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Abstract

This paper presents a novel partial di↵erential equation (PDE)-based framework for controlling an ensemble of robots, which
have limited sensing and actuation capabilities and exhibit stochastic behaviors, to perform mapping and coverage tasks.
We model the ensemble population dynamics as an advection-di↵usion-reaction PDE model and formulate the mapping and
coverage tasks as identification and control problems for this model. In the mapping task, robots are deployed over a closed
domain to gather data, which is unlocalized and independent of robot identities, for reconstructing the unknown spatial
distribution of a region of interest. We frame this task as a convex optimization problem whose solution represents the region
as a spatially-dependent coe�cient in the PDE model. We then consider a coverage problem in which the robots must perform
a desired activity at a programmable probability rate to achieve a target spatial distribution of activity over the reconstructed
region of interest. We formulate this task as an optimal control problem in which the PDE model is expressed as a bilinear
control system, with the robots’ coverage activity rate and velocity field defined as the control inputs. We validate our approach
with simulations of a combined mapping and coverage scenario in two environments with three target coverage distributions.

Key words: Swarm robotics; autonomous mobile robots; optimal control; bilinear control systems; partial di↵erential
equations; distributed-parameter systems; stochastic systems; decentralized systems

1 Introduction

Over the past few decades, partial di↵erential equation
(PDE) models of multi-agent systems have been used
extensively in mathematical biology to analyze collec-
tive behaviors such as chemotaxis, flocking, schooling,
predator-prey interactions, and pattern formation [33].
Many of these models are linear or nonlinear advection-
di↵usion type PDEs, which describe the spatiotempo-
ral evolution of probability densities of agents. Mathe-
matical tools such as bifurcation analysis, optimization,
and control theory can be applied to these continuum
macroscopicmodels tomake qualitative and quantitative
predictions about the system behavior. Typically, each
PDE model corresponds to a discrete microscopic model
that captures the stochastic and deterministic actions of
individual agents. While these microscopic models are
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more accurate descriptions of the agents’ behavior, the
macroscopic models enable tractable analysis for large
agent numbers.

Recently, this work has motivated the use of similar
types of PDEs to model and control the spatiotempo-
ral dynamics of very large collectives, or swarms [15], of
small, resource-constrained robots (e.g., [24,39]) that are
currently being developed for applications such as en-
vironmental monitoring, exploration, surveillance, dis-
aster response, and biomedical procedures. PDEs have
been used to characterize the distributions of chemotac-
tic robots in a di↵usive fluid environment [17], minia-
ture robots inspecting a model of jet turbine blades [37],
and honeybee-inspired agents that aggregate at the op-
timal value of a scalar field [7]. The parameters of these
PDE models can be mapped to control inputs that drive
the robots’ motion and probability rates of switching
between states or tasks, and the collective behavior of
the robots follows the PDE model prediction in expecta-
tion. Several works have exploited this correspondence
to control the spatial distribution of a ensemble [31,14].
These control approaches can be viewed as extensions
of stochastic task allocation schemes based on nonspa-
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tial rate equation models [5,8,28,27]. Other applications
of continuum population dynamical models to multi-
agent control include optimized confinement strategies
[22], consensus using the theory of mean field controls
[32], controlled flocking [35] that includes non-parallel
motions [21], and pattern generation in the presence of
obstacles [36]. There has also been some recent work
on using PDEs to model Laplacian network dynamics
of agents for formation control; see [16,29,11] and refer-
ences therein.

We apply this PDE-based modeling framework to de-
velop a control approach for allocating tasks among an
ensemble of robots. In our scenarios, a task is defined as a
desired activity that a robot performs in a certain spatial
region of the environment. The tasks can be performed
in parallel, and multiple robots can be simultaneously
allocated to each task. While various deterministic ap-
proaches have been developed for multi-robot task allo-
cation, including centralized and decentralized market-
based techniques [9,6] and centralized methods for op-
timal task assignment and trajectory planning [1,41],
their computation and/or communication requirements
do not scale well to very large numbers of robots and
tasks. In contrast to these works, we develop a stochastic
approach in which tasks are performed at random times
by unidentified robots with limited computing capabil-
ities and no global localization. The robots can receive
information that is broadcast from a central supervisor,
although they cannot communicate among themselves.
Such limitations will be common in swarm robotic plat-
forms, e.g. micro aerial vehicles [24] and microrobots
[39], and in scenarios where the robots operate in GPS-
denied environments where communication is impracti-
cal or unreliable. In our proposed approach, a task allo-
cation emerges from the collective ensemble activity.

