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ABSTRACT

Over the years, the chip industry has consistently developed high-
performance processors to address the increasing demands across
diverse applications. However, the rapid expansion of chip produc-
tion has significantly increased carbon emissions, raising critical
concerns about environmental sustainability. While researchers
have previously modeled the carbon footprint (CFP) at both system
and processor levels, a holistic analysis of sustainability trends en-
compassing the entire chip lifecycle remains lacking. This paper
presents CarbonSet, a comprehensive dataset integrating sustain-
ability and performance metrics for CPUs and GPUs over the past
decade. CarbonSet aims to benchmark and assess the design of
next-generation processors. Leveraging this dataset, we conducted
detailed analysis of flagship processors’ sustainability trends over
the last decade. This paper further highlights that modern proces-
sors are not yet sustainably designed, with total carbon emissions
increasing more than 50X in the past three years due to the surg-
ing demand driven by the AI boom. Power efficiency remains a
significant concern, while advanced process nodes pose new chal-
lenges requiring to effectively amortize the dramatically increased
manufacturing carbon emissions.
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1 INTRODUCTION

The information and communication technology (ICT) sector con-
tributes 2.1%-3.9% of global greenhouse gas emissions with emis-
sions projected to rise [11]. Emissions mainly arise from chip man-
ufacturing, design, and packaging (embodied carbon) and energy
consumption of daily operation (operational carbon). Designing
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more sustainable processors for both manufacturing and daily use is
vital. Recent works include tools for modeling system-level embod-
ied CFP [10] and further chip-level modeling for general processors
and reconfigurable systems [4, 23]. Some studies also propose new
sustainability-focused metrics for architecture design space explo-
ration [22, 26]. Historical insights of trend analysis and projections
of processor metrics have long been integral to the computing
industry. For example, Moore’s Law—central to driving semicon-
ductor innovation for over 50 years—was understood by curating
and analyzing data from numerous chips [14]. Similarly, analyz-
ing trends in CFPs of modern processors (CPUs and GPUs) can
raise awareness of their environmental impact, identify areas for
intervention, and guide the design of sustainable chips.

1.1 Goals

This paper seeks to create actionable insights into processor sus-
tainability while enabling benchmarking of existing processors
based on their CFP. We aim to raise semiconductor community
awareness about the growing sustainability challenges computing
technologies pose. We curate a dataset of CPUs and GPUs over
the last decade, analyzing their CFP across lifecycle stages for both
datacenter and desktop series. We aim to answer the following key
research questions:

How has the CFP of flagship GPUs and CPUs evolved?
Does the increased performance of chips justify higher CFP?
For flagship processors, which type of CFP dominates? [1, 3]
Has the AI boom impacted the CFP of processors?

Is the chip price ($) a reliable proxy for its Embodied CFP?
What processor lifetimes effectively amortize Embodied CFP?
o Are chiplet-based processors always more sustainable than
monolithic processors?

Answers to these questions help identify key trends and sustain-
ability challenges and also enable more environmentally conscious
decision-making in chip design, manufacturing, and lifecycle man-
agement.

1.2 Overview of Our Contributions

Figure. 1 shows an overview of CarbonSet, including data for desk-
top and datacenter CPUs and GPUs across multiple metrics - design
metrics (chip area, technology node, transistors, TDP), performance
metrics (throughput, OpenCL [8], Passmark [20]), and sustainability
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Figure 1: CarbonSet contains sustainability-related metrics
for multiple CPUs and GPUs derived from probabilistic car-
bon modeling.

metrics (Embodied CFP, Operation CFP, total CFP). It also offers
composite metrics like Performance per CFP and ECFP per unit
area (ECFPA) for further tradeoff-based trend analysis.

Estimating CFP across a processor’s lifecycle is challenging due
to uncertainties in parameters such as manufacturing defect density,
energy source carbon intensity, utilization patterns, and lifetimes.
CarbonSet addresses this issue by extending the ECO-CHIP frame-
work [23] to generate ranges of CFP values instead of a single CFP
value. This range of CFP values are evaluated using several prob-
abilistic modeled parameters, which are derived from real-world
data and have more practical significance.

