µn, σ

2
n)}

as the statistical model for {∆t1,i}ni=1. Given a new sample
of {∆t1,i}ni=1, it is converted into d∆t1 as

d∆t1 =

(
n∑
i=1

(∆t1,i − µi)2

σ2
i

) 1
2

. (1)

The intuition here is that a new sample of the same user
most probably well follows the statistical model built from her
historical data well, leading to a small d∆t1 . However, a sample
from a different user is very likely to deviate much from
this statistical model, resulting in a large d∆t1 . In the same
way, {∆t2,i}n−1

i=1 , {∆t3,i}ni=1, and {∆t4,i}n−1
i=1 are converted

as d∆t2 , d∆t3 , and d∆t4 , respectively.

2) Comparison Based on DTW: We use {θi}N−1
i=1 to explain

how to calculate the distance based on DTW. Suppose that
there are Q samples from one user. Assuming that the Q
samples are quite similar, we randomly choose one as a
reference and denote it by Θ∗ = {θ∗i }N

∗

i=1. DTW constructs
a (N − 1) × N∗ matrix M with its (i, j) element M(i,
j) = |θi − θ∗j |, i = 1, . . . , N − 1, j = 1, . . . , N∗. Then
DTW looks for a non-decreasing path starting from M(1,
1) to M(N − 1, N∗) along which the sum of all elements
would be the minimum of all possible paths. This minimum
sum is used as the transformed value of {θi}N−1

i=1 and denoted
by dθ. Similarly, {κi}N−1

i=2 , {υx,i}N−1
i=1 , {υy,i}N−1

i=1 , {ax,i}N−2
i=1 ,

and {ay,i}N−2
i=1 are transformed into dκ, dυx , dυy , dax , and day ,

respectively.

D. Classifier Training

This module is to train a binary classifier from the metric
vectors of the legitimate user and other users.

We use SVM as the classification algorithm and LibSVM
[19] in our implementation, which has been widely used
and proved to achieve satisfactory performance under various
circumstances. The classifier we need is a binary classifier,
which classifies a sample (or metric vector) into the positive
class or negative class. We use fi to denote the class label
of the ith sample. If fi = 1, the sample is classified into
the positive class, meaning that the sample is legitimate. If
fi = −1, the sample is classified into the negative class,
indicating that the sample is illegitimate. In order to train
the classifier, we need a training dataset consisting of metric
vectors of both the legitimate user and other users. For this
purpose, a library of metric vectors of other users can be
preloaded with each RhyAuth; it can also be downloaded in
real time from a trusted server. Now suppose that we have ns
metric vectors or samples in total. Each of them is expanded
into a sample-label pair (ui, fi), where ui denotes the ith
sample. fi = 1 if ui is a metric vector of the legitimate user
and fi = −1 otherwise. Given {(ui, fi)}ns

i=1, SVM solves the
following optimization problem:

min
w,b,ξ

1

2
wTw + C

ns∑
i=1

ξi

subject to fi ·
(
wTφ(ui) + b

)
≥ 1− ξi,

ξi ≥ 0.

(2)

Here uis are mapped into a higher dimensional space by the
function φ , and K(ui, uj) ≡ φ(ui)

Tφ(uj) is called the kernel

5

function. SVM finds a linear separating hyperplane wT v +
b = 0 with the maximal margin in this higher dimensional
space. Here v is a vector in the higher dimensional space, and
C > 0 is the penalty parameter of the error term ξi. In our
implementation, we choose the radial basis function (RBF) as
the kernel function which has been proved to be a reasonable
first choice. More specifically, the kernel function we choose
is K(ui, uj) = exp(−γ‖ui−uj‖2), where γ > 0 is the kernel
parameter. The result of classifier training is a SVM model
for the legitimate user, which predicts the class label of a new
metric vector or sample.

E. Verification

A candidate user input goes through the same Data Process-
ing, Feature Extraction, and Metric Calculation modules until
a metric vector u is generated in either TapAuth or SlideAuth.
The Verification module first verifies whether the user input
has the same numbers of ex-notes and fingers as those of
the legitimate user. If not, the user fails the authentication,
and the verification stops. Otherwise, the Verification module
tests the candidate metric vector using the SVM model of the
legitimate user. The SVM model consists of the optimal w and
b, which are obtained by solving the optimization problem
in Eq. 2. Given a candidate vector u, the decision function
is sgn(wφ(u) + b). If the result is 1, the user is considered
legitimate and illegitimate otherwise.

