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Abstract— Continuum robot manipulators present chal-

lenges for controller design due to the complexity of their

infinite-dimensional dynamics. This paper develops a practical

dynamics-based approach to synthesizing state feedback con-

trollers for a soft continuum robot arm composed of segments

with local sensing, actuation, and control capabilities. Each

segment communicates its states to its two adjacent neighboring

segments, requiring a tridiagonal feedback matrix for decen-

tralized controller implementation. A semi-discrete numerical

approximation of the Euler-Bernoulli beam equation is used to

represent the robot arm dynamics. Formulated in state space

representation, this numerical approximation is used to define

an H1 optimal control problem in terms of a Bilinear Matrix

Inequality. We develop three iterative algorithms that solve

this problem by computing the tridiagonal feedback matrix

which minimizes the H1 norm of the map from disturbances

to regulated outputs. We confirm through simulations that all

three controllers successfully dampen the free vibrations of

a cantilever beam that are induced by an initial sinusoidal

displacement, and we compare the controllers’ performance.

I. INTRODUCTION

Continuum robots [32], [33] have high-dimensional con-

figuration spaces, which can be leveraged to achieve ver-

satile functionality over a wide variety of configurations.

The implementation of decentralized control architectures
[2], [26] in continuum robots would enable scalability of

the robot design, minimize expensive communication and

power overhead, and increased robustness to partial failure.

Furthermore, continuum robots composed of soft materials
would exhibit high structural compliance in response to en-

vironmental inputs that can enhance the robot’s functionality.

Soft continuum robots with decentralized controllers can

be used in manufacturing, surgery, and other applications

requiring flexible manipulators that can operate safely in

close proximity to humans. They can also be used to perform
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unstructured manipulation and locomotion tasks in uncertain,

dynamic environments. Furthermore, novel soft materials

such as smart hydrogels [12], which can dramatically change

volume and other properties in response to stimuli such as

temperature, pH, and chemicals, present the possibility of

constructing soft continuum robots with on-demand dynamic

control of local properties through continuous sensing and

actuation that is distributed throughout the robot. Such robots

could offer new capabilities through self-regulated adaptive

reconfiguration.

Challenges remain in the design of decentralized con-

trollers for soft continuum robots. While there are many

scalable and compliant soft robot designs, these designs are

typically model-independent or use simplified models which

do not accurately reflect either the nonlinear dynamics of

highly deformable robots or the practical issues of sensor and

actuator design and placement [16], [18], [24]. In addition,

most soft robot designs still require complex sensing, control,

and actuation to achieve even low-dimensional configura-

tion spaces. Dynamic models of continuum robots would

facilitate a variety of control techniques. However, many

of the control-oriented models developed for these types of

robots have thus far been governed by kinematic equations

describing rigid links [9], [22], [34], and hence are not

useful for designing feedback controllers when both the

forces produced by the actuators and the motion of the

robot are distributed throughout the structure. While dynamic

models have been formulated, e.g. a Partial Differential

Equation (PDE) model of bending in a hyper-redundant con-

tinuum robotic arm [14], their complexity often prevents their

practical implementation in controller design and motion

planning [32], [33].

Work on the control of vibrations in beams [7], [8] is

closely related to the decentralized control strategies that we

design in this paper. The optimal sensor/actuator placement

problem has been well-studied in vibration control; see,

e.g. [6], [17]. In addition, there has been significant research

on the question of how to construct stabilizing decentral-

ized feedback laws for a given network and, furthermore,

whether there are necessary and sufficient conditions for the

existence of such local feedback laws. The largest class of

systems for which we know the answer to this question

are those systems which are quadratically invariant [19],

[23]. While testing quadratic invariance is known to be NP-

hard, in practice, testing quadratic invariance under sparsity

constraints for reasonably-sized systems is not difficult and

furthermore, certain well-studied sparsity patterns are known



to be quadratically invariant, with the most well-known case

being when the controller is diagonal or both the controller

and plant are upper- or lower-tridiagonal. Unfortunately,

however, the tridiagonal sparsity constraint generated by

discretization of beam-type equations (with zeros everywhere

except the diagonal and first off-diagonal elements) is not

quadratically invariant. Because the decentralized control

problem with tridiagonal structure is difficult, the literature

on vibration control of beams focuses on the case of diagonal

decentralization, in which neighboring controllers do not

communicate with each other.