From our analysis, we find that flagship GPUs and CPUs are still
far away from achieving sustainable design. Although operational
CFP (OCFP) still dominates throughout the lifecycle, the proportion
of embodied CFP (ECFP) is also increasing due to the advancement
of the process nodes. Moreover, in our estimation, given the per-
formance per unit CFP increased by over 100X in some cases, the
dramatically increased chip shipments, driven by the ATl boom, have
eventually led to 50X more total CFP.

To the best of our knowledge, CarbonSet is the first work for
processor sustainability evaluation, containing more than 1000
processors, out of which 45% are GPUs and 55% are CPUs. This in-
cludes monolithic GPUs, monolithic CPUs, and recent chiplet-based
CPUs as well. By leveraging CarbonSet, a Moore’s law-like trend
analysis is performed to understand how processor sustainability
has evolved, which could also be used for ‘pathfinding’ studies for
future architecture design. With more detailed processor specifi-
cations and modeling, CarbonSet could also serve as an industry
processor sustainability evaluation norm. Our contributions in this
work include the following:

o Comprehensive dataset curation: We curate a dataset of CPUs

and GPUs across desktop and datacenters from multiple vendors,
spanning the last decade. This dataset includes detailed design,
performance, and sustainability metrics. CFP is evaluated across
all stages of the processor lifecycle - design, manufacturing, use,
and end-of-life. The complete dataset is available at [16].

o Probabilistic CFP modeling: We extend ECO-CHIP to generate
ranges of CFP values for each processor based on probabilistic
modeled key parameters, including defect density, carbon in-
tensity, energy per area and gas per area. This mitigates the
challenges arising from the uncertainties across a processor’s
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lifecycle, resulting in practical ranges of CFP values instead of
specific values, which are difficult to validate.

e Sustainability analysis: We track the sustainability trends of
flagship processors, by examining metrics such as ECFP, OCFP,
performance per CFP, and ECFP per area. Such an analysis needs
significant effort in selecting the most representative flagship
processors across generations while ensuring the availability of
sufficient performance benchmark data for each selected one.

o In-depth case studies: We also conduct several case studies to

address the aforementioned research questions to better under-
stand how external factors affect processor sustainability such
as the impact of processor lifetime on ECFP amortization, the
increasing shipment demands driven by the AI boom, increased
manufacturing costs due to advanced process nodes, and the
sustainability evaluation of contemporary chiplet architectures.

2 RELATED WORK

Datasets: Researchers have analyzed processor design trends using
area, power and performance metrics. For example, [24] reviewed
processor design trends over the last two decades discussing the
major driving factors of performance increases Existing datasets,
however, do not provide sustainability data for the various proces-
sors, which precludes the analysis of trends and the benchmarking
of processors from a sustainability standpoint.

Carbon modeling: Driven by the rapidly growing carbon emis-
sions due to the increased number of large-scale datacenters [11, 12,
27], researchers have proposed various CFP modeling frameworks.
These range from general first-order estimation [6] to comprehen-
sive system-level modeling (ACT) [10] and support for heteroge-
neous integration (chiplet-based) chips (ECO-CHIP) [23]. Inspired
by [2], We updated ECO-CHIP to generate probabilistic modeled
CFP data and then use it to complete CarbonSet.

Metrics: Chip designers and architectures have used traditional
metrics such as chip area, frequency, power, performance-per-watt,
and area-delay-product to benchmark chips across generations.
However, such metrics fail to capture sustainability-related trade-
offs. While ECFP and OCFP quantify carbon emissions, new metrics
like CDP (Carbon Delay Product), CEP (Carbon Energy Product)
[10], performance per unit CFP (Perf-SI), and CFP per billion tran-
sistors [22] offer improved tradeoff evaluation. Our dataset includes
metrics like CFP, ECFP, OCFP, performance per CFP, embodied CFP
per area (ECFPA), and performance per ECFPA.