V. SECURITY ANALYSIS

In this section, we analyze the security of RhyAuth. Unlike
conventional authentication schemes involving alphanumerical
or patter passwords, we cannot answer the question: “What is
the size of the password space?” The reason is that RhyAuth
combines a user-chosen rhythm and the user’s behavioral
biometrics together. In [20], Sherman et al. studied the se-
curity and memorability of user-generated free-form gestures
for authentication. The metric they used is to quantify the
“surprisingness” of a given gesture, rather than the security of
their authentication scheme. Similarly, we focus on the security
of a rhythm, which can be regarded as a lower bound of the
overall security assessment of RhyAuth.

First, we want to answer the question: “Given a melody
of n ex-notes, how many rhythms can there be?” Here we
assume that a melody chosen by a user follows the music
convention. Specifically, each ex-note consists of multiple
notes; the duration of a note is one of the 12 note values,
from 8 (i.e., 23) corresponding to a maxima to 1

256 (i.e.,
2−8) corresponding to a two-hundred-fifty-sixth note; and the
duration of a note with zero dot can be further augmented by
adding one dot, two dots, and three dots. Therefore, a note
may have 12 × 4 = 48 possible duration values. Although
there is no limit on how many notes an ex-note can consist of,
we assume that an ex-note lasts no more than two measures,
each comprising no more than 24 notes for usability concerns.
Therefore, an ex-note can consist of up to 48 notes. It is worth
noting that the number of possible duration values of an ex-
note is not 48×48 = 2304, as some of the 2304 values are the
same. For example, the duration of two notes with a note value
of 1

2 is the same as that of a single note with a note value of
1. So we further refine the 2304 values to eliminate redundant
ones. Finally, we obtain 1002 unique possible duration values

of an ex-note. Then for a melody of n ex-notes, the number
of possible rhythms is simply 1002n ≈ 210n. We should point
out that this is an underestimation due to the assumption
on how many notes an ex-note consists of. Here we give
some numerical examples to briefly compare RhyAuth with
the following schemes: (1) 4-digit PIN simple password of
iOS, 104 ≈ 213; (2) n-character complex password of iOS,
77n ≈ 26.27n; (3) Android Pattern Lock, around 219 [21].
RhyAuth is obviously much more secure than all of them.

Secondly, we would like to answer the question: “Given
an input rhythm, can the system suggest whether it is a good
choice or not?” A firm answer to this question can help a
user to choose a rhythm of high security strength. Inspired by
[20], we use the surprisingness of a rhythm as a measure of
its security strength. Specifically, we denote a rhythm of n ex-
notes by {Ti}ni=1, where Ti is the duration of the ith ex-note
and calculated as

Ti =

{
∆t1,i + ∆t2,i if i < n, (3a)
∆t1,i if i = n. (3b)

We assume {Ti}ni=1 follows a second-order autoregressive
model as Ti = β0 + β1Ti−1 + β2Ti−2 + εi, where β0, β1, and
β2 are parameters to optimize by least squares fitting, and εi is
the error term of Ti. Suppose that the least squares estimates
are β̂0, β̂1, and β̂2 after parameter fitting. We then use h(T)
to denote the surprisingness of {Ti}ni=1, calculated as h(T) =(∑n

i=1(Ti − T̂i)2
) 1

2

, where T̂i = β̂0 + β̂1T̂i−1 + β̂2T̂i−2.

VI. PERFORMANCE EVALUATION

In this section, we report the performance evaluation of
RhyAuth, which we implemented as an application on Google
Nexus 7 tablets running Android 4.2. In the rest of this
section, we describe the attacker models, experimental setup,
performance metrics, and experimental results in sequence.

A. Attacker Models

In this paper, we consider the following models with
increasingly capable attackers.

Type-I. The attacker knows neither the rhythm a user chooses
nor how a user inputs the rhythm on the screen. Then the
attacker’s best effort is a brute-force attack.

Type-II. The attacker can observe how a user taps or slides on
the screen multiple times, but he cannot figure out the exact
rhythm the user chooses. The attacker can at best obtain a
general idea of the rhythm through observations. For example,
he may notice that the user taps eight times on the screen.

