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Abstract— In this paper, we generalize our diffusion-based

approach [8] to achieve coverage of a bounded domain by a

robotic swarm according to a target probability density that is a

function of a locally measurable scalar field. We generalize this

approach in two different ways. First, we show that our method

can be extended in a natural way to scenarios where the robots’

state space is a compact Riemannian manifold, which is the case

if the robots are confined to a surface or if their configuration

space is non-Euclidean due to dynamical constraints such as

those present in most mechanical systems. Then, we establish

the stability properties of a weighted variation of the porous

media equation, a nonlinear partial differential equation (PDE).

Coverage strategies based on these nonlinear PDEs have the

advantage that the robots stop moving once the equilibrium

probability density is reached, in contrast to our original

approach [8]. We establish long-time stability properties of

the target probability densities using semigroup theoretic ar-

guments. We validate our theoretical results through stochastic

simulations of a linear diffusion-based coverage strategy on a

2-dimensional sphere and numerical solutions of the weighted

porous media equation on the 2-dimensional torus.

I. INTRODUCTION
In the last two decades, there has been a considerable

amount of work on multi-agent control problems. The sig-
nificance of these control problems is due to the possibility
of their use in multiple scenarios such as disaster response,
environment monitoring, surveillance, and biomedical appli-
cations. Many initial works focused on algorithms to generate
desired global behaviors from a small set of local rules,
based on simplistic assumptions about agent capabilities.
Over the years, these algorithms have been developed to
a significant level of sophistication in terms of relaxing
many of the assumptions made in earlier algorithms such
as holonomy of agent motion, perfect measurements, and
constant connectivity of communication networks.

One such standard assumption in many of these initial
algorithms relates to the structure of the agents’ state space.
In most scenarios, it has been assumed that agents evolve on
a Euclidean state space. However, many mechanical systems
are naturally modeled on manifolds [21], [31]. Toward this
end, a number of classical multi-agent algorithms have been
extended to the case where agents evolve on manifolds. For
example, [28] considers the problem of extending consensus
algorithms to homogeneous manifolds. See also [30] for
a detailed review of consensus on manifolds. Similarly,
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Voronoi-based coverage algorithms [7] have been extended
to general Riemannian manifolds [6].

One of the goals of this paper is to relax the assumption
that agents evolve on a Euclidean state space for a multi-
agent coverage strategy developed by the authors in [8]. A
major distinction between classical approaches to coverage
[7] and the approach presented in [8] is that the latter work
models the population dynamics of the swarm using a partial
differential equation (PDE), which serves as a mean-field
model for the swarm. The application of mean-field models
to the design of control laws for multi-agent systems has seen
a great amount of activity in recent years, e.g. [23], [26], [9].
In these works, the solution of the PDE is a probability den-
sity function that represents the spatiotemporal distribution
of the agents. Similar work has also been done using Markov
chain models that evolve either in continuous time [5], [15]
or discrete time [1], [3]. The analysis in all of these works
is scalable with the number of agents due the fact that it
is performed on the mean-field model, which represents the
swarm as a continuum. A continuum-based approach that is
distinct from these approaches is proposed in [12], [27], in
which the domain on which the PDE is solved represents a
network of agents performing consensus-type interactions.

The diffusion-based approach in [8] can be viewed as an
extension of the algorithm presented in [22] for unbounded
domains. An advantage of these kinds of stochastic control
laws is that they are easy to implement. The control law
presented in [8] has been validated using robot experiments
[20]. One of the main contributions of this paper is the
extension of our coverage strategy in [8] to the case where
the agents evolve on compact manifolds. The approach in
[8] was based on the correspondence between stochastic dif-
ferential equations (SDEs) and parabolic PDEs on Euclidean
spaces. A similar correspondence also exists between SDEs
and PDEs evolving on manifolds [17]. Therefore, as we
show in this paper, our coverage approach naturally extends
to the case where the agents evolve on finite-dimensional
manifolds.

The coverage approach in [8] is based on a multiplicatively
perturbed version of the classical heat equation. Hence,
another problem that we investigate in this paper is whether
similar control laws can be constructed using nonlinear dif-
fusion models [32]. Toward this end, we analyze a weighted
variation of the porous media equation. Due to the nonlinear-
ity of this equation, the corresponding control laws require
interactions between agents. These control laws drive the
agents to a target spatial probability density at equilibrium, at
which point they stop moving. In contrast, when the control



laws are defined by a linear diffusion model, the agents
continue moving at equilibrium and therefore expending
energy unnecessarily. This is because the coefficients of the
corresponding SDE model do not tend to zero at equilibrium,
even though the PDE model asymptotically converges to the
target density.

