Performance Analysis of GEMM Workloads on the
AMD Versal Platform

Kaustubh Manohar Mhatre
Arizona State University
Tempe, USA
kmhatre @asu.edu

Endri Taka
The University of Texas at Austin
Austin, USA
endri.taka @utexas.edu

Abstract—AMD Versal is a new heterogeneous computing
hardware architecture comprised of adaptive intelligence (AI)
engines, programmable logic, and a processing system. General
Matrix Multiplication (GEMM) is the fundamental building
block of modern deep learning (DL) applications such as Chat-
GPT, and GEMM workloads can be mapped onto Versal in
different ways, each with distinct trade-offs. This paper presents
a thorough analysis of GEMM workloads of different shapes and
sizes, showcasing performance artifacts associated with the AMD
Versal architecture. Focusing on the unique aspects of the Versal
architecture, multiple research questions related to performance
scaling, sensitivity, and efficiency are explored. This paper aims
to assist FPGA developers looking to implement GEMM on AMD
Versal by providing insights for enhancing performance.

Index Terms—Versal, Heterogeneous Architecture, Hardware
Accelerator, Matrix Multiply, Deep Learning

I. INTRODUCTION

The progress of DL in the past decade has increased
the demand for more energy-efficient computing. GEMM,
at the heart of DL, has become much more vital in recent
Transformer-based models that power mainstream applications
such as ChatGPT compared to Convolutional Neural Net-
works. GEMM constitutes more than 90% of the compute
operations in Transformers [15]. As such, optimizing GEMM
can significantly improve the performance of DL workloads.
Hardware acceleration of GEMM is commonplace - by using
dedicated ASICs like Google TPU [11] or by adding blocks
such as Tensor Cores in NVIDIA GPUs [1]. AMD introduced
a new heterogeneous architecture called AMD Versal [10] that
includes Programmable logic (PL), Processing system (PS),
and Al engines (AIEs). AIEs are grouped into a 2D array
of software-programmable vector processors that operate at a
frequency much higher than PL, and provide a significantly
higher compute throughput. AIEs are connected to the PL
using special interfaces called PLIOs. The Versal architecture
also has a network on-chip (NoC) that connects all of these
elements to the DRAM. The memory architecture is multi-
level, starting with Al engine’s tightly coupled data memory,
PL memory, and lastly the DRAM. The heterogeneity of the

Venkata Guru Prashanth Mulleti
Arizona State University
Tempe, USA
vmulleti @asu.edu

Curt John Bansil
Arizona State University
Tempe, USA
vmulleti@asu.edu

Aman Arora
Arizona State University
Tempe, USA
aman.kbm@asu.edu

resources in AMD Versal makes programming it complex,
especially when optimizing for performance.

GEMM significantly contributes to execution time on the
Versal architecture for deep learning workloads, as shown by
CHARM [19] and SSR [21]. In this work, we analyze various
performance artifacts of mapping GEMM kernels onto this
unique architecture. To the best of our knowledge, no prior
work has delved into such a detailed analysis of GEMM
workloads on Versal. We extensively analyze various sizes
and shapes of GEMM workload running on AMD Versal with
varying resources like AIEs and multi-level memory hierarchy.
We focus on the unique aspects of the Versal architecture, such
as PLIO usage, data transfer patterns between PL and AIEs,
different implementations, and buffer utilization of AIEs.

Such performance analysis can be immensely useful in
increasing the adoption of Versal architecture. There are nu-
merous ways of mapping a GEMM workload to the Versal
architecture with tradeoffs that are not easily and analyti-
cally evident. It is not easy to understand the contributions
of various architectural features to performance. There is a
lack of resources that detail which approach leads to higher
performance, more scalable implementation, lower energy, etc.
Our goal is to bridge this gap.

Our contributions in this paper are:

o We pose a set of research questions regarding the per-
formance of GEMM workloads on AMD Versal, set
up experiments to study them, and identify insights on
hardware and software characteristics.

o We analyze the performance of GEMM kernels mapped
to a single Al Engine by running various GEMM sizes
and shapes, while providing a breakdown of execution
time spent on communication and compute.

e We analyze the performance of GEMM workloads
mapped to multiple AIEs. We demonstrate the impact of
workload scaling with different configurations that utilize
various resources (Al Engine, PL, PLIO).

o We offer an analytical model that provides performance
estimates, execution breakdown, and insights into poten-
tial bottlenecks in the design.

II. RELATED WORK

Multiple prior works have deployed ML workloads on AMD
Versal. CHARM [19] is a framework for accelerating Deep
Neural Networks (DNNs) on Versal, using the AIE array
and PL. It divides the AIE array into multiple accelerators
based on matrix multiplication size and memory requirement,
targeting only FP32 precision. AutoMM [22] builds on top
of CHARM [19] with a Python based interface to streamline
accelerator design and uses INT8 precision. CHARM 2.0 [20]
adds support for INT16 precision as well. (CHARM, AutoMM
and CHARM 2.0 are available in the same codebase, so we
do not differentiate between them in this paper and refer
to them as CHARM, to avoid confusion). MAXEVA [14]
improves over these works to provide higher performance.
CHARM'’s methodology presents a resource-efficient approach
to design, whereas MAXEVA achieves high performance but
at the expense of significantly increased resource utilization,
thereby reducing scalability and limiting its feasibility to
only small designs. SSR [21] deploys DNNs with smaller
memory footprint which can be stored on-chip on Versal. This
enables them to implement optimizations like on-chip weight
and output activation storage to reduce the DRAM pressure.
AIM [17] focuses on arbitrary-precision integer multiplication,
primarily associated with scientific computing, on Versal and
shows that the combination of AIE and PL can increase
energy efficiency compared to CPU and GPU. H-GCN [18]
implements graph neural networks on Versal, performing
sparse matrix multiplication (SpMM) on the AIE array. Chen
et al. [9] demonstrate GNN implementation on Versal with
performance gains compared to CPU and GPU. Vyasa [§]
enhances the programmability by extending the Halide DSL
compiler to automatically generate code for AIEs. SPARTA
[13] implements weather prediction using AI Engines on
AMD Versal leveraging the MLIR framework. Whereas [7]
uses them for atmospheric simulations. Perryman et al.
[12] demonstrate the use of AIE for space edge computing
applications (CNNs) due to high energy efficiency compared
to programmable logic.

These works do not do a thorough performance analysis
of the Versal hardware. They focus on accelerating a specific
workload without giving insights into bottlenecks. The work
by Wierse [16] represents the closest comparable research
to ours, as it specifically focuses on evaluating the commu-
nication pathways within the chip, from the DRAM to the
AIE. However, it does not extend beyond the evaluation of
these interconnects, whereas our work also focuses on compute
efficiency and performance.

III. OVERVIEW OF VERSAL ARCHITECTURE

Figure 1 shows the Versal AIE architecture[3]. We use
VCK5000 for our experiments and discuss the important
components below.

Processing System: Versal features an ARM dual core
Cortex A-72 processor, which serves as a host. This core is a
programming interface for the AIEs and the PL. Both PS and

Al Engine Array :
>< 1< 12X
AE |F AE |§ AE |§
= 3 3 >
Core |3 Core (5§ Core |§+—
<[> d EXj\
§ AIE § AIE § AIE
3| Core 3| Core 3| Core «—
-] (o] [><]
z z z
AIE 3 AIE 3 AlE | P
Core |5 Core (5§ Core (§l—

~ —~ |

b < <

PL Clock
| Programmable Logic (PL) |

[swich

<—> Via-Switch Connections <> Buffer —> Cascade

Fig. 1: Versal AIE architecture

PL can be controlled using the PS. It can run a Linux operating
system, enabling it to run a wide range of operations.