Type-III. The attacker knows the exact rhythm a user chooses
and can also observe how the user taps or slides on the
screen. Under this model, the attacker can input on the screen
according to his own interpretation of the rhythm and his
observations of the user.

Type-IV. An attacker knows exactly how a user taps or slides
on the screen and the rhythm the user chooses. He, however,
still needs to input the rhythm according to his own perception.

6

B. Experimental Setup

We recruited 32 volunteers for the experiments aged 18
to 35. Most of them are/were BS/MS students in Computer
Science, Electrical Engineering, and Computer Engineering.
These volunteers were divided into two groups. The first group
consisted of 22 volunteers to emulate legitimate users, and the
second comprised 10 volunteers to emulate various attackers.

Every user was asked to come up with one melody with at
least six ex-notes s/he can easily memorize and repeat. Also,
every user was asked to input her/his rhythm with one-finger
tapping, multi-finger tapping, one-finger sliding, and multi-
finger sliding. Then every user practiced less than five minutes
until s/he was confident to input them. Finally, every user input
her/his rhythm using each method for 25 to 45 times, and
we obtained 888 one-finger tapping samples, 870 multi-finger
tapping samples, 894 single-finger sliding samples, and 873
multi-finger sliding samples. In reality, a RhyAuth user only
needs to tap or slide a few times during the enrollment phase,
as shown later. In addition, all the users were asked not to look
at the screen to emulate people with visual impairment.

We also conducted experiments to evaluate the resilience
of RhyAuth to various attacks. First, we video-recorded the
input process of 14 users, and we also made the sound tracks
of their chosen rhythms. We divided the 10 attackers into two
groups of equal size. Each attacker in the first group randomly
chose three users, watched their one-finger-tapping videos,
and mimicked them. Then s/he randomly chose another three
users, watched their multi-finger-tapping videos, and mimicked
them. In total, there were six videos for each attacker in
the first group. Each attacker in the second group did the
similar experiments after watching one-finger and multi-finger
sliding videos only. In accordance with our attacker models,
we simulated the following five attack scenarios and collected
5× 6× 5× 2 = 300 attacker samples for each attack.

1. One-time observation. The attacker was shown the video
once. Then the attacker decided how to mimic the user,
practiced, and input the rhythm five times.

2. Four-time observations. For each video he watched in
Scenario 1, the attacker watched it for three more times and
made five more attempts.

3. Four-time observations and one-time listening. After
watching the video for four times, the attacker was allowed
to listen to the sound track of the corresponding rhythm. Then
the attacker combined his observations of the video and his
perception of the rhythm together to make five more attempts.

4. Arbitrary observations and listenings. The attacker was
allowed to watch each video and listen to the corresponding
sound track for arbitrary times. Again, he could control how
to watch the video and listen to the sound track. Finally, he
made five more attempts when he was ready.

5. Arbitrary observations and listenings as well as how
the user inputs her/his rhythm. The attacker could watch
each video and listen to the corresponding sound track for
arbitrary time in his own way. Furthermore, we asked each
user to write down how s/he input her/his rhythm, including
how many taps in her/his rhythm and whether the time between
two consecutive taps was short or long for one-finger tapping,

which fingers s/he used for each tap for multi-finger tapping,
how many sub-slides s/he drew and whether the time s/he
used to draw each sub-slide was short or long for one-finger
sliding, and which fingers s/he used to slide for multi-finger
sliding. Finally, the attacker combined all these information
and mimicked the user for five more times.

Attacks 1 and 2 correspond to Type-II attackers, Attacks 3
and 4 correspond to Type-III attackers, and Attack 5 corre-
sponds to Type-IV attackers.

C. Performance Metrics

We use receiver operating characteristic (ROC) and
Precision-Recall curves to evaluate RhyAuth.

ROC Curve. A ROC curve is used to illustrate the perfor-
mance of a binary classifier as its discrimination threshold
changes. We can plot a ROC curve by plotting true positive
rate (TPR) with respect to false positive rate (FPR) at various
threshold settings. Denote the number of true positives, false
positives, true negatives, and false negatives by #TP,#FP,
#TN, and #FN. Then TPR and FPR can be calculated as

TPR =
#TP

#TP + #FN
and FPR =

#FP

#FP + #TN
. (4)

Precision-Recall Curve. Precision represents the per-
centage of legitimate users out of all admitted users and can
be calculated as

Precision =
#TP

#TP + #FP
. (5)

Recall in authentication systems is the same as TPR, which
measures the proportion of legitimate users who are correctly
identified as such.