II. NOTATION AND TERMINOLOGY

In this section, we define some notation and terminology
that will be used throughout the paper.

We denote by M a finite-dimensional compact Rieman-
nian manifold without boundary. Defining T

x

M as the
tangent space at x 2 M, we equip the manifold M with
a Riemannian metric g, i.e., an inner product g(x) on
T
x

M that varies smoothly with respect to x 2 M. The
Riemannian volume form will be denoted by m(x). Hence,
integration with respect to this volume form will be denoted
by

R
M · dm(x).

We define L2
(M) as the space of square-integrable

functions with respect to the Riemannian volume form m,
equipped with the norm k·k2. For each 1  p < 1, we define
Lp

(M) as the Banach space of complex-valued measurable
functions over the set M whose absolute value raised to
the pth power has finite integral. We define L1

(M) as the
space of essentially bounded measurable functions on M.
The space L1

(M) is equipped with the norm kzk1 = ess
sup

x2M|z(x)|.
For a smooth function u : M ! R, ru will denote

the Riemannian gradient of the function u. Let C1
c (M)

denote the set of smooth functions on M with compact
support. We define the norm k · kH1 by kukH1

= kuk2 +R
M |ru(x)|2dm(x), where the term |ru(x)|2 is short-

hand for hru,ruig , the norm induced by the Riemannian
metric g. We will also need the weighted space L2

a(M),
defined as follows. For a given real-valued function a 2
L1

(M), L2
a(M) refers to the set of all functions f such

that
R
M |f(x)|2a(x)dm(x) < 1. We will always assume

that the associated function a is uniformly bounded from
below by a positive constant, in which case the space
L2
a(M) is a Hilbert space with respect to the weighted

inner product h·, ·ia : L2
a(M) ⇥ L2

a(M) ! R, given by
hf, gia =

R
M f(x)ḡ(x)a(x)dm(x) for each f, g 2 L2

a(M).
We will also need the space H1

a(M) =

�
f 2 L2

a(M) :R
M |r(af)|2dm(x) for 1  i  N

 
, equipped with the

norm kfkH1
a

=

⇣
kfk2a +

R
M |r(af)|2dm(x)

⌘1/2
. When

a = 1, where 1 is the function that takes the value 1 a.e. on
M, the spaces L2

(M) and H1
(M), the space of functions

in L2
(M) with square-integrable weak derivatives, coincide

with the spaces L2
a(M) and H1

a(M), respectively. Let X be
a Hilbert space with the norm k ·kX . The space C([0, T ];X)

consists of all continuous functions u : [0, T ] ! X for which
kukC([0,T ];X) := max0tT ku(t)kX < 1.

For more details regarding Riemannian manifolds, we
direct the reader to standard texts such as [18], [19]. For
details regarding Sobolev spaces on manifolds, see [2], [14].

III. PROBLEM MOTIVATION

In this section, we present the models that will be analyzed
in this paper. All the analysis presented in this paper is
based on the theory of PDEs. However, there is a strong
probabilistic motivation behind these problems. Hence, we
will elucidate these aspects briefly by first reviewing the work
done in [8] and then elaborating on the extensions considered
in this paper.

Consider a swarm of N agents deployed on a bounded
domain ⌦ in the n-dimensional Euclidean space Rn. The
agents evolve according to a identical reflected diffusion
process,

dX(t) = v1(t)dt+
p
2v2(t)dW(t) + d (t),

where W is the classical N -dimensional Wiener process,
 (t) is the stochastic process that confines the agents to the
domain ⌦, and v1 : [0,1) ! Rn and v2 : [0,1) ! R are
controllable parameters. The objective in [8] was to construct
feedback control laws g : ⌦ ! RN and a : ⌦ ! R+ such
that the closed-loop system

dX(t) = g(X(t))dt+
p
2a(X(t))dW + d (t)

satisfies limt!1 P(X(t) 2 A) =

R
A
f(x)dx for each

measurable set A ⇢ RN , where f is a given probability
density function. Here, P denotes the probability measure
induced by the process X on the set of sample paths. Hence,
the control laws must ensure that the probability of finding
an agent in an infinitesimal element dx is given by f(x)dx.
One choice of feedback laws for which this objective can be
achieved is g ⌘ 0 and a(x) = 1/f(x). Then the probability
P(X(t) 2 A) =

