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VORLAX 2020: Making a Potential Flow Solver Great Again 

Tyler J. Souders1  and Timothy T. Takahashi2 
Arizona State University, Tempe, AZ, 85287-6106 

VORLAX is a vortex-lattice potential flow solver written by Luis R. Miranda for Lockheed 
California in the early 1970’s. While the tool has remained a viable solution for resolving 
shock-free flow conditions on a wetted surface, many aspects of the code have become dated, 
lowering its practicality. This paper describes methods to improve this code centering on 
revising the solver and memory management techniques. Through simple code changes, the 
integrity of the original method has remained intact while yielding performance 
improvements in excess of 90% in some usage cases. 

Nomenclature 
α = Angle of Attack (deg) 
𝐶஽ = Drag Coefficient 
𝐶௅ = Lift Coefficient 
ITRMAX = Maximum Number of Iterations 
LAX = X-Direction Spacing Method 
LAY = Y-Direction Spacing Method 
M = Mach Number 
N = Number of Control Points 
NVOR = Spanwise Control Points 
R = Residual 
RNCV = Chordwise Control Points 
t/c = Thickness Normalized to Chord 
x/c = X-Dimension Normalized to Chord 
y/c = Camber Displacement Normalized to Chord 

I. Introduction 

MODERN computational fluid dynamics (CFD) are integral to the design of any aircraft. Companies such as 

Boeing rely heavy on the aerodynamic insights provided by CFD, though the insights come at great cost in terms of 
computing resources [1]. Years ago, vortex-lattice methods were commonly used as aerodynamic design tools, 
providing accurate flow resolution despite the technical limitations at the time. Historically, the cost of running the 
vortex-lattice simulations may have been comparably high as the computational cost of modern CFD suites, such as 
ANSYS Fluent. However, as technology has progressed, vortex-lattice methods have fallen out of use, often in favor 
of higher-precision solvers. 
 
Despite the fact that the modern suites may provide better resolution on a microscopic scale, they are merely 
more accurate than a vortex-lattice method. Nothing has happened in the last 40 years to suddenly make the vortex-
lattice methods obsolete, and in fact they remain very lightweight and powerful tools to analyze the flow over an 
aircraft. This paper will show the relative speed of a particular vortex-lattice method, VORLAX, when better 
optimized to take advantage of the power of modern PC’s. 
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II. What is VORLAX ? 

A. General Usage and Capabilities 
 

VORLAX is a potential flow solver utilizing a generalized vortex lattice method 
to resolve flow field behavior for shock-free, attached-flow conditions [2]. 
VORLAX is one specific example of an entire family of vortex lattice methods, 
with other examples existing such as Tornado, which has been developed to run 
in MATLAB. While other methods exist, they tend to be much more complex, 
either relying on proprietary software (such as MATLAB) or having rather 
interactive user interfaces that take away from the main benefits of using a vortex 
lattice software. 

 
The reason that VORLAX remains such a powerful and useful software is because 
of its framework developed in FORTRAN IV. While the code has been updated 
during the years, having features most comparable to FORTRAN 
77, modern compilers are capable of handling the old syntax via legacy flags. 
Thus, VORLAX remains in a form capable of running on any modern Windows 
PC. VORLAX reads input files which define flight configuration information and 
geometric properties of the body in a simple 10-column format, allowing rapid 
preprocessing of hundreds of test cases using a simple scripting language capable 
of writing text files, such as MATLAB, VBA, or Python. FIGURE 1 shows a 
drawing of an entire Boeing 737-300 using VORLAX, while FIGURE 2 shows 
the standard coordinate plane used to define the panel locations. 
 
VORLAX offers multiple usage 

modes. This includes running at multiple Mach numbers, multiple 
angles of attack, and sideslip angles, with the additional ability to 
resolve pitching, rolling, and yawing moments as well as the 
dynamic derivatives for the configuration. For each aerodynamic 
configuration, one may represent the structure as a series of flat 
panels, upon which the vortex lattice structure is defined; see 
FIGURE 1. It is possible to include both thickness and camber 
effects on any of the panels by including chord-normalized 
coordinates along the panels. The user may also include a fusiform, 
cylindrical body in their analysis, useful for representing a fuselage 
or engine. Finally, VORLAX allows the user to work with either sub- 
or supersonic flow conditions, but inherently lacks the ability to 
resolve shocks or other “jump” conditions in the transonic regime. 

B. Flat Panel Mode 

The most basic of geometric representations in VORLAX is the “flat panel” mode. This works by representing 
the geometry by a series of two-dimensional, infinitesimally thin plates. FIGURE 3 shows a standard arrangement of 

FIGURE 3 Flat Panel Visualization with Grid Points 

FIGURE 2 VORLAX Panel Method 
Representation of an Aircraft 

FIGURE 1 VORLAX 
Representation of Boeing 737-
300 
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these plates in both a swept and unswept configuration. The code enforces a zero-mass flux condition, definable by 
the user, to compute the circulation strength of the horseshoe vortices comprising the lattice. 
 
Each panel is defined by two collinear leading-edge coordinates in conjunction with station chord lengths, which the 
code uses to draw the two-dimensional panel. Such a configuration allows the user to define sweep at both the 
leading and trailing edge using a simple set of coordinates and trigonometry. The code supports up to twenty 
individual panels, each of which can be mirrored across the central axis of the aircraft without counting as an 
additional panel. Thus, an entire airframe, including a main wing with multiple control stations, a vertical tail, a 
horizontal tail, and a fuselage can be drawn very easily. 
 
The ease of pre- and postprocessing is one of the strongest usage cases of the flat panel mode. The input, output, 
and log files produced by VORLAX are formatted very systematically, lending themselves to very user-friendly 
automation. The flat panel mode can deliver accurate results about the pressure distribution, aerodynamic 
performance data, and stability and control derivatives in very little time. Generally speaking, the error of the flat 
panel configuration is within a few percent of real-world testing, thereby offering useful insights in a fraction of the 
time required with complex CFD suites, such as ANSYS Fluent. 