Authentication Time. We also measure the time RhyAuth
takes to determine whether a user is legitimate or not, which
should be as short as possible.

D. Experimental Results

1) Performance Without Attackers: This section demon-
strates the performance of RhyAuth without attackers. Recall
that each user was required to input her/his rhythm by four
methods. The evaluation for each method was done as follows.
For each user, we randomly chose ω samples from all the
legitimate users to form a training set of 22ω samples for
classifier training. The remaining samples were treated as the
testing set. We did this evaluation 30 times for each user, and
the results are the average results over the 30 times.

We first report the impact of the size of the training
set on classification accuracy which can further be divided
into training accuracy and testing accuracy. Here we define
accuracy as the ratio of correctly classified users among all
users in a dataset. We changed the size of the training set by
varying ω and showed the results in Fig. 4. We can see that
when ω varies from 3 to 9, the training and testing accuracy
of four input methods only vary slightly. A smaller ω means
a legitimate user can input her/his rhythm fewer times in the
enrollment phase. When ω is larger than 5, the training and
testing accuracy of four input methods stay stable. Therefore,
we chose ω = 5 for the later evaluations.

7

3 4 5 6 7 8 90 . 9 8 0
0 . 9 8 5
0 . 9 9 0
0 . 9 9 5
1 . 0 0 0

Ac
cu

rac
y

S i z e o f t h e T r a i n i n g S e t

 T r a i n g a c c u r a c y (o n e - f i n g e r)
 T e s t i n g a c c u r a c y (o n e - f i n g e r)
 T r a i n g a c c u r a c y (m u l t i - f i n g e r)
 T e s t a c c u r a c y (m u l t i - f i n g e r)

(a) Finger tapping.

3 4 5 6 7 8 90 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

Ac
cu

rac
y

S i z e o f t h e T r a i n i n g S e t

 T r a i n g a c c u r a c y (o n e - f i n g e r)
 T e s t i n g a c c u r a c y (o n e - f i n g e r)
 T r a i n g a c c u r a c y (m u l t i - f i n g e r)
 T e s t a c c u r a c y (m u l t i - f i n g e r)

(b) Finger sliding.
Fig. 4: Impact of the size of the training set.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

TP
R

F P R

 O n e - f i n g e r t a p p i n g
 M u l t i - f i n g e r t a p p i n g

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 O n e - f i n g e r t a p p i n g
 M u l t i - f i n g e r t a p p i n g

(b) Precision-Recall curves.
Fig. 5: Authentication results with finger tapping.

Fig. 5 shows the authentication performance of one-finger
and multi-finger tapping, including the average results and the
upper and lower bounds in the Precision-Recall and ROC
curves. The ROC curves of the two methods are close to the
top-left corner, which indicates that RhyAuth can achieve high
TPR with low FPR. The Precision-Recall curves are close
to the top-right corner, meaning that our system can achieve
high Precision and high Recall at the same time.

Similarly, Fig. 6 illustrates the authentication performance
of one-finger and multi-finger sliding. We can see that the ROC
curves are close to the top-left corner and the Precision-
Recall curves are close to the top-right corner, indicating
that RhyAuth performs well in distinguishing a legitimate user
from others. In contrast to finger tapping, finger sliding has
slightly worse performance. The reason is that tapping with a
rhythm is more natural than sliding with a rhythm for most
people. As a result, tapping inputs are more consistent than
sliding inputs, leading to fewer classification errors and thus
fewer false negatives.

2) Performance With Attackers: This section reports the
resilience of RhyAuth to attacks. For each victim under attacks,
we first trained the classifier and obtained the SVM model of
the victim. Then we added the samples of the attackers into
the testing set and evaluated the performance of RhyAuth.

Fig. 7 and Fig. 8 show the results for one-finger and multi-
finger tapping, respectively. We can see that both are highly
resilient to the attacks. In addition, their attack resilience both
slightly decreases as the capability of the attackers increases.
Compared with one-finger tapping, multi-finger tapping is
more resilient to the attacks. The reason is that more features
are extracted from multi-finger tapping inputs.