We are interested in designing decentralized controllers

with tridiagonal structure for soft robot arms. Since the

tridiagonal structure is not quadratically invariant, we instead

consider the non-convex Bilinear Matrix Inequality (BMI)

formulation of the problem and design algorithms to solve

this BMI directly using iteration and gradient descent.

Many algorithms have been developed for finding local

solutions to BMI problems, several focusing on Branch

and Bound [10], [28], [29], [30], [31]. However, many

such global optimization algorithms have high computational

complexity, making them impractical for the large state

spaces induced by spatial discretization of a PDE [20].

For high dimensional problems, Yamada et al. suggest a

modified triangle-covering based algorithm which reduces

the computational cost [35]. Unfortunately, however, this ap-

proach is restricted to a class of Bilinear Matrix Inequalities

(BMIs) that does not include the decentralized controller

synthesis problem. The method proposed in [15] and the rank

minimization approach in [13] will both typically converge

to a local optimum given an initial feasible controller. Other

approaches involve linearization of the BMI [11]. However

many of these methods, as shown in [25], can fail to converge

to even locally optimal solutions.

In this work, we develop a novel practical approach to

designing decentralized state feedback controllers for soft

continuum robot arms composed of segments with local

sensing, actuation, and control capabilities. The control ob-

jective is to regulate the robot arm’s displacement in the pres-

ence of disturbance inputs; i.e., to dampen its disturbance-

induced vibrations. Our approach does not require the use

of a complex nonlinear model that describes the infinite-

dimensional dynamics of the robot. Instead, we represent the

robot arm’s spatiotemporal dynamics using a semi-discrete

numerical approximation of the Euler-Bernoulli beam PDE

(Section II). This numerical approximation is formulated as

an ordinary differential equation (ODE) state space model for

implementation in linear matrix inequality (LMI) methods.

The state space model is used to define an H1 optimal

control problem in terms of a BMI (Section III). We present

three algorithms of increasing stability and performance that

solve this problem by computing the tridiagonal feedback

matrix which minimizes the H1 norm of the map from

disturbances to regulated outputs (Section IV). Finally, we

simulate the controllers computed by each algorithm for the

case of a cantilever beam composed of hydrogel material and

compare their performance (Section V). We conclude with a
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Fig. 1: Semi-discrete beam model with N segments.

discussion of the simulation results and directions for future

work (Section VI).

II. DYNAMIC MODEL

The robot arm is constructed from N identical cylindrical

segments that are arranged in a series configuration, as illus-

trated in Fig. 1. We assume that each segment is equipped

with sensing, actuation, control, and communication ele-

ments. We also assume that each segment can apply local

torques and can measure local deformations. For example,

when a segment is composed of force-sensitive conductive

hydrogel [12], local deformations can be sensed from a

resulting change in resistivity across the segment, and this

change in resistivity provides an electrical signal which can

be used as an output to a local feedback controller. The

local controller can then induce a current, which causes local

temperature changes in the segment that produce prescribed

deformations and resulting torques.

In this decentralized sensing and actuation model of a soft

robot arm, we likewise impose a decentralized communica-

tion architecture with a similar chain topology, meaning that

each segment can exchange state measurements only with

adjacent segments.

A. Model definition

To model the segmented robot arm, we will use a dis-

cretized version of the cantilever beam, wherein the beam

is composed of material that is elastic, homogeneous, and

isotropic. The beam is composed of material with Young’s

modulus E and density ⇢. The beam has length L and a

uniform cross-section of area Ac, and area moment of inertia

I about the neutral axis.

Let w(x, t) be the transverse displacement (see Fig. 1) of

point x 2 [0, L] on the beam at time t 2 [0, T ], where T is a

specified final time. The PDE describing a one-dimensional

unforced Euler-Bernoulli beam is given by

b2
@4w

@x4
+

@2w

@t2
= 0, b2 =

EI

⇢Ac
. (1)

We define boundary conditions for this model that describe

a cantilever beam, in which the deflection and slope of the



fixed end and the bending moment and shear force at the

free end are all set to zero:

w(0, t) = 0,
@2w

@x2
(L, t) = 0,

@w

@x
(0, t) = 0,

@3w

@x3
(L, t) = 0,

(2)

where t 2 [0, T ].
We note that the Euler-Bernoulli beam equation is linear,

assumes small shear stresses and is only accurate for small

deflections. However, it has been shown in [3] that for a

uniform circular cross-section with diameter D, when L �
20D the Euler-Bernoulli beam model yields a reasonably

accurate approximation of the robot arm dynamics when the

material properties satisfy certain assumptions. Furthermore,

we note that the use of the robust control framework in this

paper mitigates the effect of inaccuracy in the model.