We first consider amapping problem in which the objec-
tive is to estimate a scalar spatial field from unlocalized
data obtained by the robots. We then define a coverage
problem in which the ensemble must produce a target
spatial density of activity over a region of interest, which
may be estimated in themapping problem. For this prob-
lem, we express the PDE model as a bilinear control sys-
tem [4] and formulate an optimal control problem that
computes the control inputs. Since we do not assume
that agents are capable of global localization or estima-
tion of the local agent population density, we frame the
coverage problem as an open-loop control problem that
does not require feedback on agent positions or densities.
We follow the variational approach described in [40] for
optimal control of the PDE model. While there has been
some prior work on bilinear optimal control of systems
of PDEs [34,3], these works do not address the types of
PDEs that we consider. An optimal control problem for
a bilinear parabolic PDE was formulated in [34] with the
di↵usion coe�cient as the control. In [3], bilinear control
of a class of advection-reaction systems was considered;
unlike our PDE models, these systems did not include

di↵usion.

The mapping and controller synthesis approaches de-
scribed in this paper require a central supervisor with
the computational capabilities necessary to solve the as-
sociated optimization problems. Despite this centralized
component, the approaches are scalable with the number
of agents in the ensemble since each agent executes the
same controllers with the same control variables, which
are preprogrammed or broadcast by the supervisor. In
our coverage strategy, there are only three control vari-
ables to be computed; in contrast, the most naive ap-
proach to controlling an ensemble of N agents moving
in d dimensions would require the computation of Nd

control inputs.

We first presented our coverage approach in [12], where
we introduced a similar optimal control problem, de-
rived the gradient of the objective functional with re-
spect to the control parameters, and used a gradient de-
scent algorithm to compute the optimal control. This pa-
per provides a complete analysis of our approach in [12]
by investigating the well-posedness of the PDE model
and the optimal control problem. The theory of weak
solutions that we use to establish the well-posedness of
the PDE model is classical [13]. However, to the best of
our knowledge, there have been no prior results on well-
posedness that can be directly applied to our model,
which is a system of PDEs in which di↵usion is present
only in one of the species, the control variables are time-
dependent, and a zero-flux boundary condition is im-
posed on the boundary of a Lipschitz domain. In this pa-
per, we prove the existence and uniqueness of solutions
of our PDE model by deriving suitable energy estimates
for the solutions. We also use these derived energy esti-
mates to ensure that the computation of the gradient,
performed using the adjoint equation approach, is well-
posed. Moreover, we prove the existence of an optimal
control for the problem using standard compactness ar-
guments adapted to the PDE control setting [40]. In ad-
dition to this analysis, our formulation of the mapping
problem in the same framework is a novel contribution
of this paper; in [12] it was assumed that the environ-
ment is known beforehand.

The paper is organized as follows. Section 2 describes the
robot capabilities and their programmed behaviors dur-
ing the mapping and coverage assignments, and Section
3 defines the microscopic and macroscopic models of the
ensemble and its activity during each assignment. Sec-
tion 4 defines key mathematical terminology that is used
in Sections 5 and 6 to formulate and analyze the map-
ping and coverage objectives, respectively, as optimiza-
tion problems that incorporate the macroscopic models.
We validate our approach in Section 7 with simulations
in which a region of interest must first be mapped and
then covered with a target distribution of robot activity,
and we conclude in Section 8.
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2 Task Descriptions and Assumptions

We consider a scenario in which (1) a small number of
agents must map a region of interest in an unknown,
bounded environment, which we refer to as the mapping
assignment, and then (2) a larger ensemble of agents
must produce a target spatial distribution of activity
within the mapped regions, which we call the coverage
assignment. For instance, this activity could consist of
sensor measurements, or as in our previous work [12],
contacts with flowers to e↵ect crop pollination. Themap-
ping and coverage assignments will be formulated in a
decoupled manner by posing them as two separate op-
timization problems in terms of their associated mean-
field PDE models. We will then demonstrate through
numerical simulations that these two problems can be
solved sequentially in order to achieve the desired cov-
erage objective.