R
A
⇢(x, t)dx, where ⇢(x, t) is the solution

of the weighted diffusion equation, a linear PDE given by

@y

@t
= �(a(x)y) in ⌦⇥ [0, T ],

n ·r(a(x)y) = 0 on @⌦⇥ [0, T ],

y(x, 0) = y0(x) in ⌦, (1)

where n is the unit vector normal to the boundary @⌦ of
the domain ⌦. Using operator theoretical arguments, it was
shown in [8] that the largest eigenvalue of the operator
�(a(x)·) is 0. Moreover, this eigenvalue is isolated, and
hence we have limt!1 ⇢(x, t) = cf(x) in an appropriate
sense for some constant c that depends only on the initial
density ⇢(x, 0) = ⇢0(x). See [8] and [10] for more rigorous
formulations of the results.

Note that when a(x) is independent of x 2 ⌦, that
is, when a(x) is constant over the domain, the weighted
diffusion equation (1) reduces to the classical heat equation,
for which results on long-time behavior are well-known.

In this paper, we consider the case where ⌦ is replaced by
a general (compact) Riemannian manifold M. For the sake
of simplicity, we will assume that M is without a boundary.
We will show that the asymptotic stability results established
in [10] for the PDE (1) naturally extend to the case where
the domain is a manifold. In this case, the classical Laplacian
operator � is replaced by the Laplace-Beltrami operator,



which will be denoted by �g . This operator is represented
in local coordinates as

�g(·) =
1p
|g|

@

@xi
(

p
|g|gij @

@xj
· ) , (2)

where |g|(x) denotes the determinant of g(x). Hence, one
of the goals of this paper will be to analyze the long-term
stability properties of the weighted version of the Laplace-
Beltrami operator �g(a(x)·), where a 2 L1

(M). From this,
we will construct a stochastic process (governing the agents’
motion such that the agents confined to the manifold M
converge to a target probability density. There are indeed
many analytical results on the so-called weighted Laplacian
[13]. However, the operator �g(a(x)·) is generally different
from this weighted Laplacian, although the two operators are
equivalent in the trivial case where the coefficient a(x) is a
constant function. Note that, as in the case of a Euclidean
domain, there exists a stochastic process on manifolds associ-
ated with the operator �g . In fact, �g generates the classical
Brownian motion on manifolds [17].

Another generalization that we will consider in this paper
will be the long-term behavior of the equation

@y

@t
= �g((a(x)y)

↵
) in M⇥ [0, T ],

y(x, 0) = y0(x) in M, (3)

where ↵ is a positive integer greater than or equal to 1.
For general ↵ 6= 1, this is a nonlinear PDE. For a(x) that
is constant in space, this is the well-known porous media
equation [32]. The motivation behind studying this nonlinear
PDE is that for ↵ > 1, this PDE provides an alternative
control law to the one presented in [8]. In this case, the
corresponding SDE is of the Mckean-Vlasov type; that is,
the coefficients of the SDE depend on the probability law
of the random variable itself. For ↵ = 2, formally, the
corresponding Lagrangian particle model can be written as
the ODE

dx

dt
= �2a(x)r(ya(x)), (4)

where y is the solution of the PDE (3). As such, for a single
agent, this equation does not have a physical interpretation.
However, for Euclidean domains (M = Rn), the solutions
of the PDE (3) can be derived as a limit of a system of
particles that are interacting through a radially symmetric
potential function. See [24] for more details.

An advantage of the control law (4) is that at the equilib-
rium density (⇢(x, t) = cf(x)), its coefficients are equal
to 0. This is unlike the case where the coefficients are
independent of the probability law of the random variable,
as in the PDE (1). Hence, the agents’ velocities are zero at
equilibrium when the nonlinear diffusion model (3) is used.
In contrast, when the agents’ control laws are derived from
a linear diffusion model, the agents maintain random motion
even when their density has reached equilibrium. This can be
disadvantageous in applications where it would be preferable
to minimize agents’ motion, and hence conserve energy.