B. State space representation
To represent the segmented arm, we construct a discretized

approximation of the continuum PDE beam model (1), (2),

which results in a set of linear ODEs. As in [5], we apply the

central finite difference method with second-order accuracy

to obtain a semi-discrete space approximation of model (1),

(2) (discrete in the spatial coordinate x and continuous in

time t). We define h = L/N as the length of each segment

and xj as the x position of the right boundary of segment

j 2 {1, ..., N}. Then we have that xj = jh for each segment

j, and we define x0 = 0. For the boundary conditions, we

also introduce two external points x�1 = �h and xN+1 =

L+ h. The semi-discretization version of model (1) is then

given by the following system of N linear equations, each

describing the dynamics of the transverse displacement of

point xj on the beam at time t 2 [0, T ]:

ẅ(xj , t) = � b2

h4
[w(xj+2, t)� 4w(xj+1, t) + 6w(xj , t)

� 4w(xj�1, t) + w(xj�2, t)], j = 1, ..., N.
(3)

Note that the dynamics of each segment’s displacement is

approximated as a function of its own displacement and that

of the two closest segments on either side. The boundary

conditions (2) are expressed as

w(x0, t) = 0, w(x�1, t) = �w(x1, t),

w(xN+1, t) = w(xN , t), w(xN+2, t) = w(xN�1, t).
(4)

We define the system state variables as w(xj , t),
ẇ(xj , t), j = 1, ..., N and arrange them in the vec-

tors w = [w(x1, t) w(x2, t) ... w(xN , t)]T , ẇ =

[ẇ(x1, t) ẇ(x2, t) ... ẇ(xN , t)]T . The system of equations

(3) and the boundary conditions (4) can then be represented

in state space form as follows:


ẇ
ẅ

�
=


A11 A12

A21 A22

� 
w
ẇ

�
(5)

where

A11 = [0]N⇥N , A12 = IN⇥N ,

A21 =

�b2

h4
Ah, A22 = [0]N⇥N ,

and the matrix Ah 2 RN⇥N
is defined as

Ah =

2

666666666666664

5 �4 1 0 0 0 0 0 · · · 0
�4 6 �4 1 0 0 0 0 · · · 0
1 �4 6 �4 1 0 0 0 · · · 0
0 1 �4 6 �4 1 0 0 · · · 0
0 0 1 �4 6 �4 1 0 · · · 0
.
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0 · · · 0 0 1 �4 6 �4 1 0
0 · · · 0 0 0 1 �4 6 �4 1
0 · · · 0 0 0 0 1 �4 6 �3
0 · · · 0 0 0 0 0 1 �3 2

3

777777777777775

.

Including inputs and outputs, we obtain a state space repre-

sentation given by


ẇ
ẅ

�
= A


w
ẇ

�
+Bu, y = C


w
ẇ

�
+Du, (6)

in which the system control input is denoted by u 2 RN
and

the output by y 2 R2N
. The A, B, C, and D matrices are

defined as

A =


A11 A12

A21 A22

�

2N⇥2N

, B =

⇥
0

⇤
N⇥N

IN⇥N

�

2N⇥N

,

C = I2N⇥2N , D =

⇥
0

⇤
N⇥N

IN⇥N

�

2N⇥N

.

(7)

In Section III, we discuss how the decentralized communi-

cation constraint leads to structural constraints on the gain

from input to output.

III. CONTROLLER SYNTHESIS

In this section, we use the linear ODE model developed

in Section II-B to define a decentralized control problem

assuming local full-state feedback. We first impose the mild

assumption that the uncontrolled system is neutrally stable

and controllable. To define the H1-optimal control problem,

we use the standard regulator framework, yielding the 2-

input, 2-output system representation R 2 R7N⇥7N
as:

R =

2

4
A B1 B2

C1 D11 D12

C2 D21 D22

3

5 , (8)

where

B1 =

⇥
B 0

⇤
2N⇥4N

, B2 = B,

C1 =


C
0

�

3N⇥2N

, C2 = C,

D11 =


D 0

0 0

�

3N⇥4N

, D12 =


D
I

�

3N⇥N

,

D21 =

⇥
D I

⇤
2N⇥4N

, D22 = D.