2.1 Robot capabilities

We assume that the agents lack global localization, inter-
agent communication, and prior data about the envi-
ronment. Each agent is equipped with local sensing ca-
pabilities, allowing it to detect and distinguish between
di↵erent types of regions within its sensing range, and a
compass, enabling it to move with a specified heading.
Additionally, the agents have su�cient memory to store
the times at which they record observations of regions of
interest. Similarly, it is assumed that agents have su�-
cient memory to store time-dependent velocity and task-
switching parameters for the coverage assignment.

Both the mapping and coverage assignments involve nu-
merical optimization computations that are performed
o✏ine by an external supervisor. After the mapping as-
signment, the supervisor collects recorded information
from the robots and uses this information to reconstruct
the map of the environment.We note that the supervisor
does not have information on the individual identities
of the robots. Based on this map, the supervisor calcu-
lates the parameters of the agent behaviors for a speci-
fied coverage objective and broadcasts these parameters
to the agents before they are deployed for the coverage
assignment. This broadcast architecture has been previ-
ously proposed for controlling large numbers of robots
[30]. Although the external supervisor constitutes a po-
tential single point of failure, it enables the control of
large ensembles of agents that are subject to the con-
straints that we consider.

2.2 Robot controllers

The agents traverse the environment, a bounded open
connected set ⌦ ⇢ R2 with Lipschitz continuous bound-
ary @⌦, with a combination of deterministic and stochas-
tic motion during a deployment. Each agent moves with

a time-dependent velocity field v(t) 2 R2, which may be
broadcast to the agents or imposed on them using exter-
nal stimuli, such as magnetic fields in microrobotic appli-
cations. Concurrently, each agent exhibits random mo-
tion that may be programmed, for instance to perform
probabilistic search and tracking, or that arises from in-
herent sensor and actuator noise. We assume that this
random movement can be modeled as a Brownian mo-
tion that drives di↵usion with an associated di↵usion
coe�cient D. This approach to modeling the motion of
members of a robotic swarm has, for example, been used
previously in [20].

The agents switch stochastically between behavioral
states at constant or time-dependent transition rates,
which define the probability per unit time for an agent
to switch from one state to another. We define a region
of interest, which may be disconnected and is assumed
to be Lebesgue measurable, as � ⇢ ⌦. For practical
applications, � should be a union of a finite number
of connected open subsets of ⌦, as considered in the
simulation examples in Section 7. During mapping, a
continually moving agent records observations of � at
a constant rate ko. During coverage, an agent that is
moving over � pauses to perform an action (such as
a sensor measurement) at a time-dependent rate k(t),
and it resumes moving at a constant rate kf , which
determines the time taken to complete the action. This
coverage strategy can be extended to scenarios where
there are di↵erent types of regions, and the agents per-
form actions over each region at a di↵erent rate, as in
our prior work [12].

We specify that the agents’ velocity field and transition
rates are controllable parameters. In themapping assign-
ment, v(t) is designed to ensure thorough exploration
of the environment (for instance, following a lawnmower
pattern), and ko is assigned a high value to yield a large
number of observations and thus produce an accurate
map. In the coverage assignment, kf is fixed while v(t)
and k(t) are computed prior to the agents’ deployment
according to the optimal control approach in Section 6.

3 Models of Ensemble Mapping and Coverage

3.1 Microscopic Models

The microscopic model is used to simulate the individ-
ual robots’ motion and probabilistic decisions that are
produced by the robot controllers in Section 2.2.