C. Cambered Panel Mode 
 

 

FIGURE 4 VORLAX Camber Representation 

The cambered panel mode builds seamlessly from the flat panel mode. VORLAX can represent a cambered plate by 
adjusting the direction of the local normal vector used in the zero-flux boundary condition. Because of the theory 
governing the vortex lattice method, there is no significant change necessary, other than altering a coefficient attached 
to the dot product producing the normalwash component. FIGURE 4 shows the VORLAX equivalent drawing of a 
NACA 63 mean line to visualize how the code sees the shape. 
 
Camber is important in wing design because camber effects the lift generated by a wing section and contributes to the 
three-dimensionality of the airflow over the wing [3]. Thus, adding camber is a relatively simple way of obtaining 
more accurate aerodynamic performance data for the aircraft, such as better resolution of zero-pitch lifting coefficient 
and the drag associated with it. Because VORLAX will calculate the pressure distribution over each vortex point, it 
also becomes the first step in determining the critical Mach number for the flow configuration and determining the 
efficiency of the wings, per the methods described by Oswald [4][5]. 
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D. Thick “Sandwich” Panels 

 

FIGURE 5 VORLAX Thickness Representation 

Continuing from the discussion regarding cambered panels, it is possible to simulate wing thickness effects, including 
thickness tapering, by arranging two flat or two cambered panels with a small amount of separation between one 
another. FIGURE 5 shows that the manner in which the normal coefficient is resolved is nearly identical in nature to 
that of the standard cambered panel, with the minor difference that the zero-mass flux condition is applied only to the 
outer “wetted” surface. Miranda described the optimal distance of panel spacing to be about 2/3 that of the local 
maximum thickness, given via 

𝑧 = ±
1

3
൬

𝑡

𝑐
൰

max

(𝑦) (1) 

 
where 𝑦 is the station location along the span [2]. Thus, by perturbing the 𝑧-coordinate of the vortex point in the body 
frame, it becomes possible to include the effects induced by wing thickness. To ensure correct flow relations over 
these spaced panels, the code only enforces the zero-mass flux condition on the wetted surfaces, as defined by the 
user. By leaving the boundary condition flag as user-defined, it allows the program to remain robust. Our companion 
paper, AIAA 2021-xxxx [6], discusses the applications and paneling strategies for VORLAX. 
 
Furthermore, VORLAX allows the inclusion of thickness effects in conjunction with cambered effects. This is done by 
superposing the changes to the local normal vector in the boundary condition application. This is also simplified by 
allowing the user to include the effects from both thickness and camber in one single input. Thus, the true station 
location is given via 
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in the chord reference frame. Similar to the case with camber, this allows for better critical Mach number prediction 
and wing efficiency determination. While these modes are very useful for real, nuanced wing design, the relative 
disturbances are generally unnecessary for accurate stability and control data, due to their relatively small effect when 
compared to the massive overall forces experienced on the tail surfaces. 

E. Fusiform Body 
 
In addition to flat panels, VORLAX has the capability to represent cylindrical “fusiform” shapes. Most applicable to 
the fuselage and engine nacelles, the fusiform body constructs the cylinder from discrete, two-dimensional plates. The 
user can describe station/radius pairs at which the control points are defined. Thus, for these radii of the body, a “ring” 
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of 2D panels forms the set of horseshoe vortices necessary for computing the pressure distribution about the body; see 
FIGURE 6. 
 

 
FIGURE 6 Sandwich Panel with Fusiform Body (for Fuselage and for Nacelles) 

F. Supersonic Capabilities 
 
In the theory governing VORLAX, there is nothing prohibiting supersonic flow calculation. To include supersonic 
effects, the code simply treats the subsonic vortex filament quantity as a numerical representation to the surface 
vorticity density, rather than as a true physical quantity [2]. Because VORLAX cannot, by limitation of the governing 
theory, handle transonic flow shock-jump relations, this change to supersonic consideration happens when the user 
inputs a Mach number exceeding 1 in the input file, i.e. 𝑀ஶ ≥ 1. By altering the way the discrete panel locations are 
handled with supersonic flow, VORLAX computes a contribution to the velocity field, thereby tying in with the 
subsonic flow theory and contributing to the small perturbation method utilized to calculate the flow. 

III. Classic VORLAX Solvers 

A. Background 
 
VORLAX was originally designed with two built-in numerical solving routines, one applying Purcell’s Vector Method 
and the other applying a controlled successive over-relaxation method, CSOR. [7][8] The solvers are necessary to 
solve a dense system of linear equations that compute the vortex strengths based on the applied boundary condition. 
The solvers are called in the code sequence after reading the geometric input file and constructing the matrices to be 
solved, and before determining the flow conditions.  
 
The reason for the implementation of iterative methods lies in the nature of the system of equations to be solved. The 
system is linear, however it is filled with nonzero values, has no diagonal dominance, nor is it positive-definite. While 
the solution may be obtained using a direct-solve procedure, such procedures are inefficient, making them unfavorable 
in the modern iteration of VORLAX, and making them impossible with the memory constraints present in the era that 
VORLAX was written. Furthermore, one inherent challenge with the implementation of the vortex-lattice method is 
that the influence coefficient system of equations is not sparce. Thus, for any 𝑁 grid points, the computer is required 
to compute and store an 𝑁 × 𝑁 matrix, which proves troublesome. Unlike finite difference methods, which store their 
discretization coefficients in vectors of length 𝑁, the arrays of 𝑁 × 𝑁 take up an exponentially larger amount of RAM. 
VORLAX remains an ia-32 compile, due to the fact that the single precision compile typically runs faster and is better 
for redistribution to students on low-power machines. 
 
VORLAX traditionally utilized scratch files in a machine-readable form during its execution. This is reminiscent of the 
tapes used in legacy IBM systems consistent with the era in which VORLAX was written. While this was a good option 
with the technical limitations of the time, the practice is outdated and slow by modern standards. However, in order 
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to better characterize the performance improvements present in the new compile, the baseline benchmark cases utilized 
this antiquated method. 