Because C2 = I , the control problem is one of full-

state feedback. The control problem, then, is to find the

feedback controller u = Ky, K 2 RN⇥2N
, that minimizes

the H1 norm of the map from disturbing inputs u to

regulated outputs y. However, we now add a communication

constraint in which we specify the structure of K to be

tridiagonal (NOT block-diagonal). This structure implies that



the moment generated by each segment is based only on

measurements of its own state and the states of its two

neighboring segments. Define the set of tridiagonal matrices

as

T := {K 2 Rn⇥n :

K =

2

666666664

k1,1 k1,2 0 · · · 0 0 0
k2,1 k2,2 k2,3 · · · 0 0 0
0 k3,2 k3,3 · · · 0 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · kn�2,n�2 kn�2,n�1 0
0 0 0 · · · kn�1,n�2 kn�1,n�1 kn�1,n

0 0 0 · · · 0 kn,n�1 kn,n

3

777777775

,

ki,j 2 R
�

(9)

We now denote the set of admissible controller gains by S,

where

S := { [K1 K2] | K1,K2 2 T }.

This allows us to represent the controller information con-

straint as K 2 S.

We may now formulate the H1 optimal control problem

as a Bilinear Matrix Inequality (BMI). By using the bounded-

real lemma, it can be shown that � is an H1 norm bound

of the transfer function from input to output if there exists

a positive definite matrix P and controller K which satisfy

the BMI constraint (10) [4]. Consequently, we can formulate

the optimization problem (10) below, whose solution is the

H1-optimal decentralized controller K⇤ 2 S.

minimize � > 0 such that

2

4
(A+B2K)

TP + P (A+B2K) ⇤T ⇤T
BT

1 P ��I ⇤T
(C1 +D12K) D11 ��I

3

5 < 0

(10)

for some K 2 S and P > 0.

In the matrix inequality, “ ⇤ ” is used to represent sym-

metric elements of the matrix.

IV. PROPOSED ALGORITHMS FOR SOLVING THE BMI

The optimization problem (10) is a BMI in the matrix

variables K and P . Solving BMIs is known to be an NP-

hard problem [27]. In this section, we evaluate three possible

algorithms for obtaining locally optimal solutions to this

BMI, two based on iteration and one based on gradient

descent.

A. Initialization

In all three algorithms, we require an initial feasible

solution to the BMI. Furthermore, the selection of initial

values can significantly influence convergence to an optimal

solution. Unfortunately, however, there are no canonical rules

for finding an initial feasible solution.

In our algorithm, we address this problem as follows. Un-

der the assumption that the nominal system is controllable,

the following LMI has solution P > 0:

controllability: ATP + PA�BBT < 0 (11)

We use this solution as an estimate of the initial value of

P (P0). Using this P0 to find the initial value of K (K0)

is problematic, however, because of the additional constraint

K 2 S. To resolve this, we initialize K without the sparsity

constraint and solve the resulting LMI version of (10) for

P , and then use this as our new estimate of P0. Given

this new value of P0, we solve the resulting LMI version

of (10) for K with the relaxed constraint that only the

last row of K is required to have the sparsity structure

K 2 S of the tridiagonal matrix (9). Using this K, we solve

the LMI version of (10) for P . This procedure is repeated

by progressively constraining more rows of K to have the

structure of the corresponding row of matrix (9) until the

entire matrix K has the desired tridiagonal structure.

We have developed the following three algorithms to

obtain an H1 optimal solution for K. The algorithms all

use the initialization procedure described above.

B. Iterative optimization algorithm

Algorithm 1 is a standard iteration-based method used

to solve a bilinear system of equations. It is similar to

our initialization procedure for the variables P and K.

Initializing a value for P (P0) yields the LMI from (10),

which is solved by optimizing over K. Afterward, we fix K
in (10) and optimize over P . These steps are repeated until

the values of K and P converge to optimal values, at which

point the change in � is minimal.

This algorithm has two drawbacks: it does not converge

for certain initial values of P (P0), especially if the A
matrix is numerically ill-conditioned, and the solution for

K could have a large magnitude that makes the feedback

controller physically impractical to implement. However,

imposing additional constraints on the magnitude of K could

potentially cause the H1 norm to diverge. We next propose

two modified versions of this algorithm that address these

problems.