Fig. 9 and Fig. 10 show the results for one-finger sliding
and multi-finger sliding, respectively. As we can see, both
methods are also highly secure against the attacks, and their
attacker resilience slightly decreases as well as the attacker
becomes more capable. In addition, multi-finger sliding is
more secure than one-finger sliding because more features
are available in the former. Finally, finger sliding is more
resilient to finger tapping, which is simply due to more features

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

TP
R

F P R

 O n e - f i n g e r s l i d i n g
 M u l t i - f i n g e r s l i d i n g

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 O n e - f i n g e r s l i d i n g
 M u l t i - f i n g e r s l i d i n g

(b) Precision-Recall curves.
Fig. 6: Authentication results with finger sliding.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(b) Precision-Recall curves.
Fig. 7: Attack resilience with one-finger tapping.

available in finger-sliding inputs.

3) Computation Time: We have also measured the compu-
tation time of RhyAuth. In particular, our measurements show
that the one-time enrollment time of one-finger tapping and
sliding are 14s and 200s, respectively, measured on a Dell
desktop with 2.67 GHz CPU, 9 GB RAM, and Windows 7
64-bit Professional. Since the enrollment phase of RhyAuth
takes relatively long time, we suggest that the classifier can be
trained on a powerful desktop computer and then downloaded
to the mobile device. This strategy has been advocated by
many classifier-based mobile authentication schemes such as
[15]. In addition, the verification time of one-finger tapping
and sliding are 3.8ms and 500ms, respectively, measured on
Google Nexus 7 tablet, which make them very practical.
Finally, the computation time of multi-finger taping/sliding
is simply that of one-finger taping/sliding multiplied by the
number of fingers involved.

VII. ADDITIONAL RELATED WORK

There are some rhythm-based authentication schemes. In
[22], Wobbrock et al. used the tapping on a button as the
input of a rhythm for user authentication. Their experimental
results showed a relatively low successful acceptance rate
of 83.2%. In addition, their scheme does not target multi-
touch mobile devices. In [23], Marques et al. transformed
the timing information of taps on a touch screen into a
sequence and proposed a Hamming-distance-based matching
approach for user authentication. However, the acceptance and
rejection rates of their scheme are not reported. In [24], Lin
et al. presented RhythmLink, a protocol to securely pair I/O-
constrained devices by tapping.

Our work differs from the above schemes in many aspects.
First, RhyAuth allows a user to input a rhythm by either
tapping or sliding, while the above schemes only allow tapping.
Second, RhyAuth additionally incorporates the behavioral bio-
metrics of a user inputting the rhythm and thus can achieve
much higher true acceptance and rejection rates. Finally, we
conduct theoretical analysis of rhythm-based authentication for
the first time in literature.

8

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(b) Precision-Recall curves.
Fig. 8: Attack resilience with multi-finger tapping.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(b) Precision-Recall curves.
Fig. 9: Attack resilience with one-finger sliding.

Recent years have also seen many mobile authentica-
tion techniques based on behavioral biometrics [13], [15],
[25], [26]. In [27], however, Abdul et al. suggested that a
programmable Lego robot could emulate users’ behavioral
biometrics to some extent, which poses potential threats on
such techniques. In contrast, RhyAuth combines an additional
user-chosen secret rhythm with her behavioral biometrics, thus
achieving stronger attack resilience.

Finally, TouchIn [28], [29] is a two-factor mobile au-
thentication scheme that works by letting a user draw secret
geometric curves on the device screen with one or multiple
fingers. RhyAuth and TouchIn have similar authentication
performance. But RhyAuth is more usable for people who have
better memory for rhythms than for geometric curves.

VIII. CONCLUSION

In this paper, we presented the design and evaluation
of RhyAuth, a novel rhythm-based two-factor authentication
scheme for multi-touch mobile devices. Detailed security anal-
ysis and user experiments confirmed that RhyAuth is highly
secure and usable for sighted and visually impaired people,
thus has the great potential for wide adoption.

ACKNOWLEDGEMENT

This work was supported in part by the US National Sci-
ence Foundation under grants CNS-1421999, CNS-1320906,
CNS-1117462, and CNS-1422301. We would also like to thank
anonymous reviewers for their constructive comments and
helpful advice.

REFERENCES

[1] http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white paper c11-520862.html

[2] N. Sae-Bae, et al., “Biometric-rich gestures: a novel approach to
authentication on multi-touch devices,” in CHI’12, Austin, TX, May
2012, pp. 977–986.