Remark 1 Here we describe the microscopic model at
a formal level as a discrete-time stochastic process. A
rigorous correspondence between the microscopic model
and the macroscopic model for the case ⌦ = R2 was
shown recently by the authors and collaborators in [43].
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We model a robot’s changes in state and performance of
desired actions as a Chemical Reaction Network (CRN)
in which the possible species are M , a moving robot; S,
a stationary robot; and A, an instance of a desired robot
activity. These reactions can only occur when a robot is
located in the region of interest �. For example, in an
artificial pollination scenario [12], � could represent the
subset of the domain in which flowers are distributed. A
robot’s mapping activity consists of a single irreversible
reaction,

M
k
o�! M +A, (1)

where A is the robot’s observation of the region of in-
terest. A robot’s coverage activity consists of two irre-
versible reactions,

M
k(t)��! S +A, (2)

S
k
f�! M, (3)

where A is a desired action that the robot performs.

In addition, wemodel the displacement of a robot i over a
timestep�t using the standard-form Langevin equation
[18],

Xi(t+�t)�Xi(t) = Yi(t)
�
v(t)�t+ (2D�t)1/2 Zi(t)

�
,

(4)

where Xi(t) 2 R2 is the position of robot i 2 {1, .., N}
at time t and Zi(t) 2 R2 is a vector of independent
standard normal random variables that are generated at
time t. Here, Yi(t) is a binary variable associated with
the discrete state of robot i at time t. When the robot
is performing the mapping assignment, Yi(t) = 1 for
all t. When it is performing the coverage assignment,
Yi(t) = 1 if the robot is in stateM at time t and Yi(t) = 0
if it is in state S at time t. During the coverage assign-
ment, Yi(t) evolves according to the conditional proba-
bilities P(Yi(t+�t) = 0 | Yi(t) = 1) = H�(Xi(t))k(t)�t
and P(Yi(t +�t) = 1 | Yi(t) = 0) = kf�t, where H� is
the indicator function of the set � and P is the probabil-
ity measure induced by the process (X, Y ) on the set of
sample paths. The robot avoids collisions with the do-
main boundary by performing a specular reflection when
it encounters this boundary. We emphasize that the ve-
locity v(t) and di↵usion coe�cient D are the same for
each robot i. This assumption enables the coverage prob-
lem to be posed as a PDE control problem, as shown in
Sections 5 and 6.

3.2 Macroscopic Models

The macroscopic model consists of a set of advection-
di↵usion-reaction (ADR) PDEs that describe the evolu-
tion of probability densities of agents that follow the mi-
croscopic model, conditioned on the initial distribution
of the agents’ states. Since we assume that there are no

interactions between the agents, the random variables
associated with the agents are independent and identi-
cally distributed, and hence we can drop the subscript
i from Xi(t), Yi(t), and Zi(t) and represent the macro-
scopic model as a single system of PDEs rather than
N systems of PDEs. Defining x = [x1 x2]T 2 ⌦, the
state variables of the macroscopic model are the popula-
tion density fields of moving robots, y1(x, t); stationary
robots, denoted by y2(x, t) in the coveragemodel; and in-
stances of the desired robot activity, denoted by y2(x, t)
in the mapping model and by y3(x, t) in the coverage
model. We define Q = ⌦ ⇥ (0, T ) and ⌃ = @⌦ ⇥ (0, T )
for some fixed final time T . The vector n(x) 2 R2 is
the outward normal to @⌦, a measurable vector-valued
map defined for almost every x 2 @⌦. We also define
an initial density of moving robots y0(x) over ⌦ that is
normalized such that

R
⌦ y0(x)dx = 1.