Programmable Logic (PL): The PL comprises the FPGA
reconfigurable fabric with Lookup Tables (LUTs), flip-flops
(FFs), Digital Signal Processing Slices (DSPs), Block RAMs
(BRAMs), and Ultra RAMs (URAMs). It is capable of imple-
menting any custom datapath necessary for an application.

AlIEs: The AIEs consist of an array of vector processors
operating at a frequency of 1.25GHz. Each AIE includes
32KB of tightly coupled memory for storing program in-
structions and data. Figure 1 shows the architecture of the
AIE array and various connectivity interfaces between AIEs
(Via-Switch Connections, Buffer and Cascade). The vector
processor within the AIE achieves 8 MACs per cycle for FP32
and 128 MACs per cycle for INT8 operations.

AIE Interfaces: AIEs have two main interfaces in the last
row of the AIE array and are of two types: NoC interface
blocks and PL interface blocks. Connections to DRAM are
made from the NoC interface bocks, whereas connections to
PL can be made from both blocks. The PL to AIE interface is
called PLIO. The bit width of a PLIO interface is 64-bit, but
can also be configured to 128-bit (at 0.5x the frequency).

Memory Hierarchy: The AMD Versal has 3 levels of
memory hierarchy. Every AIE has its own internal memory
of 32KB for program and data. There is a total of 12.8 MB of
AIE internal memory if all 400 AIEs are used. The next level
is the PL memory, which consists of BRAMs and URAMs.
There are 967 BRAMs, each of size 36 Kbit, totaling up to 4.6
MB of Memory. There are 463 URAMSs each of size 288Kbit
totaling up to 17.1 MB. The final level is the DRAM. There
is 16 GB of DDR4 memory on the board.

Programming Model[5]: AIE kernels are programmed in
C/C++ either (1) using high-level APIs provided by AMD
[2] that handle common operations like matrix multiplication
and FIR, or (2) using intrinsics [4] which are low-level

—_—— e el e e e e e e — o — —
gy S S g . g gy

Matrix B Matrix C

Fig. 2: GEMM tiling. The three tiling stages involves transferring
matrices A and B from DRAM to PL, and subsequently to AIE.

architecture-specific instructions that offer finer control.
Speeds and Feeds: VCK5000 has 400 AIEs running at 1.25
GHz, resulting in a theoretical throughput of:

FP32prpt = AIEfyeq ¥ PeakThrptppss x #AIES % 2(x, +)
= 1.25GHz x 8 * 400 x 2 = 8 TFLOPs
INTS8prpt = AIEfreq * PeakThrptinrs * #AIES % 2(%, +)

= 1.25GHz x 128 « 400 « 2 = 128 TOPs

Each PLIO interface, if running at 500 MHz, will support a
BW of 4000 MB/s.

Single PLIOBandwidth = 500M H z * 64bit = 4000 MB/s

Every block has 8 connections from PL to AIE and 6 from
AIE to PL. Thus, the total BW on the AIE-PL interface is

PLtoAIE = AGB/s * 8 39 = 1.2 TB/s
AIEtoPL =4GB/s 6+ 39 = 0.9 TB/s

DRAM Bandwidth: VCK5000 is equipped with four 4GB
DDR4 72-bit interfaces that can operate at 3200 Mb/s, pro-
viding a bandwidth of 102 GB/s. The access to the DDR is
provided through the integrated Network On Chip (NoC) and
can be done either from the PL or the AIEs.

IV. METHODOLOGY
A. Mapping GEMM on Versal

A workload can be mapped on AMD Versal in several
ways considering resource utilization and performance re-
quirements. We explain our implementation of GEMM here.
As shown in Figure 2, the input matrices are present in
the DRAM. They are read from the DRAM and buffered
into the PL memory (BRAM and URAM) using DMA, and
then moved to the internal memory of the AIEs using PLIO
interfaces. The vector processor of the AIE reads from the
AIE’s memory to perform the computation. The kernel that
runs inside the AIE performs matrix multiplication using a
basic three-loop pattern; the innermost loop iterates over the
reduction dimension (K), and the other two loops over the

(a) Native size:
32x128x32

N
32> |(b) Native size: 32> | (c) Native size: I:l Input A
' 128x32x32 * 32x32x128

| «324 ' I:l Input B

coo Result C

K128

co1 «—1286——>

A
3*2 Co0 cCo1 co02 cCo03

Mo,Ko

e

co2

co3

f <«<——128 41
M?”"K'E. «

MO, Ki
KO,NO

KO,NO

1
1
1
1
1
1
1
1
1
1
1
1
MO,KO —->] 1
> 1
1
1
1
1
1
1
1
1
1
I

Ko,NO

KO,N1 D

MO,K1
K1,NO

M1,K0 ——>

L>
M2,K0 ——>|

| KO,N2
M3,K0 ——>|

| KO,N3 —>|

Fig. 3: Different AIE connectivity leads to different native size.

N

AIE
Mo,K2

K2,NO

M0,K3
K3,N0

input rows (M) and output columns (N). The input read
overlaps with the compute to provide high efficiency.

Running large GEMM workloads requires breaking down
the workload into small parts, known as tiling, to take ad-
vantage of the data reuse inherent in the GEMM operation.
The three levels of memory hierarchy (DRAM, PL memory
and AIE memory) enable us to perform tiling at three distinct
levels: DRAM, PL and AIE. Figure 2 depicts this multi-level
tiling flow where chunks of matrix A and matrix B are copied
to the PL. These chunks present in PL are further broken down
and copied into the AIE memory to perform final computation.
The size of these chunks is called tile size, which is influenced
by the hardware configuration such as number of AIEs and
PL memory. At the PL to AIE level, the tile size is governed
by the group of AIE engines and its connectivity (4 engines
connected using cascade connections), whereas at the DRAM
to PL level, it is governed by the maximum size of PL memory
and the number of AIE groups, while being a multiple of the
PL to AIE tile size. Tiling any GEMM operation comes at
the cost of reading the same data multiple times. This excess
communication is called tiling overhead. Tiling overhead at
the DRAM level is the costliest, which we aim to reduce
as we have limited DRAM BW. Tiling at the PL level has
a reduced impact on performance, as PL-AIE bandwidth is
much higher. The AIE kernel performs tiling inside the kernel
to run the computation. Tiling overhead at this level mini-
mally impacts the performance much because of faster access.
Double buffering is used to overlap communication between
PL and AIEs and the compute. We do double buffering for
both inputs and outputs to ensure complete overlap. This
doubles the memory requirement in the AIE, and restricts the
workload size that can be run inside a single AIE. Double
buffering is also performed at the DRAM-PL interface inside
PL to overlap communication. Multiple levels of tiling add
to the complexity of reduction at the AIE level as well as
PL level. For evaluation, we use synthetic workloads as well
as workloads from popular DNNs. Our synthetic workload
sizes are also influenced by the tile size (workload dimensions
are integer multiples of the tile size), since our goal is to
evaluate the highest compute throughput achievable in the

AIE Array
= == Packet switching (out)

= Broadcast/Circuit switching
= == Packet Switching (Matrix B)
== = Packet Switching (Matrix A)

ﬁ‘ Cascaded connection

D AIE

O PLO

PL Reduction

Fig. 4: CHARM connectivty diagram for 16 AIEs

Versal chip. This approach minimizes fragmentation/padding.
The trade-offs between different tile sizes and their effects on
fragmentation/padding for DNN workloads are left as future
work.