[3] A. Aviv, et al., “Smudge attacks on smartphone touch screens,” in
WOOT’10, Washington, DC, Aug. 2010, pp. 1–7.

[4] http://www.who.int/blindness/en/.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(b) Precision-Recall curves.
Fig. 10: Attack resilience with multi-finger sliding.

[5] http://www.afb.org/section.aspx?SectionID=15.
[6] H. Bojinov, et al., “Mobile token-based authentication on a budget,” in

HotMobile’11, Phoenix, AZ, Apr. 2011, pp. 14–19.
[7] T. Vu, et al., “Distinguishing users with capacitive touch communica-

tion,” in ACM MobiCom’12, Istanbul, Turkey, Aug. 2012, pp. 197–208.
[8] http://gizmodo.com/hackers-iphone-5s-fingerprint-security-is-not-

secure-1367817697.
[9] M. Jakobsson, et al., “Implicit authentication for mobile devices,” in

HotSec’09, Montreal, Canada, Aug. 2009, pp. 9–9.
[10] E. Shi, et al., “Implicit authentication through learning user behavior,”

in ISC’10, Boca Raton, FL, Oct. 2010, pp. 99–113.
[11] J. Mantyjarvi, et al., “Identifying users of portable devices from gait

pattern with accelerometers,” in ICASSP’05, Philadelphia, PA, Mar.
2005, pp. 973–976.

[12] D. Gafurov, et al., “Spoof attacks on gait authentication system,” IEEE
TIFS, vol. 2, no. 3, pp. 491–502, Sept. 2007.

[13] A. Luca, et al., “Touch me once and i know it’s you! implicit
authentication based on touch screen patterns,” in CHI’12, Austin, TX,
May 2012, pp. 987–996.

[14] F. Sandnes, et al., “User identification based on touch dynamics,” in
UIC/ATC’12, Fukuoka, Japan, Sept. 2012, pp. 256–263.

[15] L. Li, et al., “Unobservable re-authentication for smartphones,” in
NDSS’13, San Diego, CA, Feb. 2013.

[16] http://www.malechoirmusic.co.uk/sheet music/Amazing%20Grace.pdf.
[17] http://en.wikipedia.org/wiki/Simple moving average.
[18] http://en.wikipedia.org/wiki/Dynamic time warping.
[19] C.-C. Chang, et al., “Libsvm: a library for support vector machines,”

ACM TIST , vol. 2, no. 3, p. 27, 2011.
[20] M. Sherman, et al., “User-generated free-form gestures for authentica-

tion: security and memorability,” in MobiSys’14, Bretton Woods, NH,
Jun. 2014, pp. 176–189.

[21] S. Uellenbeck, et al., “Quantifying the security of graphical passwords:
the case of android unlock patterns,” in ACM CCS’13, Berlin, Germany,
Nov. 2013, pp. 161–172.

[22] J. O. Wobbrock, “Tapsongs: tapping rhythm-based passwords on a
single binary sensor,” in ACM UIST’09, Victoria, BC, Canada, Oct.
2009, pp. 93–96.

[23] D. Marques, et al., “Under the table: Tap authentication for smart-
phones,” BCS-HCI’13, London, UK, Sept. 2013, pp. 33:1–33:6.

[24] F. X. Lin, et al., “Rhythmlink: securely pairing i/o-constrained devices
by tapping,” in ACM UIST’11, Santa Barbara, CA, Oct. 2011, pp. 263–
272.

[25] N. Zheng, et al., “You are How You Touch: User Verification on
Smartphones Via Tapping Behaviors,” in IEEE ICNP’14, The Research
Triangle, NC, Oct. 2014, pp. 221–232.

[26] M. Shahzad, et al., “Secure unlocking of mobile touch screen devices by
simple gestures: You can see it but you can not do it,” in MobiCom’13,
Miami, FL, Sep. 2013, pp. 39–50.

[27] A. Serwadda, et al., “When kids’ toys breach mobile phone security,”
in ACM CCS’13, Berlin, Germany, Nov. 2013, pp. 599–610.

[28] J. Sun, et al., “TouchIn: Sightless two-factor authentication on multi-
touch mobile devices,” in IEEE CNS’14, San Francisco, CA, Oct. 2014,
pp. 436-444.

[29] J. Sun, et al., “TouchIn: Sightless two-factor authentication on multi-
touch mobile devices,” in arXiv preprint arXiv:1402.1216, 2014.

9