B. Gauss-Seidel Controlled Over-Relaxation 
 
The Gauss-Seidel Controlled Over-Relaxation method is a slightly modified Block Gauss-Seidel method. The 
difference lies in the way the over-relaxation factor is handled in the solution. Rather than prescribing a single, fixed 
over-relaxation factor, α, the method defines two factors, αଵ = 1.1 and αଶ = 0.9. By tracking the relative changes in 
the solution vector, the convergence is characterized as either monotonic or oscillatory. Thus, when the convergence 
is monotonic (i.e. converging to a set of values), the over-relaxed parameter, αଵ, is applied. Conversely, when the 
solution behavior is of oscillatory fashion, the under-relaxed parameter, αଶ, is applied. By implementing two different 
factors, the iterative approach may accelerate convergence, while dampening the “overshoot” instabilities present with 
typical SOR methods. 

C. Purcell’s Vector Method 
 
Purcell’s Vector Method was originally published in 1952. The methods works by putting the system of linear 

equations into the standard 𝑨𝑥⃗ = 𝑏ሬ⃗  format, though instead of the typical 𝑁 ×  𝑁 spacing as one would expect, the 
matrix 𝐴 takes the dimensions of 𝑁 × (𝑁 + 1). The reason for the introduction of the additional column is because it 
provides an additional term in the system which exists to enforce homogeneity in the right-hand side of the equation. 
Thus, because of this extra column, the vectors used in the computation are all of length 𝑁 + 1 rather than of length 
𝑁. This is relevant because it destroys the consistency of the source code indexing used for all of the other solvers. 
Instead of working in the range of (1, ITOTAL), where ITOTAL is the total number of grid points, this subroutine has 
constant references in the range of (1, ITOTAL+1).  
 
The method works by multiple different vectors that are solved in order to obtain a single solution vector that is 
orthogonal to each of the other rows in Matrix 𝑨. Thus, there existed a “direct solution” solver in the original version 
of VORLAX. This left the previous engineers with two solving methods: CSOR and Purcell, one of which was an 
iterative solver, and the other direct. Given the computational limitations of the time, both methods were expected to 
run incredibly slow, but they were dependable. 

IV. Known Bugs 

At the time of writing, VORLAX has a few bugs that have remained in the code since its original development in the 
1970’s. The first of which is that the method for integrating the induced drag 𝐶஽೔

 falls apart when using the “linear” 
spacing option. While this is easily remedied by utilizing the alternative “cosine” grid spacing, it makes verification 
and validation of the results more difficult due to the inability to maintain equidistant grid spacing during grid 
refinement studies. Unfortunately, this bug is a direct consequence of the method utilized for the computation of the 
leading-edge thrust coefficient. VORLAX utilizes Lan’s Method for leading-edge thrust computation, which 
inherently requires that the spacing along the chordwise component of the panel is of the cosine type [9]. To avoid 
this conflict, the code was modified to disallow the specification of linear chordwise control point spacing when 
running VORLAX with a subsonic freestream Mach number, thereby preventing ambiguity between results. There 
are also bugs when computing the induced drag with a sandwich panel configuration, discussed in greater detail in the 
companion paper [6]. Generally, these errors are resolved by using a flat panel equivalent, which calculates drag with 
much better accuracy. 
 
Previously, there were bugs with the methodology of generating the fusiform bodies. Previously, panels were drawn 
under the misconception that the defined points were the locations of the control points, while that is not the case. 
Using advanced visualization tools (particularly those which can handle 3-D fusiform body presentation), this 
misconception was cleared. While it was previously believed that the user was defining the location of the control 
points in radial coordinates, it is now known that the user is defining the location of the vertices between which the 
control points are drawn. Thus, the flag “NVOR” relates to the number of vertices to be drawn, minus one, while the 
“RNCV” flag dictates the number of “chordwise” locations along the fusiform body at which the radial coordinates 
are drawn according to the thickness profile provided by the user. 
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Because of the panel generation method in fusiform construction, there were further bugs involved in the development 
of the visualization tool. This led to gaps between the panels that were not included with the contours. To better 
generate pressure visuals, some tricks were employed in the code to interpolate between these gaps in order to 
complete the image. This does not introduce any inaccuracies because it uses the same type of interpolation as between 
the other vertices, however it had to be deliberately extended to include the edges of the mirrored domain. 
  

 
 
FIGURE 7 Visual Improvements to Fusiform Visualizer 
 
VORLAX originally had a “synthesis mode”, in which the user could define a basic panel structure that the code would 
use to optimize the camber of a wing for a user-defined loading configuration. This mode is only compatible with the 
CSOR solver, as written by Miranda in the original compile. While the design tool seems useful, it has fallen out of 
use dating back 30+ years. The current equivalent method of attaining a desired loading is a type of “guess and check” 
approach using a script to write and check dozens of input files, however this method is unable to “draw up” a wing 
using the inverse approach and solving backwards. Thus, an operational design mode would be a large leap in terms 
of efficient design via VORLAX. 
 
Finally, the wake survey tool had fallen into disuse due to a runtime error generated when using this feature. Work 
done by Professor Takahashi made the tool viable for use once again. Much like real-world testing, the wake survey 
feature operates by inserting planes perpendicular to the freestream flow and calculates the flow velocity components 
normalized to the freestream (as defined by the user). By extension, with trivial calculations with the dataset the user 
may compute the local vorticity by employing finite-difference schema. Users may use this feature both to determine 
the flow components relative to the aircraft (useful for determining optimal propellor angle, for instance) and may 
also use it to visualize the vorticity concentrations, useful for intuitively analyzing phenomena such as wingtip 
vortices, an integral part of induced drag. 