Data transfer between PL and AIE is done using PLIO
interfaces, which are a scarce resource. The simplest way
of sending data is to connect a PLIO with one AIE (one-
to-one connectivity). Packet switching dynamically transfers
data from a PLIO to any AIE that is connected to the same
PLIO. This is essentially achieved by having a header packet
that stores the address of the AIE it wants to reach. This
effectively time multiplexes the data transfer from one source
(PLIO) to multiple sinks (AIEs). Circuit switching statically
connects the same PLIO interface to multiple AIEs, thus
supplying data directly to the engines. This is mainly used for
broadcasting operations. Packet and circuit switching reduce
the PLIO requirement compared to one-to-one communication.
Packet switching trades off performance through serialization,
while circuit switching enables deterministic latency and only
applies when data is broadcasted.

Connections between the AIEs can be designed as per
the application needs. Multiple AIEs can be grouped in
various numbers and ways to perform GEMM operations.
An increased number of AIEs enhances the capability of
handling larger GEMM sizes. This grouping of the AIEs
demands a minimum size of the workload that runs completely
parallel on all the engines. We define this size as the native
size. Figure 3 explains this with examples. On the top, three
different GEMMSs are shown with matrix dimensions, and each
individual block represents a 32x32 chunk. At the bottom, the
connectivity of AIEs is shown for those GEMMs. Figure 3
(a) illustrates the connectivity that leads to an expanded K
dimension, thereby establishing a native size of 32x128x32!.
Figures 3 (b) and (c), on the other hand, show connectivity
that makes the dimensions of M and N longer, respectively.
Workloads smaller than the native size are padded, while larger
ones are divided into chunks of the native size.

CHARM [19] presents a complete framework for map-
ping and running GEMM workloads using its own design
space exploration (DSE) tool that finds a balance between

'The notation MxKxN used throughout the paper denotes a matrix multi-
plication operation involving multiplying a MxK matrix with a KxN matrix
resulting in an MxN matrix.

resource usage and performance. Mapping begins with every
AIE having an individual kernel that runs a small matrix
multiplication (32x32x32) for FP32 and (64x64x64) for INTS.
These engines are then chained together into packs of 4 (FP32)
and 2 (INTS) to perform matrix multiplication and reduction in
a cascaded fashion. It uses a combination of circuit-switched
and packet-switched connections to optimize the PLIO usage.
In order to work efficiently, CHARM uses kernel sizes that
overlap compute and communication for the pack of AlEs.
The engine input is double buffered to overlap computation
with PL to AIE level communication. CHARM uses one kernel
performing dot product and reduction inside a cluster of AIEs.
A reduction outside the cluster must be done in the PL. The
cluster size for CHARM is fixed to 16 AIEs. The PL. memory
also helps reduce the DRAM pressure as it keeps partial results
and reduces the tiling (or blocking) overhead. We use CHARM
for our GEMM implementation.

B. Research Questions for GEMM Implementation on Versal

GEMM workloads can be mapped to Versal’s new recon-
figurable architecture in multiple ways. However, irrespective
of the implementation, there are research questions that arise
about the performance aspects of the architecture. We use
SOTA implementations of GEMM kernels for our analyses
to analyze the performance of GEMM implementation with
these research questions in mind:

o How much perf. can be achieved compared to the theo-
retical peak (i.e. what’s the efficiency)? (Section V-C)

o How much is the overhead of data transfer (both DRAM
to PL and PL to AIE) compared to compute? (V-G)

o How does the performance vary by changing the pro-
gramming model (using intrinsics vs. API)? (V-B)

o How does the performance scale (weak scaling and strong
scaling)? (V-E and V-F)

o How sensitive is performance to workload parameters
(size, shape)? (V-C, V-E, V-F). How much performance
can be achieved on tall/skinny matrix sizes that are
common in real-world DNNs? (V-I)

o How sensitive is perf. to arch. parameters (# AlEs, #
PLIOs, PL memory)? (V-H, V-E, V-F)

o What performance impact do different communication
schemes between AIEs have? (V-D) (V-H)

e What are the maximum bounds on compute and mem-
ory on the Versal hardware? Are real-world workloads
compute-bound or memory-bound? (V-J]).

TABLE I: Versal execution platforms
(FV = Functional Verification, P = Performance)

Platform Simulation Target Speed | Usecase
aiesimulator AIE + AIE & PL Fast FV+P
SwW_emu PL + AIE + Host Fast FV
hw_emu PL + AIE + Host Slow FV+P
HW PL + AIE + Host Fast FV+P
Analytical model | PL + AIE + Host Fast P

C. Experimental Setup

We use AMD Vitis 2022.2 for simulation, synthesis and
implementation on VCKS5000 using standard Vitis flow. In

our GEMM implementation, the AIEs perform the entire
computation as described in Section IV-A. AIEs receive inputs
from the PL and send outputs to the PL. The PL interfaces
with the DRAM. The PL logic (i.e. interfacing with AIE and
DRAM) is programmed using High-Level Synthesis (HLS).
The AIE array runs at a frequency of 1.25 GHz, and the
PL design operates at 230 MHz. The bitwidth of each PLIO
interface is configured to be 128 bits and the bitwidth of the
design’s ports for performing reads and writes is 512 bits.

Platforms: There are four execution platforms [6] pro-
vided by AMD as listed in Table I. The aiesimulator
is used for AIE graph simulation only. Results from the
alesimulator are cycle accurate and provide insights into
the detailed breakdown of execution time within the AIEs and
the data transfer between AIEs and PL. The sw_emu enables
a complete application simulation that includes AIEs, PL and
PS. This platform is only used for functional verification and
has the least compile/debug time. The hw_emu does hardware
emulation of the complete application. This execution platform
is mainly used to get performance insights into the entire
application. Its emulation speed is very slow. Lastly, the
HW platform synthesizes the PL and packages the entire
application to run on VCK5000. Due to long synthesis and
implementation times, we limit our hardware runs to record
only the final end-to-end performance.

DRAM interfacing: VCK5000 features just four vertical
lanes for linking the PL with the NoC ports, each offering a
bandwidth of 16 GB/s. Thus, if we read DRAM through all
the lanes at the same time we can get 64 GB/s of bandwidth
(same applies to writes). Each vertical lane consists of 8
interleaved virtual channels. Consequently, if after placement,
all the design’s ports (generated by HLS) connect to the same
vertical lane, the bandwidth gets limited to 16 GB/s. During
our analysis, we did not find a direct way to assign NoC
ports to the design’s ports through the Vitis design flow. The
NoC compiler infers the connectivity based on the bandwidth
requirements specified in the Quality of Service(QoS) settings
of the NoC. However, specifying the right bandwidth does not
assign the design ports to separate physical lanes.

We attempted to increase the utilization of the DRAM
bandwidth by adding more ports on our design (through HLS
pragmas). The existing CHARM configuration features two
read ports and one write port (2rlw), resulting in 20 GB/s
bandwidth utilization. Increasing this to four read ports and
two write ports (4r2w) results in a bandwidth of 34 GB/s.
Increasing the design’s ports further did not enhance the
DRAM bandwidth utilization. Thus, we could only achieve
34% bandwidth utilization on the chip. This limited bandwidth
is primarily due to the design’s ports being assigned to virtual
channels of the same vertical NoC lane. This connectivity is
not configurable through the Vitis design flow.

V. RESULTS

A. Analytical model accuracy

We develop an analytical model by extending the CHARM’s
analytical model to generate performance estimates without

going through the tedious synthesis and implementation pro-
cess and to get insights into the execution breakdown. It first
calculates the time consumed to complete the execution on
the data present in the PL as given by Equation 1. The data
transfer between the PL and AIE (both read and write) can be
overlapped with AIE compute time due to double buffering.
Hence, the max of the data transfers and the AIE compute
time is taken and multiplied with the total tiles in the PL.