3 MODELING AND DATASET CONTENTS
3.1 Carbon Footprint Modeling

Prior carbon modeling: In our dataset, CFP is used as the primary
metric to estimate the sustainability of a chip. We use ECO-CHIP
[23] to evaluate the CFP in all stages of the chip lifecycle, design,
manufacturing, use, and end of life. As modeled in ECO-CHIP, total
CFP is the sum of ECFP and OCFP. ECFP includes the CFP spent
during chip design, manufacturing and packaging. The manufac-
turing CFP depends on yield and the CFP per unit area (CFPA) of
the manufacturing process. Yield is influenced by die area and can
be calculated using the equation:

Agie X Do\ ¢
Y=(1+M) 1)
(04
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Figure 2: Distributions for (a) Defect density(10nm) [15]
(b) Energy-Per-unit Area(EPA)(10nm) [25] (c) Carbon inten-
sity [19] (d) Gas-Per-unit Area(GPA) [17]

where Agje is die area, a is the clustering parameter, and Dy is defect
density of current process node, and CFPA is given by [10, 23]:
(Cmfg, src X EPA + Cgas + Cmaterial)

7 @
where Cfy src is the carbon intensity, and it mainly depends on
the source of energy for fabrication, EPA is the energy consumed
per unit area (kWh per cm?), Cgas is a function of gas per unit area
(GPA) emissions usually expressed in kgs of COzeq per cm?, and
Cmaterial 18 the emission from procuring materials expressed in kgs
of COzeq per cm?, and Y is the yield given in Eq. 1.

OCFP is modeled as the carbon intensity of the energy source
times the energy spent during operation. The latter is determined
by using the TDP and the lifetime scaled by the time during which
the chip is in idle state (idle time).

Probabilistic carbon modeling: CFP values are difficult to vali-

CFPA =

date due to the inherent uncertainties of the chip’s lifecycle analysis.
Therefore, inspired by [2], we enhance ECO-CHIP to produce a
range of CFP values by modeling multiple input parameters as prob-
ability distributions. The resultant CFP distribution now represents
the viable range of the chip’s CFP values instead of a single value.

Figure. 2 illustrates the probability density function of four input
parameters: defect density, EPA, carbon intensity, and GPA. Defect
density, EPA, and carbon intensity are modeled using Kernel Den-
sity Estimation (KDE), while GPA follows a Gaussian distribution.
The distributions of defect density and EPA are derived from 10nm
TSMC reports [15, 25]. Carbon intensity is modeled by analyzing
global trends over the past 24 years from [19]. The GPA is sourced
from IMEC [17], which examines variations in greenhouse gas emis-
sions at fabrication facilities. For OCFP model, a fixed three-year
lifetime with 60% idle time is assumed.

Using enhanced ECO-CHIP, we perform Monte Carlo simula-
tions with 10,000 samples per input parameter to model CFP vari-
ability across processors. Figure 3 presents the resulting CFP distri-
butions for the A100-SXM and Xeon Platinum 8380. By incorporat-
ing parameter uncertainty, ECO-CHIP supports what-if analyses for
carbon-aware design decisions. Overlapping distribution regions
indicate that the Xeon is not consistently more sustainable than

Conference’17, July 2017, Washington, DC, USA

the A100. For consistency, we use the mean CFP from the 10,000
simulations as the final value for each processor.

3.2 Dataset Contents

CarbonSet builds on a dataset of over 1,000 CPUs and GPUs from

vendors such as Intel, NVIDIA, and AMD, covering both datacenter

and desktop series. While the base dataset supports trend analysis
using conventional metrics, CarbonSet adds a probabilistic model

that estimates a CFP range for each processor, using the mean as a

representative value. It includes 30 chiplet-based CPUs, assuming

equal die area distribution and a uniform process node. Users can
modify these assumptions as more vendor architectural details
become available.