V.Solver Improvements 

A. Testing Setup: 
 
VORLAX 2020 was developed and benchmarked on a consumer-grade 
Windows PC running Windows 10 with an Intel Core i9-9900K and 32GB 
of DDR4 RAM running at 2666MHz. The test input was a single AR = 20 
wing in three grid configurations. Each grid density is defined by the number 
NVOR of spanwise stations and RNCV chordwise stations (Table 1). The 
configurations were run at a three freestream Mach numbers and three angles 
of attack. The grid spacing on the panel was varied in accordance with 
parameters described in the subsequent tables detailing performance results. When inspecting the runtime of the 
program, the most reliable metric is the “wall time” computation requirement, which was most accurately reported 
via CPU time tracking within the VORLAX program and printing to the log file. This was preferable compared to 

NVOR RNCV
Config. 1 25 10
Config. 2 50 20
Config. 3 100 40

Table 1 Grid Densities 

D
ow

nl
oa

de
d 

by
 T

im
ot

hy
 T

ak
ah

as
hi

 o
n 

A
ug

us
t 9

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

24
58

 



8 
 © 2021 – TJ Souders & TT Takahashi 

timing the run in VBA, as it takes time for the script to spawn the command line shell and execute the batch file, 
thereby creating some variance external to the VORLAX program itself.  

B. Legacy Summary and Goals 
 
While the old solving methods were not bad, they left much to be desired when considering modern computational 
resources. VORLAX has its main strength as a robust, fast, method, and thus making the code as fast as possible is 
desirable to outweigh the fact that it is a “90% synthesis tool”. Thus, it was imperative to explore the source code of 
the classic VORLAX compile found in the NASA CR [2] and update it to modern standards. Upon inspection, there 
were two main areas of exploration for improving VORLAX as a rapid aerodynamic analysis tool. The first area 
involved moving VORLAX into an “in-memory” solver. This change removed the need for read/write cycles with a 
scratch file saved on the hard drive, and instead utilized computer RAM in order to store arrays. 
 
The second, more strenuous, area of exploration was that involving the solving methods themselves. It was critical 
that this step came after moving the code to a RAM based configuration, as scratch files were an outdated technical 
practice that broke compatibility with modern libraries. After moving to RAM-based execution, the original Purcell 
and Gauss-Seidel CSOR methods were tested again. In addition to these new methods, three new methods were tested 
in hopes of achieving improved solution time: a conjugate gradient method, a stabilized biconjugate gradient method, 
and an Intel MKL-based direct LU factorization solve. Each method comes with its pros and cons regarding solution 
accuracy and runtime. 
 
To minimize the runtime, it was imperative to test many different test cases, hypothesizing that the increased 
computational overhead of allocating memory for a method such Bi-CGSTAB may become relatively worth it as the 
grids become dense. Conversely, the reduced overhead of Miranda’s original implementation of CSOR may prove 
worthwhile for small problems. 

C. CSOR Method 
 
Miranda’s original CSOR method was 
reasonably quick, even on the “slow” 
compile of VORLAX. However, without 
altering the integrity or functionality of 
the original subroutine, the in-memory 
compile lead to the performance 
improvements, seen in Table 2. It shows 
that the 2020 version of VORLAX runs 
significantly faster in all configurations 
than the classic 
version.  As the complexity of the linear 
system decreases (i.e. as 𝑁 becomes 
smaller), the computational overhead 
of the preprocessing, despite its 
incredibly fast nature, becomes the 
dominant factor in  the compute “wall 
time”. Furthermore, it is clear that as the 
complexity increases, the relative gains 
in the in-memory solver become even 
better. The Gauss CSOR method, as 
implemented by Miranda, relies 
heavily on read/write cycles to the tape 
deck – whether that be the scratch files 
on the hard drive in the case of classic 
VORLAX or the arrays in VORLAX 
2020. However, because the RAM-
storage method is so much faster than 

 

 

FIGURE 8 CSOR Residual Behavior 
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the hard drive method, the time savings are more pronounced as the size of the arrays, and thus the number of 
read/write cycles, increases. 
 
The version present in VORLAX 2020 has one minor change compared to the original. In the original version, the 
initial 𝑥଴ “guess” array was populated with only zeros. This has been updated to utilize the previous answer as the 
initial guess in each call of the solver within each distinct Mach number. In the case of the very first run, the array is 
initialized to have a single nonzero value in the first slot, which typically improves iterative performance. It should be 
noted that not all subsequent iterations benefit from this strategy, hence the initialization technique being only for each 
angle of attack. When iterating between Mach numbers, the system of equations changes to be sufficiently different 
as to cause the program to run slower when utilizing the previous Mach number’s solution [10]. This can be attributed 
to the change in the Prandtl-Glauert coefficient applied to the perturbation velocities causing the overall system to 
vary significantly between Mach numbers. It becomes apparent when plotting the residual convergence (FIGURE 8) 
for the second call of the solver, in which the second initial residual is much lower than the first, but the two methods 
retain the same order of convergence. The effectiveness of this approach comes from the order in which VORLAX 
calculates the influence coefficients. The code includes a double nested FOR-loop, looping through angles of attack 
within the Mach number loop. Thus, at a constant Mach number, the influence coefficients are not drastically different 
between the angles of attack, especially in a typical application where the angle of attack is perturbed in increments 
of 1-2 degrees. Because of the effectiveness when applied to the CSOR method, the same method was applied within 
the other tested solvers. 

D. Purcell’s Vector Method 
 
While it would first appear that 
Purcell’s method would be favorable, 
being a direct-solve method, that is 
quite simply not the case. In practice, 
the Purcell method is impractically slow 
to run, and thus does not fit with the fast 
nature of VORLAX. We see in Table 3 
that the run took 22.8 minutes to compute in the dense grid case, relative to the 20.297 second runtime of the CSOR 
method also running on the classic VORLAX. Furthermore, memory limitations in the VORLAX 2020 32-bit compile 
do not allow for a proper implementation of Purcell’s method for the largest of linear systems. However, it is apparent 
that even by the NVOR = 50, RNCV = 20 case, the Purcell solver is so much slower than the CSOR method that is 
not worth using. The speed comparisons for this method were included because they provide insight into the history 
of VORLAX and help characterize upper and lower “goal” speeds for the new proposed solvers. 
 