AIE CYCLES = #PL_Tiles x max(PL_to_AIE 4,
PL_to_AIEg,Timecompute, AIE_to_PL¢c) (1)

Final_Time = #DRAM _Tiles x max(DRAM _to_PL 4,
DRAM to_PLp,AIE CYCLES,PL _to_DRAM¢)
2

Double buffering is also used in the PL. This helps to overlap
the DRAM read and write with the AIE_CYCLES from
Equation 1. The max of DRAM read, write and AIE_CYCLES
is taken, and multiplied with the total number of tiles in
DRAM to get the final time as given by Equation 2.

In our analytical model, we expand upon CHARM’s
framework to accommodate the bandwidth specifications of
VCK5000. We improve the existing design by incorporating a
greater number of parallel DRAM access ports and introducing
“access ports” as an additional parameter for design space
exploration. Our model also extracts execution breakdown,
given a workload size and hardware configuration. This helps
understand performance bottlenecks. To ensure the reliability
of the model, we run several workloads on the hardware and
compare the performance with the results from the analytical
model. We calibrate the model to add a fixed setup duration of
100us that is consumed by the AIE engines. This increases the
accuracy of estimation, especially for smaller kernels where
the overall execution time is low. Our experiments show that
the analytical model’s estimate are within £5% of the actual
hardware execution time.

B. Comparison of kernel performance with intrinsics and API

We analyze the performance of the GEMM operation
mapped to a single AIE. Kernel sizes of 32x32x32 (for FP32)
and 64x64x64 (for INTS) are executed. These sizes provide
the best performance for single AIE execution because they
maximize the utilization of the AIE internal memory via
double buffering. Furthermore, they provide significant overlap
between communication and computation. More details on
kernel size selection can be found in Section V-C. Figure
5 (left) shows the kernel efficiency for two different design
methods, namely using API[2] and intrinsic[4]. Results here
are obtained using aiesimulator. The API we use is called
aie: :mmul and the intrinsic we use is mac16 (for int8) and
fpmac (for FP32). Kernel efficiency is defined as the ratio
of the theoretical time based on the peak throughput of the
AIE to the observed execution time. Efficiencies over 90%
are observed for both FP32 and INTS precisions. For INTS,
the efficiency of the API-based and intrinsic-based kernels

1007 96 92.6 8] [F7a] == inuinsi
— . 57T ntrinsic
86.8 74 3 APl
:o E==l Compute
s 80 6 - X3 Wwrite
S o] | =3 Read
g Q@ Total
g 601 — 51 :' 1 aiesim time
§ El | | =3 Hw Runtime
& 46.6 @ X
pir] £ o
< 401 = o
2 o
c 0
b o
¥ or
20 o
s

INT8
64x64x64

FP32 INT8 FP32
32x32x32 64x64x64 32x32x32

Fig. 5: Single AIE kernel results comparing implementations using
intrinsic and API. FP32 APIs are not as efficient as INT8 APIs
are, compared to intrinsics. Kernels with APIs show 46% and 7%
reduction in performance for FP32 and INTS respectively. Results
obtained using aiesimulator and hardware runs.

do not differ significantly, but for FP32, the intrinsic-based
kernel shows over 2x higher efficiency compared to the API-
based kernel. Although lower in efficiency, API-based kernels
offer high portability across various Versal devices (hardware-
independent code) and simplify programming.

Figure 5 (right) shows a breakdown of the time consumed by
the kernel. The read and write operations are stacked because
of their sequential execution, while the compute operations
are executed in parallel with the communication (read/write),
as demonstrated by the overlapping bars. Read indicates data
transfer from PL to AIE, and Write indicates data transfer
from AIE to PL. Our intrinsic-based kernels clearly show
significant overlap for both FP32 and INT8, whereas API-
based kernel is heavily compute-bound for FP32, indicating
further scope for improvement. The figure also shows the
hardware execution time on top of each bar in a pink box. This
time includes the time consumed by the HLS kernel execution
in the PL. and DRAM transfers, including the AIE execution
and PL-AIE data transfer. The hardware execution time is
higher than the aiesimulator time because of two reasons.
Firstly, transferring data from DRAM to the PL consumes
time, and the efficiency of DRAM bandwidth is low for
smaller sizes, leading to a longer transfer time. Secondly, the
AIE-to-PL communication has a non-overlapping data transfer
overhead that cannot be overlapped with AIE compute.

Summary on kernel programming style (Intrinsic vs
API): For best performance, intrinsics should be utilized as
they offer finer control and low-level access; however, these
kernels are device-specific and lack portability. When targeting
multiple platforms, API-based kernels are recommended due
to their ease of use and portability, with minimal performance
loss for INT8. For FP32, using intrinsics is better until
vendor’s API implementation is improved. (Figure V-B)

C. Variation in single AIE perf. for different workload sizes

Figures 6 and 7 show the results of single AIE kernels for
different shapes and sizes. We use symmetric (square matrices)
and asymmetric (fat and skinny matrices) shapes to cover
multiple performance scenarios. The total memory addressable
by a single AIE amounts to 32KB x 4 = 128 KB, where

2K MAC 8K MAC 32K MAC 131K MAC
— 100 4K MAC 16K MAC 65K MAC 262K MAC
2 g = o FOE
> 80
[}
=4
.2 60
)
E 40
2 2
g
X 0
50
25 Read N Write &~ Compute %‘
ERE
2 50
0.0 mmﬁﬂmmm%ﬂ@r‘v%ﬁ
T 0 0w 00O N0 N0 NONO ST OTNO TSNS S
X 5 X 4 X M X M -A M- MmMm 4 © X © M- © © M O O
N X & X 0 X N X X X X X X X & X X X X X X X X
MmO O ANNTMHMANNNTNB DB OIF I I I NI I S
X / X M 4 X X MMM O MAN X X © O © O MV o Y
W X 0 X X &N N X X X X X = < & X X X X X X X X
o W oM M 0O N W O N X © VW 0o N < O < < N <
— — m A A M O m © A © O M O

—
Workload Size

Fig. 6: Single AIE kernel efficiency (top) showing the effect of work-
load size and shape on efficiency. Bars with dots represent workload
sizes that require memory from neighboring engines. The execution
time breakdown (bottom) shows compute and communication over-
lap. Results obtained using aiesimulator. Precision=FP32.

2K MAC 16K MAC 65K MAC 262K MAC
N 4K MAC 32K MAC 131K MAC N 2M MAC
& 100 8K MAC
> 80
=
2 60
E a0
@ 20
5 OHHHHHHHHHHHH HHHH HHH HAH HHH
15 774 Read K] Write E&J Compute

10

2
3

8x128x128 === o
64x64x64 5572
128x16x128 EE5Z]
128x128x16 it~
16x128x128 5=t~

al
hN|
N

8x64x8 {1
16x32x16{
8x128x8{1
32x8x32§
32x32x8 1
8x32x32 {3
32x16x32 4,

Time (us)
o N
64x8x64 4,
64x64x8 =3
8x64x64 =<3
128x8x128 XXX,

32x64x32 53

64x16x64 &
64x64x16 5
16Xx64x64 5=
64x32x64 52,
64x64x32 {555
32x64x64 550

128x128x8 friisw=s

8x32x8
16x16x16
32x32x16 48
16x32x32 43
16x64x16 {3
32x32x32 ()
16x128x16 §D

128x128x128 F5S5 A0 | [—

Workload size

Fig. 7: Single AIE kernel efficiency (top) showing the effect of work-
load size and shape on efficiency. Bars with dots represent workload
sizes that require memory from neighboring engines. The execution
time breakdown (bottom) shows compute and communication over-
lap. Results obtained using aiesimulator. Precision=INTS.