Due to the complicated system/software configurations, it is
difficult to establish a single-chip performance benchmark appli-
cable to both desktop and datacenter CPUs. SPEC [21] is a widely
accepted CPU performance benchmark; however, comparing scores
from different SPEC versions (e.g., SPEC-2017 and SPEC-2006) is not
valid as each SPEC version uses distinct evaluation suites. There-
fore, for CPU benchmarking, we use the highest single-chip scores
from Geekbench for desktops and Passmark for datacenter series,
respectively [8, 20].

For GPUs, the performance metrics listed in the vendor specifica-
tions are rarely achieved in practice. Also, due to varying precision
support and the introduction of Tensor Cores, comparing peak met-
rics across generations is unreliable (e.g., comparing Float16 perfor-
mance of the A100 with Float32 performance of the P100). Hence,
we use the OpenCL score from GeekBench as a performance metric
of all GPUs [8]. To evaluate performance-sustainability tradeoffs,
we include data for the following metrics inspired by [22]:

e Performance per unit CFP: This metric measures the perfor-
mance gain per unit of CFP, which is an overall evaluation factor
of the balance between sustainability and performance compris-
ing both the embodied and operational CFP.

e Embodied CFP per area (ECFPA): ECFPA assesses the CO; den-
sity per unit chip area, which is related to the chip manufacturing
process node. Generally, an advanced process node has a higher
CO; emission due to complex lithography processes and lower
yields. However, this factor can also be significantly influenced
by chip architecture; for example, chiplet-based designs may re-
duce the overall ECFPA[23]. An architecture with a complicated
design process may also increase the design carbon. This metric,
therefore, assesses the chip’s sustainability and scalability in the
design and manufacturing stages.

o Performance per ECFPA: This metric assesses performance gain
relative to ECFP and helps to evaluate the performance scalability
of the die area for mass production. A chip with high ECFPA
but only marginal performance is unlikely to meet sustainabil-
ity standards. Ideal processors balance low ECFPA with high
performance to meet demands sustainably.

4 DATA ANALYSIS AND TRENDS

To showcase the trends in CFP, NVIDIA GPUs and Intel CPUs are
selected for their leading roles in datacenter and desktop series,
which also offer extensive documentation and architectural spec-
ifications. Since most hardware vendors diversify product lines
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Figure 3: CFP distributions for two flagship processors from our dataset obtained from enhanced ECO-CHIP, by varying defect

density, EPA, GPA, carbon intensity, lifetime, and idle time.

by binning and only flagship chips with the largest die and high-
est TDP are the most complete designs, our dataset only selects
those most representative flagship models across both desktop and
datacenter series.

4.1 Sustainability Trends in GPUs

The left two plots in Figure. 4 show various design and sustainability
metrics for flagship desktop and datacenter GPUs from NVIDIA
in the last decade, respectively. Both the datacenter and desktop
GPU series exhibit an increasing trend in single-chip total CFP and
OCEFP, consistently constituting its majority.

In the desktop series, the die area shows significant fluctuations,
particularly at the 14nm node from 2016 to 2018, indicating con-
tinuous optimization of architecture design during this period. In
contrast, datacenter GPUs have consistently increased area over
generations. While the die area may fluctuate significantly within
the same process node, the total CFP remains stable. For example, in
14nm, TITAN V has significantly increased die size but has a similar
CFP to the previous 2 generations. Also, P100 incurs significantly
larger CFP but a slightly varied die area. This shows that the ECFP
led by the process node and die area contributes much less CFP
than OCFP which is dominated by the chip TDP.

The right two plots in Figure. 4 show various performance and
sustainability-related metrics for flagship desktop and datacenter
GPUs from NVIDIA in the last decade, respectively. The perfor-
mance metrics are described in Section 3.2. While overall GPU
performance continues to improve, the architectural trade-offs and
priorities across generations differ significantly when evaluated
through a combined perspective of sustainability metrics. Specif-
ically in the desktop series, comparing to TITAN V, TITAN RTX
has a similar performance and a significantly smaller ECFPA. How-
ever, this does not result in an expected improvement in Perfor-
mance/CFP nor Performance/ECFPA. This implies that, while a
chip’s (e.g., TITAN RTX’s) architecture is optimized for large-scale
manufacturing and incurs less ECFP, it may incur much higher
OCFP and fail to achieve a greater performance-sustainability bal-
ance than previous generations (e.g., TITAN V). Still in the desktop
series, the performance/CFP continues to drop after 2018, even
with a node advanced from 14nm to 10nm; this highlights that
the performance improvements in recent desktop GPUs are being
achieved at the expense of increased CFP.