Furthermore, while execution time is not the only defining factor of the quality of the method, the direct solve results 
did not provide answers that were more accurate to any meaningful figure – the differences were typically constrained 
to the 4th-5th decimal place for figures such as the lift and drag coefficients. In the grand scheme of things, this is 
largely insignificant. It is understood that VORLAX operates under a set group of assumptions as it is, and there is a 
point where these small “improvements” are overshadowed by these assumptions. This is not to say that VORLAX is 
inaccurate, as it does a remarkable job giving big picture information about a configuration and its aerodynamic 
efficiency, however it is also understood that the program will not provide information that is accurate to five 
significant digits. 

E. Conjugate Gradient Method 
 
The Conjugate Gradients (CG) Method is an 
iterative method in the family of Krylov 
Subspace Methods. The version 
experimentally implemented into VORLAX 
comes from Henk van der Vorst’s book, 
Iterative Krylov Methods for Large Linear 
Systems. The implementation of the CG 
method was mostly experimental in nature, 
as it utilizes the same algorithmic structure 

NVOR = 25, 
RNCV = 10

NVOR = 50, 
RNCV = 20

NVOR = 100, 
RNCV = 40

VORLAX 2014 1.390630 40.218750 1370.531000
VORLAX 2020 0.156250 29.046880 N/A
% Improvement: 88.8% 27.8% N/A

Table 2 Purcell's Vector Method Speed Comparison (s) 
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FIGURE 9 Conjugate Gradients Residual Behavior 
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necessary to construct the more useful and reliable variants of the method for later testing. In part, the reason that little 
was expected of this method was due to the fact that the CG method is slow, computationally expensive, and 
susceptible to convergence errors when applied to an unsymmetric system [11]. Thus, given that VORLAX works by 
solving a very unsymmetric and dense system, the outlook was meek. 
 
Convergence testing confirmed that the CG method on its own was unsuitable as a solver within VORLAX. During 
trials, this method was shown to be incredibly unreliable and divergent in each of the test cases, as seen in FIGURE 
9. This behavior was expected, though not necessarily guaranteed. The conjugate gradients method assumes that the 
matrix is sparse, positive-definite, and symmetric; and the system constructed by VORLAX does not meet this criteria. 
Thus, the method was assumed to be unreliable at best. Additionally, because the behavior was almost exclusively 
divergent, VORLAX would iterate until its iteration limit (ITRMAX = 399). This could be remedied by implementing 
a method of advancing divergent cases without progressing through the full method, however this was not the focus 
of the study. 

F.  Stabilized Bi-Conjugate Gradients Method 
 
The Stabilized Bi-Conjugate Gradient Method (Bi-CGSTAB) was 
another method presented by van der Vorst [12]. This method was 
appealing due to its reliable nature for solving a system of 
unsymmetrical equations. While more complex than the CG 
method, it was promising due to its reliability. However, when 
testing the convergence behavior, the results were less than 
impressive. The solution converged in our trial runs, however it was 
very slow, seen in Table 4. 
 
In an attempt to accelerate the convergence of the method, an alternate subroutine was developed utilizing the 
application of a simple Jacobi preconditioner. While there are plenty of more effective preconditioners, the ease of 
inverting the diagonal matrix lead to it being a good method for implementation within VORLAX [13]. The results of 
this implementation were very interesting, looking at the wall time for each case, we saw that the two lower grid 
densities saw an increase in runtime, while the largest density saw a drastic decrease in the runtime. For better insight, 
we turn to the convergence behavior of each method.  

FIGURE 10 - Bi-Conjugate Gradient Method Residual Behavior 
 
We see in FIGURE 10 that the difference between the non-preconditioned and preconditioned trials is highly 
dependent on the size of the problem at hand. For the two lowest densities, we see that the convergence is largely the 
same, with the medium density showing slightly improved convergence, but only by 16 iterations. Conversely, the 
high-density case shows a reduction of 183 iterations with the application of the preconditioner. When we tie these 
observations into the runtime of the program, it all begins to make more sense. Essentially, due to the simplistic nature 
of VORLAX and its inherently small grid sizes (remnants of the fact that it was developed in a manner bound by the 

Grid Density

Runtime w/o 
Preconditioning 

(s)

Runtime w/ 
Jacobi 

Preconditioning 
(s)

25x10 0.32813 0.625

50x20 4.03125 5.64063

100x40 66.1875 49.53125

Table 3 Bi-CGSTAB Runtime Comparison 
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technological constraints of the IBM 360), there exists a point where the computational resources necessary to compute 
the preconditioner outweighs the cost to “brute force” the solution without preconditioning. Thus, when there is only 
a small improvement to be had, it is not worthwhile to compute and apply this preconditioner, because it is mostly 
“getting in the way” of the method while calculating the solution. 

G. Intel MKL Direct Solve via LU Factorization 
 
Finally, in an attempt to search for a viable “pre-packed” library solution, an 
implementation of the generalized solver available through Intel’s Math Kernel 
Library was included. Using the Intel Visual Fortran Compiler, it was as simple as 
checking a box to utilize the features, and the results were promising. Of all of the 
attempted solvers, this was the only one that was even close to the CSOR method 
in terms of runtime commitment, seen in Table 5. In part, this is due to the 
parallelization methods done in the “black box” Intel library. Because the test 
machine was running with an Intel Core i9-9900k, it is not unlikely that the library was particularly optimized for 
Intel-based architectures. 
 
Unlike the iterative methods, the MKL implementation completed the computation via a traditional 𝐿𝑈- 
factorization technique. Thus, there is no “converge criteria” that is possible to compare with the earlier presented 
methods. While the method proved efficient, adding the library requires the distribution of several library files that 
greatly increase the size of the VORLAX package, which is undesirable given that VORLAX is often given to 
students as a learning tool. Furthermore, the proprietary nature of the library is undesirable as it comes with no 
guarantee that the performance will remain the same across all CPU architectures, both older Intel processors and 
modern AMD processors. Thus, this solver was deemed unfit for a mass-distributable version of VORLAX. 
However, it does serve as a good tool for a curated “Research Build” of the software, where it becomes possible to 
keep the code within a controlled environment. 