32KB is its own memory and 96 KB are from neighboring
AlEs. Using kernel sizes that incorporate neighboring memory
enables one to employ larger kernels, marked by dots in
Figure 6 and 7 (top). While larger kernels offer increased
computational throughput, they are not scalable across the
entire AIE array. When the kernels are small enough to fit
within a single AIE, they can be easily scaled across the
entire AIE array. To enhance performance, inputs are double-
buffered to overlap computation with data transfer. However,
the AIE execution model places a constraint on each individual
double buffer to be contained within a single AIE. Therefore,
we cannot have a double buffer occupying more than 32KB
of space. This limits the individual matrix size to 16 KB,
translating to 4k elements for FP32 or 16k for INTS. Thus,
for a single AIE execution, the maximum workload size is
64x64x64 for FP32 and 128x128x128 for INTS. Disabling

the double buffering removes the overlap and makes the
communication and compute operations sequential.

Kernel efficiency is defined as the ratio of the theoretical
time based on the peak throughput of the AIE to the observed
execution time (max of compute and communication). FP32
kernels (Figure 6 (top)) achieve efficiency from 70% to
98%. Workloads with higher communication time compared
to compute time show low efficiency. For INT8 (Figure 7
(top)), only a few kernels show high efficiency. INT8 compute
grows 16x (128 MACs_per_cycle / 8 MACs_per_cycle), while
communication data reduces by only 4x (32 Byte / 8 Byte)
compared to FP32, resulting in most kernels having higher
communication time than compute.

Figure 6 (bottom) shows the execution and data transfer
breakdown for various matrix shapes and sizes for FP32
precision. The communication from PL to AIE and AIE to PL
overlaps with compute due to double buffering and is shown
as an overlap in the graph. Our implementation uses separate
PLIO resources for Matrix A, B, and Out. Thus, the read of
Matrix A and B is overlapped, and the max of both reads
is shown. Majority of the workloads are compute-bound as
the FP32 throughput of AIEs is only 8 MAC/cycle. Figure
7 (bottom) shows the same breakdown for INTS8 precision.
Due to high INTS8 throughput (128 MAC/cycle), most INT8
workloads are communication-bound except 128x128x128.
For all further experiments, our kernels use 32x32x32 for FP32
and 64x64x64 for INTS, as these sizes provide high efficiency
and excellent compute-communication overlap. These sizes fit
within the local memory of a single AIE without requiring
memory from neighboring AIEs, making them scalable across
the AIE array.

Summary on selecting AIE kernel size: Kernel size and
shape selection are highly design-specific. For optimal perfor-
mance, kernels must be both efficient and scalable throughout
the AIE array. For example, kernels such as 16x128x16 (for
FP32) and 128x128x128 (for INT8) have the highest efficiency
but require using the memory of neighboring AIEs. Scaling
such kernels to the full AIE array can lead to underutilization
of the array. Another design-specific factor is the overlap of
memory (data transfer) with computation time. For example, in
our case using 16x128x16 size for FP32 precision in a 4-AlIE
configuration does not allow for overlapping the compute and
data transfer time (3.35us compute time vs. 8.8us data transfer
time). Hence, choosing kernels with slightly lower efficiency,
such as 64x64x64 for INT8 and 32x32x32 for FP32, can lead
to better overall performance.

D. Effect of different communication schemes between AIEs

Communication between AIEs can be done using multi-
ple interfaces such as Via-Switch Connections, Buffer, and
Cascade connections (shown in Fig 1). Cascade connections
directly communicate partial sums to the neighboring AIE.
Via-Switch Connections transmit data using the switches from
one AIE to any other AIE. Buffer connections enable accessing
the memory of three neighboring engines directly. The usage
of Buffer stalls the consumer AIE until the data is completely

FP32, # AlEs = 16 INT8, # AIEs = 16

Default (Cascade) ————————11 —1
Buffer (Double) ————7731.01 /101
Buffer (Single) 11.32 11.78

Via-Switch (Near) /—1.03
Via-Switch (Far) {—/—11.027
Via-Switch (Random) E——""—"71.06

0.0 05 1.0 15 00 10 20 30 40
FP32, # AlEs = 384 INT8, # AlEs = 256

Default (Cascade) —————11 ™
Buffer (Double) 11.22 11.66
Buffer (Single) 11.32]1.76
Via-Switch (Near) {1,014]1.8
Via-Switch (Random)f:ﬂ033 ‘ :Ilv16 ‘ ‘
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0

Time (Normalized to Cascade) Time (Normalized to Cascade)

Fig. 8: Execution time comparison of different AIE to AIE commu-
nication schemes normalized to Cascade. Left is FP32 with 16 AIEs
(Top) and 384 AIEs (Bottom) without the PL. Right is INT8 with 16
AlEs (Top) and 256 AIEs (Bottom) without the PL. Results obtained
using aiesimulator

produced by the producer AIE. Buffers can be implemented
either as a single Buffer (i.e., serializing read and write) or as a
double Buffer (i.e., enabling simultaneous read and write). The
double Buffer essentially overlaps the computation between
two AlEs, enabling both to run simultaneously.

To quantify the difference in performance, we set up an
experiment to perform matrix multiplication in the style shown
in Figure 4. Figure 8 shows FP32 on the left and INTS8 on the
right. We first experimented with fewer AIEs (16 AIEs for
both FP32 and INTS) and then with the maximum possible
AlEs (384 AIEs for FP32 and 256 AIEs for INTS8). For fewer
AlEs, the double Buffer increases the execution time by 1%
for both FP32 and INTS, while the single Buffer increases it by
32% and 78% for FP32 and INTS respectively. When we use
more flexible Via-Switch connections where the AIEs kernels
are placed near, far, or random (i.e., placing of kernel is done
by compiler) instead of near-neighbor cascade connections, we
see upto 6% increase in execution time for FP32. For INTS, the
Via-Switch connections show a 3.17-3.3x increase in execution
time, significantly higher than FP32. This can be attributed to
the fact that INT8 exhibits a compute throughput that is 16
times greater than that of FP32, thus making the execution
time more sensitive to AIE to AIE communication.

When considering maximum possible AIEs for FP32, dou-
ble Buffer increases the execution time by 22% while sin-
gle Buffer increases the execution time by 32%. Via-Switch
connections show a 1%-3% increase in execution time. For
INTS, execution time increases by 66% and 76% for double
Buffer and single Buffer respectively. Near and random Via-
Switch connections show an 16%-80% increase in execution
time. The use of maximum possible AIEs does not enable Via-
Switch (Far) connections, since most of the AIEs in the array
are occupied. Thus, our experiments conclude that cascade
connection demonstrates the lowest latency for both FP32 and
INTS scenarios. The rest of the experiments in this paper use
Cascade connections.

Summary on choosing AIE to AIE communication inter-
face: For low-latency communications, users can place kernels
in neighboring AIEs and utilize either cascade connections

3 FP32
1500 1004

[INT8

Time (ms)

501

=
v o
o o
o o

c3{]
ca{]
cs{]
STa—
co{]

clo]]

c1{]

© ~
o o

C1

<}
Cc2

Fig. 9: Strong scaling performance analysis. Workload size used
is 4096x4096x4096 for each configuration. Results obtained using
hardware runs.

for streaming needs or buffer connections for non-streaming
needs. Communications that can tolerate higher latencies can
relax placement constraints and use switches to communicate
with far-off AIEs using streams. (Figure 8)

For the next set of experiments, we define a set of hardware
configurations with implementations based on CHARM. Each
configuration has a unique number of AIEs, which determines
the number of PLIOs used in the design and the resulting
native size. Each configuration uses 32x32x32 and 64x64x64
kernel sizes for FP32 and INTS, respectively, due to its
high kernel efficiency, scalability and good overlap between
compute and communication as explained in Section V-C. All
AIE to AIE communication is carried out using the cascade
interface due to its lowest communication latency, as shown in
Section V-D. All kernels use intrinsics because of performance
benefits as observed in Section V-B. We have six configurations
for FP32 and five configurations for INTS, as shown in Table
1I. All configurations use 4r2w DDR port setup to support 34
GB/s BW.