Compared to desktop GPUs, datacenter series appear even more
extreme in the pursuit of performance, with models A100-SXM
and V100-SXM achieving significantly higher performance with a

boom of CFP, specifically the dropping Performance/CFP and Per-
formance/Embodied CFPA. Although A100 achieves a performance
boost of less than 2x compared to V100, it comes at the cost of a
dramatically increased ECFPA (over 4x). In contrast, V100 demon-
strates significantly lower ECFPA with moderate performance. As
a result, V100 achieves around 2x performance/CFP than A100.

In summary, GPUs generally prioritize performance over sustain-
ability, with datacenter GPUs being particularly extreme. Moreover,
the comparison of TITAN V and TITAN RTX shows that the OCFP
may be one of the major setbacks preventing achieving a better
performance-sustainability balance.

4.2 Sustainability Trends in CPUs

The two plots on the left in Figure. 5 show various metrics related
to performance and sustainability for Intel’s flagship desktop and
datacenter CPUs in the last decade, respectively. OCFP consistently
dominates the overall CFP in both series while the proportion of
ECFP has a steady growing trend in datacenter CPUs. All CPUs
show similar trends in process node evolution, transitioning from
22nm to 14nm, and eventually to 10nm. In desktop CPUs, each
process node shrink leads to a significant reduction in die area
and an increase in total CFP. Additionally, the die area gradually
increases within the same process node, while total CFP slightly
fluctuates. In contrast, the chip area of datacenter CPUs increases
steadily with a slight dip at the end. Both series demonstrate a
reduction in total CFP within the same process node, regardless of
changes in chip area, shown by Core i7-6950X and Xeon Platinum
8280 at 14nm. This proves that while a CPU’s total CFP decrease is
primarily driven by process node shrinkage, the iterative architec-
tural optimizations within the same process node can effectively
enhance processor sustainability.

The right two plots in Figure 5 show various performance and
sustainability metrics for Intel flagship CPUs in the last decade,
respectively. Overall, the trend for datacenter CPUs is smoother
evidencing a more consistent architectural design philosophy. In
contrast, desktop CPUs follow greater variability in processor archi-
tecture exploration within the same process node leading to violent
fluctuations. Specifically, within 14nm process node, Core i7-6960X
has both higher performance and ECFPA than Core i7-8700X but
leads to a lower Performance/CFP. This demonstrates that architec-
tural design has a great impact on the performance-sustainability
tradeoff and it is feasible to design a processor with high perfor-
mance and low CFP. Subsequently, from 14nm process node all the
way to 10nm, Intel kept the performance/ECFPA, performance/CFP
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Figure 4: Sustainability trends in flagship desktop (top) and datacenter (bottom) GPUs from NVIDIA

steadily increased, despite the rise in both ECFP and ECFPA, which
aligns with the idea of sustainable design.

An opposite trend is observed in datacenter CPUs, where over-
all performance continues to increase steadily without achieving
a good sustainability-performance balance. As process nodes ad-
vance, the performance gains do not convert into better sustain-
ability. Both Performance/ECFPA and Performance/CFP show little
improvement failing to keep pace with absolute performance. Espe-
cially, performance gained a boost at 10nm, but Performance/ECFP
and Performance/ECFPA have limited increases. Generally, for dat-
acenter CPUs, the increase in absolute performance is usually ac-
companied by a significant rise in TDP. Although the share of OCFP
is decreasing, the aggressive power consumption continues to limit
datacenter processors’ sustainability.