IV. ANALYSIS
A. Linear Diffusion

The proofs in this section are similar to those that we
developed in [10] for a related problem in the case of
a Euclidean domain. Hence, the main contribution in this
section is to verify that the arguments presented in [10]
also apply to the case where M is non-Euclidean. Toward
this end, we adapt the proofs in [10] by invoking the
appropriate embedding theorems, Poincaré’s inequality, and
the Sobolev chain rule as adapted to Sobolev functions
defined on Riemannian manifolds [14].

Given a 2 L1
(M) such that a � c for some positive

constant c, and D(!a) = H1
a(M), we define the sesquilinear

form !a : D(!a)⇥D(!a) ! C as

!a(u, v) =

Z

M
r(a(x)u(x)) ·r(a(x)v̄(x))dm(x) (5)

for each u, v 2 D(!a). We associate with the form !a an
operator Aa : D(Aa) ! L2

a(M), defined as Aau = v
if !a(u,�) = hv,�ia for all � 2 D(!a) and for all
u 2 D(Aa) = {g 2 D(!a) : 9f 2 L2

a(M) s.t. !a(g,�) =
hf,�ia 8� 2 D(!a)}.

Remark IV.1. Note that, strictly speaking, !a(u, v) should
be expressed as

R
Mhr(a(x)u(x)),r(a(x)v̄(x))igdm(x).

However, for ease of presentation, we will use the abuse
of notation as in the definition (5).

Lemma IV.2. The operator Aa : D(Aa) ! L2
a(M)

is closed, densely-defined, and self-adjoint. Moreover, the
operator has a purely discrete spectrum.

Proof. Consider the associated form !a. This form is closed ,
i.e., the space D(!a) equipped with the norm k · k!a , given
by kuk!a = (kuk2a + !a(u, u))1/2 for each u 2 D(!a), is
complete. This is true due to the fact that the multiplication
map u 7! a · u is an isomorphism from H1

a(M) to H1
(M)

and H1
(M) is a Hilbert space. Moreover, the space H1

a(M)

is dense in L2
a(M) [14][Theorem 2.4, Lemma 2.4] This

follows from the inequality kau � avk2  kak1ku � vk2
for each u, v 2 L2

(M), the fact that the spaces L2
1

(M) =

L2
(M) and L2

a(M) are isomorphic, and the fact that the
space H1

(M) is dense in L2
(M). In addition, it follows

from the definition of the form !a that !a is symmetric,
meaning that !a(u, v) = !a(v, u) for each u, v 2 D(!a).
The form !a is also semibounded, i.e., there exists m 2 R
such that !a(u, u) � mkuk2a for each u 2 D(!a). Hence,
it follows from [29][Theorem 10.7] that the operator Aa is
self-adjoint. To establish the discreteness of the spectrum of
Aa, we note that H1

(M) is compactly embedded in L2
(M)

[14][Theorem 2.9]. This implies that when H1
a(M) = D(!a)

is equipped with the norm k · k!a , then it is also compactly
embedded in L2

a(M). From [29][Proposition 10.6], it follows
that Aa has a purely discrete spectrum.

Corollary IV.3. Consider the PDE

yt = �g(a(x)y) in M⇥ [0, T ],

y(·, 0) = y0 in M. (6)



Let y0 2 L2
a(M). Then �Aa generates a semigroup of

operators (Ta(t))t�0 such that the unique mild solution
y 2 C([0, T ];L2

a(M)) of the above PDE exists and is
given by y(·, t) = Ta(t)y0 for all t � 0. Additionally, the
semigroup (Ta(t))t�0 is positive, i.e., y0 � 0 implies that
Ta(t)y0 � 0 for all t � 0.

Proof. First, we note that the operator �Aa is dissipative,
i.e., k(�+Aa)uka � �kuka for all � > 0 and all u 2 D(Aa).
Next, we note that �Aa is self-adjoint, and hence the adjoint
operator �A⇤

a is dissipative as well. It follows from a corol-
lary of the Lumer-Phillips theorem [11][Corollary II.3.17]
that �Aa generates a semigroup of operators (Ta(t))t�0 that
solves the PDE (6) in the mild sense.

Finally, we establish the positivity of the semigroup.
Toward this end, we note that the absolute value function |·| :
R ! R is Lipschitz. Hence, it follows from [14][Proposition
2.5] that v 2 H1

(M) implies that |v| 2 H1
(M) whenever

v is only real-valued. This implies that if u 2 D(!a), then
|Re(u)| 2 D(!a), where Re(·) denotes the real component
of its argument. Then the positivity of the semigroup follows
from [25][Theorem 2.7].