TABLE II: Hardware configurations involving multiple AIEs

Configuration Precision # AIEs | Native Size # PLIOs
Cl FP32 16 32x128x128 7
C2 FP32 32 64x128x128 10
C3 FP32 64 128x128x128 20
C4 FP32 128 128x256x128 36
C5 FP32 256 256x128x256 64
C6 FP32 384 384x128x256 96
C7 INTS 16 128x256x128 14
C8 INTS 32 128x256x256 20
C9 INT8 64 256x256x256 40
C10 INTS8 128 256x512x256 72
Cl11 INT8 256 256x512x512 112

E. AIE strong scaling analysis

Figure 9 shows the performance scaling for a workload size
of 4096x4096x4096 for various configurations of the AIEs.
The execution time shown is measured on hardware. The
graph depicts a strong scaling scenario in which the workload
remains the same but the number of AIEs increases from left
to right. The execution latency decreases exponentially from
left to right. The same effect is seen with an INT8 workload
as well.

F. AIE weak scaling analysis

Figure 10 shows execution time as the number of AIEs
increases. The workload here scales with the number of AIEs.

200 200
Time(us)
1504 —=- Expected Time(us) 1504
m <} | @
=) © =]
= ol | = <
o 1001 OI o 100 <
E | e v E
T 50 I
0= y g T g g 0= g y T T
Cl C2 C3 C4 C5 C6 c7 C8 Cc9 Cl0 C11
(a) FP32 (b) INT8

Fig. 10: Weak scaling performance analysis. Workload size is the
same as native size for each configuration. Results obtained using
hardware runs.

200 4 3 Analytical Model Time
[AIE cycles(compute + PL rd/wr)
— 1504 ZA Compute
g ESZ1 PL-AIE Non overlap data tx
T —— [DDR
100 4
E [HW exec time
50 A ng
L W] B B e
C1 c2 Cc3 c4 c5 Cé6
154 . N
[Analytical Model Time
3 AIE cycles(compute + PL rd/wr)
— [ZZA Compute
E 10 21 PL-AIE Non overlap data tx
g [DDR
F o gz— [HW exec time
0 T T : T |, | = 1
Cc9

T T
c7 c8 c10 C11

Configurations

Fig. 11: Analysis of execution times for different hardware setups.
A breakdown chart can reveal the specific performance limitations
for each configuration. Workload size = 2048x2048x2048. (Top =
FP32, Bottom = INT8). Results obtained using analytical model and
hardware execution.

The execution time increases for configurations towards the
right for both FP32 and INTS8. The maximum difference for
FP32 and int8 is 100 % and 1.4x, respectively. The time
consumed by reading and writing back results increases with
workload size. This observed rise in overall time can be
attributed to the increased memory transactions while the
computation time remains constant.

G. Multi AIE execution breakdown analysis

We extensively analyze the communication and computing
aspects of the Versal architecture for various workload sizes
mapped to multiple AIEs. Figure 11 shows the execution time
and breakdown for a workload size of 2048x2048x2048 in
various configurations for both FP32 and INT8 precision. As
the number of AIEs increases, a strong scaling behavior is
observed, similar to Figure 9. The observed HW execution
time is close to the time reported by our analytical model
for different configurations. The breakdown consists of the
time consumed by DRAM communication (green), the PL
and AIE communication, and the computation on the AIE.
The AIE cycles (blue) consist of AIE compute cycles and
exposed communication cycles between PL and AIE. Even
though the AIE compute and data transfer between PL and
AlE is overlapped in the kernel implementation, there is some

exposed non-overlapping time spent in data transfer from PL
to AIE. This overhead is repeated once for each DRAM tile
transfer from PL to AIE. This makes it directly proportional
to the number of tiles in DRAM. As the configuration changes
from left to right, the DRAM tiles are reduced, indirectly
reducing the non-overlapping overhead. As we move to the
right from configuration C4, the computing power of the
configurations increases significantly. As a result, DRAM to
PL transfer (green) dominates the overall time, making the
workload memory bound.

The DRAM to PL transfer time is also significantly im-
pacted by double buffering. Double buffering increases the
BRAM requirement by 2x, while single buffering stores a
larger input/output matrix within the same BRAM space. Thus,
using single buffering can indirectly reduce the tiling overhead
on DRAM while serializing the DRAM to PL with PL to AIE
communication. Since all of our designs use double buffering,
we briefly studied the effect of using single buffering instead of
double buffering. We evaluate both FP32 and INT8 precisions
using multiple AIE configurations. For FP32, single buffering
increases the total execution time for all configurations. For
example, in configuration C6, the time increases from 9.95
ms (double buffering) to 14.72 ms (single buffering). Here,
the AIE compute time is equal to the DRAM to PL transfer
time, so single buffering serializes the DRAM to PL transfers,
adding more latency. However, for INT8, we observe that some
configurations did indeed do better with single buffering. For
example, the time reduces from 0.92 ms (double buffering) to
0.77 ms (single buffering) for C11.

Summary on using multiple AIEs: Using the maximum
number of Al engines for a problem may not always lead to
better performance. The off-chip memory bandwidth (DRAM
BW) and the on-chip communication bandwidth (PLIO BW)
can limit performance as shown in Figure 11. Different AIEs
can run different kernels in parallel, unlike SMs in a GPU.
Thus, we suggest utilizing these AIEs for operations that do
not require external data (from PL or DRAM). Operations
such as activation functions (ReLU), softmax, and elementwise
addition can be performed on the output of AIEs running
GEMM operations by implementing kernels in unused AIEs,
instead of implementing them in the PL. This approach avoids
unnecessary data movement between AIE and PL or DRAM,
improving overall performance. The decision between using
single buffering versus double buffering should be made on
the basis of the AIE compute time and the DRAM to PL
transfer time. Single buffering is advisable exclusively when
the DRAM to PL time considerably exceeds the AIE compute
time.

H. Effect of PLIO on performance

PLIO facilitates data transfer between PL and AIEs. Section
IV-A delves into communication methods, such as packet
switching and circuit switching. Packet switching facilitates
communication with multiple AIEs, but it does so in a se-
quential manner, whereas circuit switching is only applicable
for data broadcasting. In this experiment, we analyze the

____________ e L S S
oo BN
O suo T
______ L0

@1« @@>[1«®@ @ <@ 1«
@>[1«@e>[1«@ @ <> 1@
@[1«@@>[1«@ @« <@
@[« @ J«@ @[1« [1«®

©
©

Fig. 12: Four of the 12 schemes used for understanding the effect
of PLIOs on performance. The design employs 16 AIEs across all
schemes. Scheme (a) exhibits the lowest PLIO utilization, resulting
in poor performance. Schemes (b) and (c) achieve a balance between
PLIO usage and performance, while scheme (d) demonstrates maxi-
mum PLIO utilization.

impact of PLIOs on GEMM performance. Every single PLIO
port is configured with a bus width of 128-bit. We fix the
number of AIEs to 16 and vary PLIO usage from 3 to 36
for FP32 and 3 to 34 for INT8. Figure 13 illustrates the
impact of varying PLIOs for configurations C1 (FP32) and
C7 (INTB). For each of the twelve PLIO count values (shown
on the x-axis), different connectivity schemes such as packet
switching, circuit switching, or a mix are used. In Figure 13
(left), the scheme with 3 PLIOs uses only packet switching,
and the scheme with 36 PLIOs uses only circuit switching.
The GEMM latency reduces by 4.6x for circuit switching at
the cost of 12x increase in PLIOs. It also shows the effect
of PLIOs on the scalability of the design when extended
to the full AIE array. The 36 PLIO scheme for a 16 AIE
design can only be replicated 7 times before exhausting the
available PLIOs (7*36 = 252). This results in a overall AIE
array utilization of 28% (7*16 = 112 AIEs) leaving 288 AIEs
unused. In contrast, a 7 PLIO scheme for the same 16 AIE
design can be replicated 25 times using 175 PLIOs using
all 400 AIEs (100% utilization). Similar conclusions can be
derived for the INT8 designs (Figure 13 (right)). Figure 12
shows four schemes out of these tweleve schemes.