The macroscopic model of mapping is given by:

@y1
@t

= r · (Dry1 � v(t)y1) in Q,

@y2
@t

= koH�(x)y1 in Q (5)

with the no-flux boundary condition

n · (Dry1 � v(t)y1) = 0 on ⌃ (6)

and initial conditions

y1(·, 0) = y0, y2(·, 0) = 0 on ⌦, (7)

where 0 is the function on⌦ that takes the value 0 almost
everywhere. The microscopic model of mapping defined
in Section 3.1 is related to the above macroscopic model
by the approximation P(X(t) 2 ⇤) ⇡

R
⇤ y1(x, t)dx,

where ⇤ is a measurable subset of ⌦. Additionally,R
⇤ y2(x, t)dx is the expected number of observations
recorded by the robots in the region ⇤ up until time t.

The macroscopic model of coverage is defined as:

@y1
@t

=r · (Dry1 � v(t)y1)� k(t)H�(x)y1 + kfy2 in Q,

@y2
@t

= k(t)H�(x)y1 � kfy2 in Q,

@y3
@t

= k(t)H�(x)y1 in Q, (8)

with the no-flux boundary condition (6) and initial con-
ditions

y1(·, 0) = y0, y2(·, 0) = y3(·, 0) = 0 on ⌦. (9)

In this macroscopic model, the density fields y1(x, t) and
y2(x, t) are related to the microscopic model of coverage,
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given by the stochastic process (X(t), Y (t)) defined in
Section 3.1, as follows:

P ((X(t), Y (t)) 2 (⇤⇥ {1})) ⇡
Z

⇤
y1(x, t)dx,

P ((X(t), Y (t)) 2 (⇤⇥ {0})) ⇡
Z

⇤
y2(x, t)dx,

(10)

where ⇤ is a measurable subset of ⌦. Additionally,R
⇤ y3(x, t)dx represents the expected number of in-
stances of robot coverage activity performed in the
region ⇤ up until time t.

4 Mathematical Preliminaries

We now define some mathematical terms that are used
in later sections. Given two Banach spaces P and Q,
L(P,Q) is the space of bounded operators from P to Q.
For a finite collection of Banach spaces, {Z1, ..., ZM}, we
equip the Cartesian product of the spaces, Z1⇥ ...⇥ZM ,

with the norm
�PM

↵=1 k · k2↵
�1/2

. We define L2(⌦) as
the Hilbert space of square integrable functions over
⌦, where ⌦ ⇢ Rn is a bounded open subset of a Eu-
clidean domain of dimension n. The Hilbertian struc-
ture of L2(⌦) is induced by the standard inner product,
h·, ·iL2(⌦) : L

2(⌦) ⇥ L2(⌦) ! R, given by hf, giL2(⌦) =R
⌦ f(x)g(x)dx for each f, g 2 L2(⌦). The norm k ·kL2(⌦)

on the space L2(⌦) is defined as kfkL2(⌦) = hf, fi1/2L2(⌦)

for all f 2 L2(⌦). For a positive integer n 2 Z+, Pn

refers to the Cartesian product of n copies of the space
P ; that is, Pn =

Qn
i=1 P . We use P ⇤ to denote the space

of linear continuous functionals on the Banach space
P . The bilinear form that induces the duality between
P and P ⇤ is given by h·, ·iP⇤,P : P ⇤ ⇥ P ! R, where
hx, yiP⇤,P = x(y) for each x 2 P ⇤ and each y 2 P .

We define the Sobolev space H1(⌦) =
�
z 2 L2(⌦) :

@z
@x1

, @z
@x2

2 L2(⌦)
 
. Here, the spatial derivatives are to

be understood as weak derivatives defined in the distri-
butional sense. See [13] for this notion of a derivative of a
function that is not necessarily di↵erentiable in the clas-
sical sense. We equip the space with the usual Sobolev

norm kykH1(⌦) =
⇣
kyk2L2(⌦) +

P2
i=1

��� @y
@x

i

���
2

L2(⌦)

⌘1/2
.

The dual space of H1(⌦), denoted by H1(⌦)⇤, is the
space of bounded linear functionals on H1(⌦) through
the inner product of L2(⌦). Defining V = H1(⌦) and
X = V ⇥ L2(⌦)2, it follows that X⇤ := V ⇤ ⇥ L2(⌦)2.