VI. Other Expensive Subroutines 

By inspecting the VORLAX source and timing specific calls to subroutines, it became apparent that the solving routine 
was not necessarily the only subroutine taking up significant runtime. There exists a routine called “MATRX”, whose 
purpose is to generate the grid of control points, complete with all of the normal and axial wash coefficients, as well 
as the influence coefficients for each vortex at each control point. Thus, for sufficiently large problem sizes, this 
routine will need to calculate 5000 influence coefficients for each of 5000 control points, a task which takes up a 
considerable amount of time. By nature, the vortex-lattice method relies on a dense system of equations, and as a result 
there is little that can be done to lessen the impact of the MATRX subroutine. 
  
To better understand the tradeoff of MATRX versus the solving routine, VORLAX was altered slightly to produce 
timings of each call to the two routines in a scratch file, and the results made it clear that the MATRX routine was 
more expensive per call than the solving subroutine. While at first glance this places the blame on the MATRX 
subroutine for being expensive, it is not the entire story. The solving routine was called for each Mach number and 
angle of attack combination, while MATRX was only called for each Mach number. Thus, sometimes the solver took 
up the majority of the time, while other times the MATRX routine took the majority of the time – dependent on the 
usage scenario. 
  
There are three common usage cases for VORLAX. The first is using the program to model a configuration to run at a 
single angle of attack and a single Mach number – commonly seen in advanced wing design applications where the 
flight condition of interest is specifically known. The second is to model a body at a single Mach number and multiple 
angles of attack in order to generate lift and drag polar diagrams, which is useful for specific flight phases, such as 
takeoff. The third common case is to run a small number of Mach numbers, usually about three, and multiple angles 
of attack, which is used to generate data regarding the stability and control of an airframe. Each of these configurations 
was tested with the modified “stopwatch” version of VORLAX in order to quantify the amount of time – both absolute 
and broken down by subroutine, that was spent running both the MATRX and solve routines. 
  
These tests were completed using a Visual Basic script to automate the input file generation and run timings. Each 
Mach number and angle of attack configuration was tested for grid densities ranging from 250 total control points to 

Grid Density
Intel MKL Wall 

Time (s)

25x10 0.04688

50x20 0.39063

100x40 8.95313

Table 4 Intel MKL 
Runtime 
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5000 total control points – the program maximum. Because this was primarily a test of the numerical methods – the 
time which was necessary to construct the linear system and solve it, the exact spacing of the grid points was not of 
much concern. During the testing it was noticed that as the time to run became incredibly small, the accuracy of the 
timing function became inaccurate due to the sheer speed of program call – in some cases reporting 0.0000s for the 
calls. This is obviously incorrect; however, it serves as a testament to just how quickly the basic cases run. 
  
The first tests were run for the single Mach and single 
angle of attack configuration. Without much surprise, 
the runtime grew exponentially overall as the number 
of grid points increased (recall that the system is 
[NxN]), seen in Figure 11. This was expected due to 
the nature of the vortex-lattice method, wherein each 
point is fundamentally dependent on each other point 
in the model. 
 
Figure 11 is telling, as it becomes clear that the 
MATRX subroutine is not a negligible contributor to 
the overall runtime! Understanding that there are some 
minor errors in the timing because of the intrinsic 
timing function, the overall trends are still very 
obvious. For each of the grid densities, both the 
MATRX and GAUSS subroutines are 
overwhelmingly the driving force of the total runtime 
– accounting for over 90% of the time allocated to 
each program call. Thus, it is clear that the two most 
expensive calls account for almost the entirety of the 
runtime. While this run shows that the MATRX call is 
more expensive, the story changes when running more 
angles of attack relative to Mach numbers. 
 
While the proportions may seem largely different, the timing seen in Figure 12 shows that the two most expensive 
subroutines still account for most of the runtime. However, it is now the linear system solver driving the total runtime 
instead of the system generation. The MATRX subroutine, while considerably smaller in overhead than the GAUSS 
subroutine, is not negligible, and can still benefit from improvements. 

 
The final configuration was that commonly seen 
in stability and control applications, where the 
user will define a system with 3 freestream 
Mach numbers and 14 angles of attack. The 
array of pitching angles allows the user to 
compute the stability derivatives and having 
multiple Mach numbers will allow the user to 
interpolate between them to approximate 
performance derivatives in multiple flight 
conditions, such as takeoff, climb, cruise, 
descent, and landing. While this may seem like 
a lot, it is worth remembering that initializing 
the command window to run the VORLAX 
program on Windows can often amount to fairly 
considerable time contributions, thus it is 
advantageous to configure all of the desired 
combinations in a single file. 
 
 
 
 

FIGURE 11 – Overall Time Cost for One Mach 
Number and One Angle of Attack  

FIGURE 12 – Overall Time Cost for One Mach Number 
and Fourteen Angles of Attack  
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Figure 13 shows the overall runtime of this test, 
once again demonstrating a parabolic growth in 
runtime as the number of control points 
increases linearly. This run took nearly 40 
seconds to compute in its most expensive 
configurations, and while this is remarkably 
fast by modern CFD standards, it begins to add 
up depending on the number of designs 
necessary to test. Commonly, the stability and 
control applications of VORLAX will involve 
the program running five different files, one of 
which is in a neutral configuration, one at a 
sideslip angle, and three with control surface 
deflections. Thus, for a “common” application, 
this may amount to a considerable amount of 
time. Previously, each of the stability and 
control files with ~2,000 control points would 
take ~O(120) seconds to run (depending on the 
case), meaning that the whole stability and 
control case could take up to 10 minutes to run! 
Thus, every time a tail surface changed even 
slightly, or perhaps the aileron surface area 

increased incrementally, there would be nearly 10 minutes wasted to downtime waiting for the program to run. This 
was largely the inspiration of this work, and when considering this portion on timing, it is clear how helpful these 
improvements are in real-world applications. 
 