Figure 12(a) contains three PLIOs: two for input matrix A
and B and one for output matrix C. Here, packet switching
is the only communication method that can meet the GEMM
application’s requirements. The 16th AIE has to wait 16 time
steps, resulting in the longest execution time for this scheme.

Figure 12(b) contains seven PLIOs: two for input matrix
A, four for input matrix B, and one for output matrix C. Input
matrix A uses a combination of circuit and packet switching

1 —@— Array util (%) = 1 —@— Array util (%) =
015 1 [e—e—e—=. 100 — [7n 15 1|9 0—® F100 —
2 52 E
o 101 > [@ 10 >
£ tso £ € tso £
i: 5 [} |: 54 ©

< oonl, =<
o AL PP P BT, < oA P I I L, <
3 4 6 7 33 36 3 6 8 14 18 34
PLIOs # PLIOs

Fig. 13: GEMM performance sensitivity to number of PLIOs and
the achievable AIE array utilization. (Left = FP32, Right = INTS).
Left y-axis represents execution time for 16 AIEs running a native
workload size of 32x128x128 and 128x256x128 for FP32 and INT8
respectively. Right y-axis shows the maximum possible utilization
of whole AIE array for each scheme. For FP32 (Left) and INTS
(Right), 7 PLIOs and 14 PLIOs provide the optimal balance between
resource efficiency and performance respectively. Results obtained
using aiesimulator.

because the rows of matrix A can be reused for the columns in
matrix B, enabling broadcasting or circuit switching, whereas
the data across the reduction axis is packet switched. Input
matrix B uses four PLIOs representing different columns of
B, and the reduction axis is packet switched across the AIEs.
This approach overlaps compute and data transfer across AIEs
for all discussed FP32 configurations.

Figure 12(c) contains 14 PLIOs: eight for input matrix A,
four for input matrix B, and two for output matrix C. Input
matrix A has eight PLIOs that each packet switch between two
AlEs. Input matrix B uses four PLIOs that combine packet
switching and circuit switching. Compared to (b), this scheme
takes advantage of reuse in matrix B instead of matrix A.
This scheme applies to all INT8 experiments in the previous
section. As INTS8 is 16 times faster than FP32, more PLIOs
are needed to balance compute and data transfer effectively.

Figure 12(d) contains 36 PLIOs: 16 for the input matrix
A, 16 for the input matrix B and 4 for the output matrix C.
Each AIE has its own PLIO. High PLIO utilization allows for
higher parallel data transfer, showing the best performance.

Thus, our experiment shows that as we move from three
PLIOs to 36 PLIOs, performance improves by 4.63x for FP32
and 6.60x for INTS.

Summary on using PLIO: The amount of PLIO used can
dictate the performance of AIE kernels. Adding more PLIOs
yields diminishing returns (Figure 13). More AIE usage will
typically mean more PLIO usage. Therefore, high PLIO usage
per AIE can lead to unutilized AIEs.

TABLE III: Selected GEMM workloads from popular DNNs

Workloads M | K | N ID
BERT 3072 4096 1024 | BI1
ViT 3072 1024 4096 | V1
Llama2-13B 13824 5120 4096 L1
Llama2-34B 6656 20480 4096 | L2
8192 128 3584 | L3

Llama2-70B | 4000 256 8192 | L4

L Analysis of real-world workloads

We analyze popular workload shapes and sizes from state-
of-the-art DNNs such as Llama and BERT. Table III lists

LoadA LoadB AECYAES SoreC

» Workoad:B1] 207 = T Vbrkioad: Bl

] [=m ® [
0 Workioad: V1 A= T WWorkicad: Vi

" T e em &I
_® Wokood 1| [T [Voo T

g0 Tl W< e it
£ Vordodi 2] | _Woikioad:
: R =8 == : @ [R
2 Workload: .3 2 | Workioad: .3
| Bl Bl Blaal Rl B
Workioad: 14] 201 BT | 1 Workioad: L4
0 K B Bl | Rird Rird

g

fi
$F o f& I G g
(b) #AIE 25

Fig. 14: Effect of changing AIE kernel size, DRAM bandwidth, and
number of AIEs on various real-world workloads. Results obtained
using analytical model.

(o)}

some shapes and sizes of GEMM from these networks. We
can observe that these workloads are not square, but they are
tall, fat, or skinny. We analyze the workloads in Table III
with an analytical model to obtain execution breakdown and
latency. To obtain the best performance, we utilize the insights
from the performance analysis in previous sections and use
the most efficient kernel size for FP32 (32x32x32), with the
most DRAM bandwidth (34 GB/s using 4r2w), and the C6
configuration (384 AIEs and 96 PLIOs). To demonstrate this
provides the best performance, we vary the number of design
ports from 2rlw to 4r2w (which varies the achieved DRAM
bandwidth from 20 GB/s to 34 GB/s), vary the kernel size
from 32x32x32 to 64x64x64, and vary the number of AIEs
from 384 to 256 (hence, PLIOs from 96 to 64). Figure 14
shows the results. The hatched bars indicate the bottleneck.

In workloads B1, V1, L1, and L2, the initial constraint
is caused by A matrix load that points to a DRAM bottle-
neck. By enhancing the DRAM bandwidth to 34 GB/s, the
limitation shifts from load A access to PL-AIE execution
cycles. Similarly, workloads L3 and L4 are constrained by the
output C matrix store operation. This is attributed to the big
M and N dimension and small K dimension. This is caused
by the limited DRAM bandwidth. Higher bandwidth reduces
execution time but not the primary bottleneck.

J. Roofline model

Figure 15 illustrates the roofline plot for AMD Versal
VCK5000 for INTS precision. We draw multiple max compute
throughput lines - one for each configuration from Table
I because each configuration has different number of AIEs
resulting in different peak throughput. PL compute (from DSPs
and CLBs) is not considered for this plot. We show two distinct
bandwidth (BW) limits: one corresponding to DRAM BW and
the other corresponding to the PLIO BW.

The workloads shown in Table III are plotted on the roofline.
Looking at the red dots, we observe that the workloads from
BERT, ViT and Llama?2 (13B,34B) are compute bound as they

MAX 400 AIE: 128 TOPs

100 1

10 1

Performance [TOPs/s|

10 100 1000
Operational Intensity [OPs/Byte|

Fig. 15: Roofline plot for workloads in Table III. All executions use
4r2w DDR port setup for each workload. Results obtained using
hardware runs.

appear to the right of the ridge point, whereas the workloads
from Llama2-70B (L3, L4) are DRAM BW bound.

Although the VCKS5000 features an aggregate internal PL
memory of 24MB, including both BRAM and URAM, the
effective on-chip storage capacity is lower. To keep AIEs fed
and busy, the available BRAM ports need to be maximized
to achieve high BRAM bandwidth, resulting in data being
distributed across numerous BRAMs, each of which may
be underutilized. Furthermore, implementing double buffer-
ing in the PL to overlap AIE computation with PL-to-AIE
data transfer increases the BRAM requirement. Consequently,
storing the entirety of a 24MB input on-chip is impractical,
necessitating DRAM data tiling. Tiling results in increased
memory transfers, which reduces the workload’s operational
intensity, pushing the workload towards the left in the roofline
plot. The green circles show the same workloads when tiling
overhead is included, making all of them DRAM BW bound.
Hence, while the theoretical maximum compute throughput
ceiling is 128 TOPS, this performance is unattainable for these
workloads due to the limited DRAM BW.