C. Modified iterative optimization algorithm

Algorithm 1, depending on the choice of P0, can end up

oscillating between suboptimal solutions for K. This was

observed to happen for poor choices of P0. To reduce these

oscillations, we define P and K at each iteration as weighted

averages of their current values and their optimized values,

obtained by solving the optimization problem (10) during

the current iteration. The weight factor ↵ is chosen to be

a value between 0 and 1. The ↵ value can be selected to

produce small changes in the solution between iterations,

thus preventing the solution from making large jumps in the

non-convex subspace. An ↵ close to 0 would result in very

small changes in P and K over successive iterations.



Algorithm 1 Standard iterative algorithm

1: Choose a small ✏ > 0. Initialize P to P0.

2: while |�k � �k�1| > ✏ do

3: Use the last known value for P .

4: Solve for K in problem (10), minimizing �.

5: Use the solution for K in the next step.

6: Solve for P in problem (10), minimizing �.

7: �k is the minimized value of � in step 6.

8: k = k + 1

9: end while

D. Gradient descent algorithm
Although both Algorithms 1 and 2 are quick to converge,

they do not converge at all when the matrices A and B are

numerically ill-conditioned. In addition, the solution for K
computed by these procedures often has a magnitude that

is too large for implementation in practice. We address this

problem in Algorithm 3 by splitting optimization problem

(10) into two optimization problems with LMI constraints,

shown below. The difference here is that we can directly

restrict changes in the solution over successive iterations and

also limit the values taken by the variables. We redefine

the optimization variables as �K 2 RN⇥2N
and �P 2

R2N⇥2N
, whose L1-norms are constrained to be small

in order to prevent large changes in K and P between

iterations.

minimize �a > 0 such that k�Kk < ✏1 and

2

4
(A+B2Ka)

TP + P (A+B2Ka) ⇤T ⇤T
BT

1 P ��aI ⇤T
(C1 +D12Ka) D11 ��aI

3

5 < 0

(12)

for some Ka 2 S, where Ka ⌘ K +�K.

minimize �b > 0 such that k�Pk < ✏2 and

2

4
(A+B2K)

TPa + Pa(A+B2K) ⇤T ⇤T
BT

1 Pa ��bI ⇤T
(C1 +D12K) D11 ��bI

3

5 < 0

(13)

for some Pa > 0, where Pa ⌘ P +�P .

In these two problems, ✏1 and ✏2 are small positive numbers.

The optimization procedure is performed alternately over

�K and �P as follows such that � converges to a local

minimum. At the beginning of each iteration, problem (12)

is solved for �K using the current values of K and P , and

then K is increased by �K. Next, problem (13) is solved

for �P , and P is increased by �P .

V. SIMULATION RESULTS

We validated our numerical approximation of the beam

model and investigated the performance of our decentralized

state feedback controllers in simulation. YALMIP [21], an op-

timization toolbox for MATLAB with the MOSEK solver [1],

was used to solve the optimization problems in Algorithms 1,

Algorithm 2 Modified iterative algorithm

1: Choose a small ✏ > 0 and ↵ 2 (0, 1). Initialize P to P0.

2: while |�k � �k�1| > ✏ do

3: Use the last known value for P .

4: Solve for K in problem (10), minimizing �.

5: Kk+1 = Kk + ↵(K �Kk)

6: Use Kk+1 as the current value of K.

7: Solve for P in problem (10), minimizing �.

8: Pk+1 = Pk + ↵(P � Pk)

9: �k is the optimal value of � in step 7.

10: k = k + 1

11: end while

Algorithm 3 Gradient descent algorithm

1: Choose a small ✏ > 0. Initialize K to K0 and P to P0.

2: while |�k � �k�1| > ✏ do

3: Solve problem (12), minimizing �a.

4: K = K +�K
5: Solve problem (13), minimizing �b.

6: P = P +�P
7: �k is the optimal value of �b.

8: k = k + 1

9: end while

2, and 3. The beam model was simulated using the MATLAB

lsim command with N = 40 segments and the parameters

listed in Table I, where E and ⇢ are defined for hydrogel

material

1

.

A. Validation of semi-discrete approximation of beam model
In order to evaluate the accuracy of the numerical approx-

imation (3), (4), we compare it to the analytical solution

of the cantilever Euler-Bernoulli beam model (1), (2). The

initial conditions of the beam model were set to

w(x, 0) = sin

✓
3⇡

2L
x

◆
,

@w

@t
(x, 0) = 0, x 2 [0, L]. (14)

For these initial conditions, the solution to the beam model

(1), (2) can be obtained using the separation of variables

method:

w(x, t) = sin

✓
3⇡

2L
x

◆
cos

✓
9⇡2b

4L2
t

◆
, t 2 [0, T ], x 2 [0, L].