Next, we establish some mass-conserving properties of the
semigroup generated by �Aa.

Lemma IV.4. The semigroup (Ta(t))t�0 has the fol-
lowing mass conservation property: if y0 � 0 andR
M y0(x)dm(x) = 1, then

R
M(Ta(t)y0)(x)dm(x) = 1 for

all t � 0.

Proof. Let
R
M y0(x)dm(x) = 1 with y0 2

L2
a(M). Then

R
M(y(x, t) � y0(x))dm(x) =

�
R
M Aa(

R t

0 y(x, s)ds)dm(x) = �!a(
R t

0 y(x, s)ds, 1/a) =
0 for all t � 0. Hence, the integral-preserving property of
the semigroup holds.

Proposition IV.5. For the operator �Aa, 0 is a simple
eigenvalue with the corresponding eigenvector f = 1/a.
Hence, if y0 � 0 and

R
M y0(x)dm(x) = 1, then the

following estimate holds:

kTa(t)y0 � c̃fka  M0e
��tky0 � c̃fka, (7)

for c̃ = 1/
R
M f(x)dm(x), some positive constants M0,�,

and all t � 0.

Proof. To establish the exponential stability estimate (7), we
note that, from Poincaré’s inequality on compact manifolds
[14][Theorem 2.10], there exists a constant C > 0 such that
for all u 2 H1

(M),
Z

M
|u(x)� uM|2dm(x)  C

Z

M
|ru(x)|2dm(x), (8)

where uM =

1
m(M)

R
M u(x)dm(x). This implies that 0 is

a simple eigenvalue of the Laplace-Beltrami operator A
1

,
since the operator is self-adjoint. Since the operator Aa can
be written as a composition of operators A

1

Ma, where Ma

is the multiplication map u 7! au from H1
a(M) to H1

(M),
it follows that 0 is also a simple eigenvalue of Aa with
the corresponding eigenvector f = 1/a. The operator Aa

is positive definite, and hence its spectrum lies in the right-
half of the complex plane. Then the result follows from
[11][Corollary V.3.3] and the mass-preserving property of
the semigroup (Ta(t))t�0.

B. Nonlinear Diffusion
In this section, we consider the nonlinear diffusion model

(3). Here we will only summarize the main results without
proofs. A detailed analysis will be presented in a forthcoming
paper.

From here on, we will assume that a 2 C1
(M). As in

previous sections, it will also be assumed that a is bounded
from below by a positive constant.

We will assume that ↵ � 0. Let V ⇤ be the dual space
of V = H1

(M). Identifying the dual of L2
(M) with itself,

we have the continuous embeddings V ,! L2
(M) ,! V ⇤.

Let F be the Riesz isomorphism from V to V ⇤. Then V ⇤

is a Hilbert space with the inner product
⌦
·, ·
↵
V ⇤ given by⌦

u1, u2

↵
V

=

⌦
Fu1, Fu2

↵
H1 for all u1, u2 2 V . Note that

we are not identifying V with V ⇤.
Then we define the (nonlinear) operator Ba ⇢ V ⇥ V as

Ba(u) = {��gv; v(x) 2 �(a(x)u(x)), a.e. x 2 M)}
(9)

where �(·) is the subdifferential of the function 1
m+1 |·|

m+1
:

R ! R. Note that here we have used the terminology Ba ⇢
V ⇥ V to denote a nonlinear operator, since in general such
operators are multi-valued. Hence, it is typical to represent
nonlinear operators using their graphs [4].

Following the arguments for the case of Dirichlet boundary
conditions [4], we have the following result.

Theorem IV.6. The operator Ba is maximal monotone.
Therefore, Ba generates a nonlinear semigroup of operators
(Sa(t))t�0 on V . Hence, there exists a unique strong solution
⇢ 2 C([0, T ];V ) of the PDE (3).

For notions of maximal monotonicity, we refer the reader
to [4][Chapter 2]. This approach of establishing solutions
of nonlinear PDEs using monotonicity properties of corre-
sponding nonlinear elliptic operators is classical, but quite
involved. Note that the solutions that we obtain using this
approach are known to be only in C([0, T ];V ). This is
clearly a much weaker result than the one obtained for the
linear diffusion model (1), in which case it was instead
possible to conclude that solutions are in C([0, T ];L2

(M))

(Corollary IV.3).