Figure 13 shows again that while the overall runtime of the program in this configuration has increased, the 
proportional contributions from each subroutine remain more or less the same. Thus, for two of the common 
configurations, the amount of time spent solving the system is large relative to the amount of time constructing each 
system, except in the case of the single panel where the matrix construction was the more expensive operation. 
However, it is necessary to consider the overall runtime of the configurations tested. While the single panel shows a 
larger dependence on the MATRX subroutine, the total runtime is often significantly shorter. For instance, a very 
detailed wing design will often have ~100 spanwise control points and ~20 chordwise points, giving a total runtime 
on the order of 0.5 seconds, which leaves little to gain in terms of optimizations. Conversely, a complex stability and 
control model of a full aircraft may have nearly 4,000-5,000 total control points (depending on the configuration and 
number of panels), which will take ~30 seconds to run, but also needs to be run five times, giving a total “wall time” 
of each case of ~150 seconds. Thus, the potential to save time falls firmly in the solver subroutine, as even a 0.03% 
reduction in runtime would amount to more time than the single configuration takes altogether. 
  
There are some nuances to the program that currently limit the program. Being limited to a 32-bit compile for 
compatibility reasons provides a maximum to the amount of RAM usable by the program. Furthermore, because the 
program ran using tape drives, everything is vector-based, when matrices could potentially allow for more powerful 
solving libraries. However, there is a cost to converting the vector-space terms to matrices, and then an additional cost 
to converting back to vectors. There are some changes that may be experimented with to decrease the runtime, however 
each change risks altering the dependability of the code or changing certain notational norms carried from the 
FORTRAN 66 framework, and as such any modifications should be made with caution. 
 
 
 
 
 

FIGURE 13 – Overall Time Cost for Three Mach 
Numbers and Fourteen Angles of Attack  
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VII.Benchmark Comparisons 

Table 6 Runtime of Each Solver 

Runtime (s) LOW DENSITY MEDIUM DENSITY HIGH DENSITY 
  V 2014 V 2020 V 2014 V 2020 V 2014 V 2020 
Gauss 0.07813 0.04688 0.98438 0.32813 20.29688 5.71875 
BiCGSTAB -- 0.32813 -- 4.03125 -- 66.18750 
BiCGSTAB + Jacobi -- 0.62500 -- 5.64063 -- 49.53125 
INTEL -- 0.04688 -- 0.39063 -- 8.95313 
PURCELL 1.39063 0.15625 40.21875 29.04688 1370.53100 -- 
CG -- 2.23438 -- 10.48438 -- 44.68750 

 
Table 6 shows a summary view of all of the different runtime requirements of the different solvers in these tests. When 
comparing the wall time of each of the solving techniques, it becomes immediately apparent that the 
CSOR method present in the original VORLAX program is incredibly efficient. The CSOR method is universally 
faster than any of the other proposed methods, with only the Intel MKL solver proving to be of comparable 
performance. Looking at the performance increases to the CSOR method, we see drastic performance increases over 
the 2014 version, particularly when the solution of interest becomes large. We see comparable increases with the 
Purcell Vector Method; however, the method remains very slow in comparison to the alternatives. Thus, the method 
is not viable for this application. 
 
None of the Krylov-subspace methods performed favorably. With the obvious convergence issues of the 
conjugate gradients method, the other methods were simply too slow to serve as a viable solver within VORLAX. 
The performance of the Krylov methods could be improved by more aggressive preconditioners, however that 
comes at the cost of implementing routines to calculate the preconditioners, which are often more expensive than the 
computation itself. Thus, none of the tested methods appear to be suitable for usage in VORLAX in their current 
state, nor do they appear to have 32-bit compatible alterations that would make them more attractive.  
 
Finally, the Intel-based solver performed only slightly slower than the CSOR method, despite using the more 
inefficient method. This is largely due to the multithreaded capabilities of the Intel code, something which the 
original VORLAX code lacks. However, despite the Intel solver being close in speed to the CSOR solver, the results 
returned by the program are the same to four decimal place precision, and thus the Intel solver does not provide 
appreciable improvements to the accuracy of the code. Coupled with the increased complexity of distribution, the 
Intel solver is not viable to include within the standard VORLAX package given to students for educational 
purposes. 

VIII. Future Areas for Experimentation 

At the time of writing, VORLAX remains a strictly serial program, utilizing only a single core to perform calculations. 
There may be merit in modifying VORLAX in order for it to take advantage of multicore systems. Given that the vast 
majority of modern computers have multiple cores, it is a rather obvious idea to modify the code to take advantage of 
these cores! VORLAX already runs very quickly, but if the workload could be better distributed among a computer’s 
resources, it would be helpful for the complex cases. This paper has shown deeply the single-core performance of the 
Gaussian CSOR method, however one drawback of the program is that the calls to the solver are within a double-
nested FOR-loop. This causes the program to have to “wait” for the solver to finish its run before continuing to the 
next solve. If VORLAX was able to effectively make use of one of the numerous distributed computing libraries (i.e. 
Open MPI [14]) then its performance could see massive improvements, particularly within workflows that integrate 
thousands of runs of VORLAX. 
 
Another possibility is to consider a version of VORLAX compiled for ARM-based system architectures. Currently, the 
ARM-based M1 chip designed by Apple has boasted fantastic performance figures while being incredibly power 
efficient [15]. With these performance figures, there is a chance that other manufacturers may follow suit, in which 
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case it is important that VORLAX be cross-platform. Because the M1 chip often outperforms typical x64 chips for 
CPU-intensive tasks such as compiling programs, there may be further performance improvements for VORLAX. At 
the time of writing, VORLAX works best with Intel compilers. Attempts have been made to compile the program with 
other compilers, however the efforts are generally futile due to various errors that arise because of the legacy 
FORTRAN programming. 
 
Some testing was completed within the timings which demonstrated a fair sensitivity to the initial guess of the CSOR 
solver. This indicates that there may be further improvements to be made by introducing a form of a multigrid solver, 
using coarse grid circulation solutions to accelerate dense grid solutions. This would take advantage of the exponential 
nature of the solver cost, potentially saving time overall. It may also be worth working with the array structures of the 
program to see if modern FORTRAN compilers can run more efficient on an array-based system. One hurdle with 
this is that VORLAX operates in a very vector-focused manner, and all of the arrays and loops are currently geared for 
single dimension iterators, so this would not be a trivial change. 
 