(15)

1

N-isopropylacrylamide, variously abbreviated PNIPA, PNIPAAm, NIPA,

PNIPAA or PNIPAm

TABLE I: Beam material and geometric properties

Parameter Definition Value Units

E Young’s modulus at 25�C 5.0 kPa
⇢ Mass density 1.1 g/cm3

D Diameter 5.0 cm
L Length 1.0 m
Ac Cross-section area 19.6 cm2

I Area moment of inertia 30.7 cm4



This solution describes the first mode shape of the beam. In

the simulations, we set T = 20.

Figures 2(a),(b) plot the vibrations of the beam over time

from the analytical solution (15) and the numerical approx-

imation, respectively. Figure 2(c) plots the error between

the analytical solution and the numerical approximation.

Although this error grows over time due to numerical ap-

proximation error propagation, it remains relatively small

(the magnitude does not exceed 0.08 m within the first 5 s)

compared to the maximum amplitude of the beam vibrations

within the first few seconds of the simulation, when the

controllers effectively damp the vibrations (see next section).

Thus, the numerical approximation is sufficiently accurate for

use in our optimization methods to synthesize the controllers.

Note that a relatively coarse spatial discretization (N = 40

segments) was used for the numerical approximation; a

closer match to the analytical solution could be achieved

with a finer discretization.

B. Comparison of optimal decentralized controllers for
damping beam vibrations

Decentralized state feedback controllers were synthesized

with Algorithms 1, 2, and 3, and the beam dynamics were

simulated for each controller using the numerical approxima-

tion (6). All the variables were initialized using the procedure

described in Section IV-A.

Figures 3a, 4a, and 5a plot the evolution of the closed-loop

H1 norm bound, �, over the execution of each algorithm

when the optimization is performed alternately over the

variables K and P during each iteration. Figures 3b, 4b, and

5b display the resulting closed-loop beam response for each

controller given the initial condition (14). These figures show

that all controllers successfully dampen the beam vibrations

that are induced by the initial beam displacement within

the first 5 seconds. From the convergence rates of the plots

in Fig. 3a, 4a, and 5a, it is evident that Algorithm 1 is

the least computationally intensive procedure, followed by

Algorithm 2 and then by Algorithm 3. This is because K
is least constrained in Algorithm 1, which therefore permits

large changes in K between iterations and hence has the

fastest convergence, followed by the other two algorithms.

Algorithm 2 shows superior performance to Algorithm 1, in

that it converged to a controller with a smaller H1 norm

bound (� = 1.05, versus � = 1.42 for Algorithm 1) at

the expense of a slight increase in computational demands.

Algorithm 3 converged to the highest H1 norm bound

(� = 2.31) of the three methods since the controller gain

values were subject to additional constraints. However, the

controller computed by this algorithm would be the most

feasible one to implement in practice, since the constraints

limit the magnitudes of the controller gains.

VI. CONCLUSIONS

In this paper, we developed three algorithms for synthe-

sizing a decentralized controller for the discretized Euler-

Bernoulli beam model by solving an H1 optimal control
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Fig. 2: Euler-Bernoulli cantilever beam free vibrations from

(a) the analytical solution (15) and (b) the numerical approx-

imation (3), (4); (c) error between the analytical solution and

numerical approximation.

problem. We found that when the system matrix is nu-

merically ill-conditioned, which is a common property of

discretized beam models, convergence of the H1 norm is

not always guaranteed. In addition, we found that iterative

approaches are in general sensitive to the initial selections

of P and K. The modifications proposed in the algorithms

solved these problems of convergence and sensitivity for the

discretized beam model. The iterative and modified iterative

methods quickly reach a converged H1 norm value, but

they do not guarantee convergence for different selections

of initial P and K. The gradient descent approach, while
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Fig. 3: (a) H1 norm bound converging in the two alternating

steps of Algorithm 1. (b) Closed-loop response of the sim-

ulated beam with initial conditions (14) and the controller

from Algorithm 1.

slightly slower at reaching a converged H1 norm value,

is less sensitive to different choices of initial P and K. It

provides a bounded solution for the controller gains, which

is often a necessity in physical systems.

In future work, we plan to develop decentralized con-

trollers for beam models that more accurately describe the

dynamics of a soft continuum robot arm composed of hy-

drogel. We will design these controllers to produce diverse

types of arm motions and deformations that are useful for

manipulation and locomotion tasks.
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