4.3 How has the AI boom impacted CFP?

With the surging demand for high-performance GPUs in data cen-
ters due to rapidly expanding AI models, estimating datacenter
GPU CFP growth provides insights into the impact of this AI boom.
To this end, we first estimate the GPU shipments using NVIDIA’s
Datacenter Business Group annual financial reports [5]. We assume
that the group’s revenue comes solely from the latest flagship GPU
sales with a 75% profit margin while being sold at the highest price.
Additionally, we use the peak performance from datasheets as the
performance estimator, since there is no publicly available single-
chip Al benchmarking across generations of GPUs (e.g. MLPerf [18]
scores are unavailable for older GPUs like the P100, and scores are
for large multi-GPU systems). Since datacenter GPUs are usually
sold as multi-GPU systems the actual single chip price is lower than

the released price, meaning the true number of GPU shipments is
likely much larger, making this a conservative estimation.

Fig.6 shows that although performance efficiency (TFLOPS/CFP)
has improved dramatically, reaching 120X of the 2016 baseline, the
total CFP per chip has not increased significantly.

The addition of domain-specific accelerator blocks and features
(e.g., Tensor Cores in V100, structured sparsity and reduced preci-
sions in A100, and transformer engine in H100) improved perfor-
mance significantly at a minor increase in per-chip CFP, indicating
a good sustainability trend. Except for a slight decline in 2020, GPU
shipments have increased annually, driven in part by the recent
surge in training and deployment of LLMs. This sharp increase has
led to an explosive rise in overall CO2 emissions, now exceeding
50X of the 2016 baseline. This is a call for the community to design
efficient chips and algorithms to stem the increase in CFP to keep
the Al revolution healthy and green. !

4.4 Is manufacturing cost ($) a proxy for ECFP?

With the growing importance of measuring and reducing carbon
emissions, prior work has proposed using cost as a proxy for car-
bon emissions. E.g., models like EIO-LCA [13] estimate carbon
emissions based on the economic cost of electronics, generally con-
verting component costs into carbon emissions. Using our dataset,
we analyze the validity of this consideration. Figure 7 illustrates the
variation in manufacturing cost along with ECFP. The divergence

!The 5nm process node of H100 is actually not modeled in ECO-CHIP, but scaled based
on existing process node metrics.
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Figure 6: The AI boom greatly increased GPU shipments,
raising total CFP despite the increased TFLOPS/CFP.

between these two trends becomes increasingly apparent as tech-
nology advances towards smaller nodes. This clearly demonstrates
that manufacturing cost does not correlate with carbon. The plot
also shows the selling price, another cost metric that could be used
instead of manufacturing cost. However, we observe that it is not
correlated with embodied carbon. Since the selling price includes
inflation, demand, supply chain, and profit margins, it is not an
ideal metric for such considerations.

Figure 7: Manufacturing cost or selling price are not proper
proxies of ECFP.

4.5 How much must processor lifetime increase

by to effectively amortize ECFP?

Modern computing systems are often replaced quickly for better
performance. However, extending usage helps amortize the pro-
cessor’s ECFP, a sunk cost, as examined in this study. Additionally,
processors experience idle periods [7, 9], causing OCFP to vary
significantly with utilization.

Using the NVIDIA A100-SXM GPU as an example, we analyze
the impact of processor lifetime and idle time, with lifetime ranging
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Figure 8: Ratio of ECFP to OCFP for NVIDIA A100-SXM across
varying lifetime and idle time. The orange line indicates
where ECFP exceeds or falls below OCFP.

from 0.5 to 5 years and idle time varying from 0% (always active) to
90% (inactive 90% of the time). Figure 8 illustrates the ECFP-to-OCFP
ratio, where regions above the orange line indicate that embodied
emissions outweigh operational emissions. To effectively amortize
ECFP, users must either extend the device’s lifetime or reduce idle
time to shift below the orange line, ensuring OCFP dominance. For
instance, with 70% idle time, running the A100-SXM for more than
two years enables effective ECFP amortization.