Finally, there may be merit in porting VORLAX to a different programming language altogether, from the ground up. 
In its current state, the program is remarkably efficient. However, its source code is largely written in FORTRAN IV 
with occasional use of FORTRAN 77 standards. The source code compiles easily under Intel Visual FORTRAN with 
certain compatibility flags set, but throws many errors under gfortran and other modern “FORTRAN-TO-C” “pre-
processor” type compilers. [16] This presents a looming long-term maintenance problem when old IBM and VAX 
backward-compatible FORTRAN compilers disappear from the marketplace. In the interest of futureproofing the 
program, it may be wise to rewrite it using either updated FORTRAN standards, thereby widening the pool of 
individuals who can meaningfully contribute to and maintain the source code. 

IX.Conclusions 

Luis R. Miranda’s talents as a programmer and aerospace engineer were no secret, and the methods he originally 
developed have withstood the test of time, working with incredible precision and speed, even in the face of more 
“modern” techniques. The CSOR method implemented early-on into VORLAX remains one of the best options for 
solving the small, dense systems of equations incredibly quickly. The memory commitment is minimal, lending 
itself to a small, fast 32-bit compile, and the results are just as accurate as more advanced solving methods. Thus, it 
appears that the CSOR method remains the best option to include in the “standard” version of VORLAX, turning to 
more complicated methods only in the niche cases where they are required.  
 
Future plans for VORLAX often depend on the work at hand. Because the program returns accurate results, even 
with small grid sizes, there currently is no reason to further complicate the code, increasing its size and runtime, by 
switching to a 64-bit compile. However, if noticeable gains can be obtained using 64-bit libraries, it may become 
worthwhile for research purposes. Currently, the prospect of using GPU-accelerated libraries, such as those offered 
by NVIDIA, are being considered, along with libraries such as HYPRE. Overall, the main consideration at hand is 
the balancing act between the increased runtime of a more complex code relative to the improvements to accuracy, 
problem complexity, and/or more involved simulation models. 
 

Acknowledgements 

This revised version of VORLAX is currently in use in Professor Takahashi’s senior- and graduate-level courses 
beginning in the Fall 2020 semester. The final version released at AIAA AVIATION 2021. 
 
This manuscript derives from work Mr. Souders performed in partial fulfillment of the degree requirements for 
obtaining his M.S. in Mechanical Engineering from Arizona State University. All design analysis on this unfunded 
project was completed at Arizona State University.  
  

D
ow

nl
oa

de
d 

by
 T

im
ot

hy
 T

ak
ah

as
hi

 o
n 

A
ug

us
t 9

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

24
58

 



16 
 © 2021 – TJ Souders & TT Takahashi 

References 

[1]  Johnson, F. T., Tinoco, E. N., and Yu, N. J. “THIRTY YEARS OF DEVELOPMENT AND APPLICATION 
OF CFD AT BOEING COMMERCIAL AIRPLANES, SEATTLE.” Computers & Fluids, Vol. 34, No. 10, Dec, 
2005, pp. 1115–1151.  

[2]  Miranda, L. R., Elliot, R. D., and Baker, W. M. “A Generalized Vortex Lattice Method for Subsonic and 
Supersonic Flow Applications.” NASA CR 2865, 1977.  

[3]  Melin, T. A. “Vortex Lattice MATLAB Implementation for Linear Aerodynamic Wing Applications”. Master’s 
Thesis, Royal Institute of Technology, Sweden, 2000.  

[4]  Küchemann, D. The Aerodynamic Design of Aircraft. AIAA 2012. 
 [5]  Jensen, J., and Takahashi, T. “Wing Design Challenges Explained: A Study of the Finite Wing Effects of 

Camber, Thickness, and Twist.” AIAA 2016-0781, 2016. 
[6]  Souders, T. J., and Takahashi, T. T. “VORLAX 2020: Benchmarking Examples of a Modernized Potential Flow 

Solver”. AIAA 2021-2459, 2021.  
[7]  Oswald, W. B. “General Formulas and Charts for the Calculation of Airplane Performance.” NACA TR-408, 

1933.  
[8]  Purcell, E. W. “The Vector Method of Solving Simultaneous Linear Equations.” Journal of Mathematics and 

Physics, Vol. 32, Nos. 1–4, 1953, pp. 180–183.  
[9] Lan, C. E. “A Quasi-Vortex-Lattice Method in Thin Wing Theory.” Journal of Aircraft, Vol. 11, No. 9, 1974, pp. 

518--527. 
[10] Souders, T. J., “Modernization of a Vortex-Lattice Method with Aircraft Design Applications”, M.S. Thesis, 

Department of Mechanical Engineering, Arizona State University, Tempe, AZ, 2021. 
[11]  Bratkovich, A., and Marshall, F. J. “Iterative Techniques for the Solution of Large Linear Systems in 

Computational Aerodynamics.” Journal of Aircraft, No. 12.2, 1975, pp. 116–118.  
[12]  van der Vorst, H. A. Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, 2003.  
[13]  Shewchuk, J. R. An Introduction to the Conjugate Gradient Method without the Agonizing Pain. Carnegie-

Mellon University. Department of Computer Science, 1994.  
[14] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., 

Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L., and Woodall, T. S., “Open MPI: Goals, 
Concept, and Design of a Next Generation MPI Implementation.” 11th European PVM/MPI Users' Group 
Meeting, Budapest, Hungary, 2004 (pp. 97–104). 

[15] “Apple unleashes M1,” Apple Newsroom, November 2020. [https://www.apple.com/newsroom/2020/11/apple-
unleashes-m1/. Accessed 6/4/21.] 

[16] “The Fortran compiler gfortran will not compile files,” see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96033 
[accessed 6/24/21] 

 
 

D
ow

nl
oa

de
d 

by
 T

im
ot

hy
 T

ak
ah

as
hi

 o
n 

A
ug

us
t 9

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

24
58

 