We say that a sequence fn is weakly converging to f inX,
written as fn * f , if limn!1h�, fniX⇤,X = h�, fiX⇤,X

for all � in X⇤. For norm convergence of a sequence fn
to f , we write fn ! f .

The space L2(0, T ;X) consists of all strongly measur-
able functions u : [0, T ] ! X for which kukL2(0,T ;X) :=� R T

0 ku(t)k2X
�1/2

< 1. The space C([0, T ];X) con-
sists of all continuous functions u : [0, T ] ! X for which
kukC([0,T ];X) = max0tT ku(t)kX < 1.

We will also use the trace operator, ⌧ : H1(⌦) ! L2(@⌦),
defined as the unique linear bounded operator that sat-
isfies (⌧u)(x) = u(x) for every x 2 @⌦ whenever u is
in C1(⌦̄) (that is, u is at least once di↵erentiable in the
classical sense). Informally speaking, the trace operator
gives meaning to the evaluation of an element of H1(⌦)
on @⌦, which is a set of measure zero.

5 Optimization Problem for the Mapping As-
signment

This section formulates the mapping assignment as an
optimization problem that identifies the unknown coef-
ficient H� in the mapping macroscopic model (5). This
coe�cient is reconstructed from the cumulative robot
sensor data ĝ(t), the total number of observations made
over the entire domain by all the robots up until time
t. We recall that the robots record these observations
stochastically according to the chemical reaction (1) and
that the agents’ spatial states evolve according to equa-
tion (4). Here, the velocity input v(t) is predetermined
by the user and should be chosen such that the agents
approximately cover the entire domain. An example of
such a choice for v(t) is one that would drive the robots
along a lawnmower path, as shown in Fig. 1 in Section 7.

In the mapping macroscopic model (5), the cumula-
tive robot sensor data is interpreted as a continuous
quantity given by an integral over the domain, g(t) =R
⌦ y2(x, t)dx. We address the existence and uniqueness
of the solutions of the macroscopic model (5) in Sec-
tion 6, since this model is a special case of the coverage
macroscopic model (8) for which kf = 0, k(t) = ko, and
the stationary robot state is absent.

We define Ĥ as an estimate of H�. Due to the one-sided
coupling between the state variables y1 and y2 in the
PDE model (5), the variable y1 is not a↵ected by the co-
e�cientH�. Hence, assuming that the PDE is well-posed
and that a unique solution exists in H1(⌦)⇥ L2(⌦), we
can pose the mapping problem follows:

Problem 2 (Mapping Problem) Given an initial
condition y0(x) of PDE model (5) and the corresponding
solution y1(x, t), find an estimate Ĥ 2 Sad, where

Sad :=
�
u 2 L2(⌦); 0  u(x)  1 a.e. x 2 ⌦

 
,
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that satisfies the following equation:

(KĤ)(t) :=

Z

⌦
koĤ(x)y1(x, t)dx = g(t). (11)

Ideally, the estimate Ĥ would be constrained to be a
function that takes values of 0 or 1 over its domain.
However, this constraint would make the resulting in-
verse problem, i.e. solving equation (11) for Ĥ in Prob-
lem 2, non-convex when considered as an optimization
problem. To make the optimization problem tractable,
we relax the range of Ĥ and consider it as an essentially
bounded element of L2(⌦). Generally, equations of the
form (11) need not have unique solutions unless some
special conditions on koy1(x, t), the kernel of the integral
operator K : L2(⌦) ! L2(0, T ), can be guaranteed. To
resolve the ill-posedness of the inverse problem, it can
be alternatively posed as an optimization problem with
a functional J(Ĥ) that is convex, but not necessarily
strictly convex:

min
Ĥ2S

ad

J(Ĥ) = kKĤ � gk2L2(0,T ) (12)

To ensure a unique solution for Ĥ, the optimization
problem can be recast with a strictly convex functional:

min
Ĥ2S

ad

J�(Ĥ) =
1

2
kKĤ� gk2L2(0,T )+

�

2
kĤk2L2(⌦), (13)

where � > 0 is the regularization parameter that is of-
ten used in the so-called “Tikohnov regularization” of
inverse problems [25]. Since Sad is convex in L2(⌦), the
existence and uniqueness of regularized problems of the
form (13) can be guaranteed and has been been well-
studied in the theory of inverse problems [25]. Hence, we
have the following result in Theorem 3. The assumption
in the theorem that y1 2 C([0, T ];L2(⌦)) is justified in
Section 6.2.