Proposition IV.7. Suppose ⇢0 2 L1
(M). IfR

M ⇢0(x)dm(x) = 1, then the semigroup (Sa(t))t�0

generated by Ba satisfies
R
M(Sa(t)⇢0)(x)dm(x) = 1 for

all t � 0. Additionally, the semigroup is positive, i.e., ⇢0 � 0

implies that Sa(t)⇢ � 0 for all t � 0.

From this proposition, we can conclude the following main
result on the asymptotic stability of the desired equilibrium
distribution.

Theorem IV.8. Suppose ⇢0 2 L1
(M),

R
M ⇢0(x)dm(x) =

1, and ⇢0 � 0. Then the solution of the PDE (3), given by



(a) t = 0 s (b) t = 2 s
(c) t = 10 s

Fig. 1: Stochastic coverage of S2 by N = 5000 agents (in red) at different times t, following a linear diffusion model

Sa(t)⇢0, satisfies

lim

t!1
kSa(t)⇢0 � cfkV = 0, (10)

where c = 1/
R
M f(x)dm(x) and f = 1/a.

This last result can be proven in the following way. We
can directly use the functional � : V ⇤ ! R [ {1} defined
by

�a(⇢) =

8
><

>:

1
m+1

R
M |⇢(x)a(x)|↵+1dm(x),

if ⇢ 2 L↵+1
(M) \ V ⇤,

1, otherwise
(11)

as a Lyapunov functional and invoke the relative compactness
of the orbit of Sa(t)⇢ to establish stability using Lasalle’s
invariance principle.

V. SIMULATION RESULTS
In this section, we verify our theoretical results using

numerical simulations.

A. Linear Diffusion
We validate the coverage approach based on linear dif-

fusion with simulations on the two-dimensional sphere, de-
noted by S2. We use the exponential coordinates [18] on the
sphere to simulate the corresponding SDE. An advantage
of using exponential local coordinates is that the Laplace-
Beltrami operator, and hence the corresponding Brownian
motion, takes a much simpler form in these coordinates.
This is due to the fact that in exponential coordinates about
the point x 2 M, gij(x) = 0 for i 6= j. Thus, in these
coordinates, the SDE corresponding to the weighted diffusion
equation (1) can be expressed in the highly simplified form

dX(t) =
p
2a(X(t))dW(t) +O(r), (12)

where r =

p
X2

1 + ...+X2
n.

For the scenario considered, the target density f(x), shown
in Fig. 1, is depicted on the surface of the sphere using a
color density plot. Blue regions are assigned a low target
density of agents, while yellow regions are assigned a high
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Fig. 2: Target density for the nonlinear diffusion model

target density. The positions of N = 5000 agents are
generated from a stochastic simulation of the SDE (12) and
are superimposed on the density plot to enable comparison
between the actual and target swarm distributions. As can
be seen in Fig. 1, at time t = 10 s, the distribution of the
swarm over the sphere is close to the target density.

B. Nonlinear Diffusion
We also validate the coverage approach based on nonlinear

diffusion by numerically solving the corresponding PDE (3).
We use the finite volume method [16] to solve the PDE.

The manifold M defined in this example is the 2-
dimensional torus. Solving the PDE on the torus is equivalent
to solving it on a rectangular domain with periodic boundary
conditions. We set ↵ = 2 in the PDE. The target swarm
density is shown in Fig. 2. Snapshots of the swarm density
under diffusion at different times (i.e., the solution of the
PDE) are shown in Fig. 3. As predicted by the previously
stated asymptotic stability results, the solution is close to the
target density for large enough times.

VI. CONCLUSIONS
In this paper, we presented two generalizations of a

diffusion-based multi-agent coverage strategy. First, we ex-
tended the theory to general compact Riemannian manifolds
without boundary. Then, we considered coverage based on
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(b) t = 5 s
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(c) t = 10 s

Fig. 3: Solution of the nonlinear diffusion model at different times t

nonlinear diffusion models. Numerical simulations verified
the validity of the approaches. In future work, we will
investigate the extension of this approach to manifolds with
boundary. Another interesting future direction is to consider
the case where each agent is nonholonomic. In addition,
we will address the problem of constructing N stochastic
processes, each governing the motion of an agent, such that
the solution of the N–agent process converges to that of the
porous media equation in a suitable sense as N ! 1.
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