Another key observation from the roofline plot is that the
higher PLIO BW cannot be fully utilized due to the limited
DRAM BW. However, leveraging the PL memory as local
storage can help mitigate some of the limitations imposed
by the restricted DRAM BW. To take full advantage of the
internal PLIO BW, the entire application must fit within the
PL memory, a scenario only achievable for smaller workloads.

K. Discussion: Adaptability to 2% generation Versal devices

AMD Versal AIE-ML is the second generation of Al
Engines optimized for machine learning workloads. Our qual-
itative analysis maintains its validity and relevance for the
AIE-ML architecture. However, the quantitative results are
expected to change due to the enhanced features of AIE-ML,
including increased AIE compute throughput, larger internal
memory, and improved AIE-AIE bandwidth. Similarly, the
analysis methodology developed in this work can be readily

applied by other researchers to conduct similar analyses on
AIE-ML. Our analytical model can also be easily adjusted to
be used for AIE-ML.

VI. CONCLUSION

This paper presents a thorough examination of AMD Ver-
sal’s performance for GEMM workloads. We pose a set
of research questions related to the performance of GEMM
workloads and set up experiments to answer those questions.
We use SOTA implementations and their variations to perform
this analysis. We offer a comprehensive set of insights derived
from our analysis to assist developers in crafting efficient
designs.

Our analytical model can be used by researchers and
developers to quickly estimate performance. This model,
along with our code and experimental setup, is available for
use at: https://github.com/kmhatre14/GEMM_Performance_
Analysis_on_AMD_Versal_VCK5000.

REFERENCES

[1] “NVIDIA TENSOR CORES,” 2020. [Online].
/Iwww.nvidia.com/en-us/data-center/tensor-cores/

[2] “Al Engine API User Guide.” 2022.

[3] AMD/Xilinx, “Versal ACAP Al Engine Architecture Manual (AM009).”
2021.

[4] ——, “Al Engine Intrinsic User Guide.” 2022.

[S] ——, “Al Engine Kernel and Graph Programming Guide (UG1079).”
2022.

[6] ——, “Versal ACAP Al Engine Programming Environment User Guide
(UG1076).” 2022.

[71 N. Brown, “Exploring the versal ai engines for accelerating stencil-
based atmospheric advection simulation,” in Proceedings of the
2023 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA °23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 91-97. [Online]. Available:
https://doi.org/10.1145/3543622.3573047

[8] P. Chatarasi, S. Neuendorffer, S. Bayliss, K. Vissers, and V. Sarkar,
“Vyasa: A high-performance vectorizing compiler for tensor convolu-
tions on the xilinx ai engine,” in 2020 IEEE High Performance Extreme
Computing Conference (HPEC), 2020, pp. 1-10.

[9] P. Chen, P. Manjunath, S. Wijeratne, B. Zhang, and V. Prasanna,

“Exploiting On-Chip Heterogeneity of Versal Architecture for GNN

Inference Acceleration,” in 2023 33rd International Conference on

Field-Programmable Logic and Applications (FPL). Gothenburg,

Sweden: IEEE, Sep. 2023, pp. 219-227. [Online]. Available:

https://ieeexplore.ieee.org/document/10296434/

B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx

adaptive compute acceleration platform: Versaltm architecture,” in

Proceedings of the 2019 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, ser. FPGA ’19. New York, NY,

USA: Association for Computing Machinery, 2019, p. 84-93. [Online].

Available: https://doi.org/10.1145/3289602.3293906

N. P. e. a. Jouppi, “In-datacenter performance analysis of a tensor

processing unit,” SIGARCH Comput. Archit. News, vol. 45, no. 2, p.

1-12, jun 2017. [Online]. Available: https://doi.org/10.1145/3140659.

3080246

N. Perryman, C. Wilson, and A. George, “Evaluation of xilinx versal

architecture for next-gen edge computing in space,” in 2023 IEEE

Aerospace Conference, 2023, pp. 1-11.

G. Singh, A. Khodamoradi, K. Denolf, J. Lo, J. Gomez-Luna, J. Melber,

A. Bisca, H. Corporaal, and O. Mutlu, “SPARTA: Spatial Acceleration

for Efficient and Scalable Horizontal Diffusion Weather Stencil Com-

putation,” in ICS, 2023.

E. Taka, A. Arora, K.-C. Wu, and D. Marculescu, “MaxEVA:

Maximizing the Efficiency of Matrix Multiplication on Versal Al

Engine,” Nov. 2023, arXiv:2311.04980 [cs]. [Online]. Available:

http://arxiv.org/abs/2311.04980

Available: https:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

M. Wierse, “Evaluation of xilinx versal device,” Bachelor Thesis, ETH
Zurich, Zurich, 2023-02.

Z. Yang, J. Zhuang, J. Yin, C. Yu, A. K. Jones, and P. Zhou,
“AIM: Accelerating Arbitrary-Precision Integer Multiplication on
Heterogeneous Reconfigurable Computing Platform Versal ACAP,” in
2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD). San Francisco, CA, USA: IEEE, Oct. 2023, pp. 1-9.
[Online]. Available: https://ieeexplore.ieee.org/document/10323754/

C. Zhang, T. Geng, A. Guo, J. Tian, M. Herbordt, A. Li, and
D. Tao, “H-GCN: A Graph Convolutional Network Accelerator on
Versal ACAP Architecture,” in 2022 32nd International Conference on
Field-Programmable Logic and Applications (FPL), Aug. 2022, pp.
200-208, iSSN: 1946-1488. [Online]. Available: https://ieeexplore.ieee.
org/document/10035160

J. Zhuang, J. Lau, H. Ye, Z. Yang, Y. Du, J. Lo, K. Denolf,
S. Neuendorffer, A. Jones, J. Hu, D. Chen, J. Cong, and P. Zhou,
“CHARM: C omposing H eterogeneous A ccele R ators for M atrix
Multiply on Versal ACAP Architecture,” in Proceedings of the 2023
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. Monterey CA USA: ACM, Feb. 2023, pp. 153-164. [Online].
Available: https://dl.acm.org/doi/10.1145/3543622.3573210

J. Zhuang, J. Lau, H. Ye, Z. Yang, S. Ji, J. Lo, K. Denolf,
S. Neuendorffer, A. Jones, J. Hu, Y. Shi, D. Chen, J. Cong, and
P. Zhou, “Charm 2.0: Composing heterogeneous accelerators for deep
learning on versal acap architecture,” ACM Trans. Reconfigurable
Technol. Syst., vol. 17, no. 3, Sep. 2024. [Online]. Available:
https://doi.org/10.1145/3686163

J. Zhuang, Z. Yang, S. Ji, H. Huang, A. K. Jones, J. Hu, Y. Shi,
and P. Zhou, “SSR: Spatial Sequential Hybrid Architecture for
Latency Throughput Tradeoff in Transformer Acceleration,” Feb. 2024,
arXiv:2401.10417 [cs]. [Online]. Available: http://arxiv.org/abs/2401.
10417

J. Zhuang, Z. Yang, and P. Zhou, “AutoMM: Energy-Efficient Multi-
Data-Type Matrix Multiply Design on Heterogeneous Programmable
System-on-Chip,” May 2023, arXiv:2305.18698 [cs]. [Online].
Available: http://arxiv.org/abs/2305.18698