4.6 Are chiplet-based processors always more
sustainable than monolithic processors?

Chiplet architecture, introduced by AMD in 2017, offers a pathway
to extending Moore’s Law, but raises sustainability questions re-
garding yield gains versus increased area and packaging overhead.
To explore this, we analyze the manufacturing CFP of AMD’s flag-
ship chiplet CPUs over the past five years, varying chiplet counts
within a fixed total chip area. Assuming an even distribution of
total chip area across all chiplets, manufactured using the same pro-
cess node, we also examine how manufacturing CFP scales across
different chiplet configurations to assess whether chiplet architec-
ture consistently provides a more sustainable solution. The extra
packaging overhead is already modeled in our framework.

Fig.9 (top) shows the normalized manufacturing CFP of AMD
chiplet CPUs to the vendor configuration in different chiplet quanti-
ties. Our analysis reveals that chiplet architecture is not always the
most sustainable solution, particularly for small to medium chips.
Specifically, the monolithic design yields the lowest manufacturing
CFP for the Ryzen 9 series, which has the smallest chip area, while
the Threadripper series benefits the most from an increased chiplet
count. Additionally, for the Ryzen 9 3950X and Ryzen 9 5950X, the
yield improvement from a 2-chiplet design does not sufficiently
offset the overhead of a higher chiplet count, making the monolithic
architecture a more sustainable choice.

Figure 9 (bottom) shows the trend of total manufacturing CFP
across various chiplet configurations over a wide range of chip
areas. The optimal architecture shifts with chip area, converging
to designs with higher chiplet counts beyond a certain threshold.
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Figure 9: Manufacturing CFP of AMD flagship chiple CPUs
(top) and monolithic, 2, 4, and 8 Chiplets architectures with
total chip area scaled from 50 to 850 mm? (bottom) all at 7nm.
R=Ryzen, T=Threadripper. While more chiplets reduce CFP
as area increases, monolithic architecture remains the most
sustainable for chips under 200mm?

For chips smaller than 200mm?, monolithic architecture remains
the most sustainable, while for those exceeding 300mm? a higher
chiplet count leads to better sustainability.

In practice, sustainability is not the primary driver for adopting
chiplet-based designs; instead, they offer advantages in efficiency,
testability, and manufacturing cost. Despite higher carbon emis-
sions, performance remains the priority. For the Ryzen 9 series,
while the 2-chiplet architecture is the least sustainable, its manu-
facturing CFP is comparable to other configurations. Its superior
performance and efficiency, combined with lower manufacturing
cost and better testability than higher chiplet-count designs, make
it a balanced trade-off.

5 POTENTIAL IMPACT OF CARBONSET

CarbonSet benchmarks processor sustainability by analyzing CFP
trends over time, aiding carbon reduction and sustainable design.
We showcased this through trend analysis and case studies but note
its broader applicability, including:

o Life cycle assessment (LCA): Our dataset enables companies
to estimate device lifetime CFP for LCA, supporting corpo-
rate sustainability reports and eco-labeling for consumer
awareness.
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o Optimizing designs and technology: Historical data reveals
which design aspects (e.g., manufacturing, materials, effi-
ciency) have the highest carbon impact, guiding emissions-
reducing optimizations for future processors.

o Environmental policy and standardization: Governments and
industries can use this dataset to set carbon benchmarks,
shape regulations, and incentivize low-carbon designs.

o Education and carbon awareness: It can support academic and
industrial research focused on environmental sustainability.
It can also impact consumer purchasing decisions and help
create a carbon-aware mindset.

CONCLUSION

In this paper, we introduced CarboSet, a dataset designed for ana-
lyzing processor sustainability trends and enhancing sustainability-
driven design evaluation. By leveraging this dataset, we examine
key aspects of processor sustainability, including overall design
trends over the past decade, the impact of the Al boom, the reliabil-
ity of approximating ECFP using manufacturing costs, the required
operational lifetime for effective ECFP amortization, and the sus-
tainability implications of chiplet architectures. CarbonSet aims
to guide environmentally conscious decisions in processor design,
manufacturing, and lifecycle management.
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