Theorem 3 A unique solution to the regularized inverse
problem (13) exists for each � > 0, under the assump-
tions that y1 2 C([0, T ];L2(⌦)) and ko > 0.

Proof. For y1 2 C([0, T ];L2(⌦)) and ko > 0, the opera-
torK in equation (11) is a bounded operator from L2(⌦)
to L2(0, T ). Thus, the result follows from [25][Theorem
2.11].

We use a gradient descent method to solve the opti-
mization problem (13). To apply this method, we need
to characterize the derivative of the objective functional
J�(Ĥ). This functional is di↵erentiable in the Fréchet
sense. Since K 2 L(L2(⌦), L2(0, T )), the derivative of

K is itself. Then by the chain rule of di↵erentiation, the
Fréchet derivative of J�(Ĥ), denoted by J 0

�(Ĥ), is de-
fined as

hJ 0
�(Ĥ), siL2(⌦) = hKĤ � g,KsiL2(0,T ) + �hĤ, siL2(⌦).

(14)
Using Riesz representation [13][Appendix D, Theorem
2], we can obtain an explicit representation of the gra-
dient of J�(Ĥ),

rJ�(Ĥ) = K⇤(KĤ � g) + �Ĥ 2 L2(⌦), (15)

where K⇤ 2 L(L2(0, T ), L2(⌦)) is defined as

(K⇤G)(x) =

Z T

0
koG(t)y1(x, t)dt 8G 2 L2(0, T ).

(16)
To verify that this characterization of K⇤ is correct, it
is straightforward to check that

hKĤ,GiL2(0,T ) � hĤ,K⇤GiL2(⌦) = 0 (17)

8Ĥ 2 L2(⌦), 8G 2 L2(0, T ).

6 Optimal Control Problem for the Coverage
Assignment

In Section 6.1, we formulate the coverage assignment as
an optimal control problem that is used to compute the
parameters v(t) and k(t) in the coverage macroscopic
model (8). We analyze the existence and uniqueness of
solutions to the PDE model (8) in Section 6.2, the well-
posedness of the optimal control in Section 6.3, and the
di↵erentiability of the objective functional in Section 6.4.

6.1 Formulation of the Optimal Control Problem

We first express the PDE model (8) as a bilinear con-
trol system with control inputs v(t) and k(t). Toward
this end, we supply the following definitions. Recall from
Section 4 that V = H1(⌦), X = V ⇥ L2(⌦)2, and
X⇤ := V ⇤ ⇥L2(⌦)2, and that L(X,L2(⌦)3) denotes the
space of linear bounded operators fromX to L2(⌦)3. We
define the operators A, Bi 2 L(X,L2(⌦)3), i = 1, 2, 3,
as follows:

A =

2

664

Dr2 kf 0

0 �kf 0

0 0 0

3

775 B1 =

2

664

� @
@x1

0 0

0 0 0

0 0 0

3

775

B2 =

2

664

� @
@x2

0 0

0 0 0

0 0 0

3

775 B3 =

2

664

�H� 0 0

H� 0 0

H� 0 0

3

775 .
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We also define the spaces F = L2(0, T ;L2(⌦)3),
G = L2(0, T ;L2(@⌦)), Y = L2(0, T ;X), and Y ⇤ =
L2(0, T ;X⇤). These definitions will be used to establish
the well-posedeness of the PDE (8) using the classical
theory of weak solutions of linear PDEs [13]. For f 2 F ,
g 2 G, and y0 2 L2(⌦)3, let y 2 Y be a function with
time derivative @y/@t 2 Y ⇤. Denoting the components
of the robots’ velocity field by v(t) = [vx(t) vy(t)]T , we
define the control inputs u1(t) = vx(t), u2(t) = vy(t),
and u3(t) = k(t). We can now write the PDE (8) with
boundary condition (6) and initial condition (9) as a
bilinear control system in the following form:

@y

@t
= Ay +

3X

i=1

uiBiy + f in Q,

n · (ry1 � [u1 u2]
T y1) = g on ⌃,

y(0) = y0 on ⌦, (18)

where Q and ⌃ are as defined in Section 3.2. We note
that the solution of the PDE model in equations (8),
(6), (9) is the solution of the system (18) with f = 0
and g = 0. We consider the more general form (18) for
the purpose of analyzing the di↵erentiability properties
of the control-to-state map (defined in Section 6.4) and
the objective functional in the optimal control problem.

A function y is a weak solution of system (18) if

h@y
@t

,�iY ⇤,Y =

Z T

0
hAg(t)y(t),�(t)iX⇤,Xdt (19)

+
3X

i=1

huiBiy,�iF + hf ,�iF

for all � 2 L2(0, T ;X). Here, Ag(t) : X ! X⇤ is the
variational form of the operator A for each t 2 (0, T ).
The boundary condition (6) is equipped with Ag in the
variational formulation using Green’s theorem as,

Ag(t) =

2

664

Mg(t) kf 0

0 �kf 0

0 0 0

3

775 , (20)

where Mg(t) : V ! V ⇤ for each t 2 (0, T ) is the Lapla-
cian in the variational formulation and is defined as

hMg(t)y,�iV ⇤,V = � hDry,r�iL2(⌦)

+

Z

@⌦
(g(t) + n · [u1(t) u2(t)]

T y)�dx

(21)

for all y 2 V and � 2 V ⇤.

The coverage problem can now be framed as follows.

Problem 4 (Coverage Problem) Define a tar-
get spatial distribution of robot coverage activity,
y⌦ 2 L2(⌦)3, to be achieved by time T , and a set of
admissible control inputs,

Uad = {u 2 L2(0, T )3; umin
i  ui(t)  umax

i ,

i = 1, 2, 3, a.e. t 2 (0, T )}.

Let Ȳ = C([0, T ], L2(⌦)3), and define a function W 2
L(L2(⌦)3) that weights the relative significance of mini-
mizing the distances between di↵erent state variables and
their target distributions. Then, given an initial condi-
tion y0(x), solve the optimal control problem

min
(y,u)2Ȳ⇥U

ad

J(y,u) =
1

2
kWy(·, T )� y⌦k2L2(⌦)3

+
�

2
kuk2L2(0,T )m

(22)

subject to equation (18) with f = 0 and g = 0.

Note that, due to the essential bounds on u, we have
that u 2 L1(0, T )3. Here, we only consider essentially
bounded control inputs since we only prove existence of
solutions for control variables in L1(0, T )3. The exis-
tence and uniqueness of solutions for control variables
in Lp(0, T )3, p < 1, is a nontrivial issue and is beyond
the scope of this work.

6.2 Energy Estimates

Energy estimates refer to bounds on the solutions of a
PDE system with respect to certain parameters of inter-
est, such as the initial condition, coe�cients, or bound-
ary parameters. Whereas in the theory of weak solutions
of PDEs [13], these energy estimates are used to show
the existence of solutions, in optimal control analysis
they are used to study the di↵erentiability properties of
the control-to-state map. In this section, we derive en-
ergy estimates for the solutions of the PDE model (19)
and use them to establish existence and uniqueness of
solutions to the model, a result (Lemma 7) that we pre-
viously stated without proof in our work [12]. More im-
portantly, the estimates are then used to prove existence
of solutions to the optimal control problem. The di↵er-
entiability of the control-to-state map also follows from
these energy estimates.

Lemma 5 Let b 2 R2 be such that max
i=1,2

|bi| 

max
i=1,2

|umax
i | + min

i=1,2
|umax

i |. Suppose that g̃ 2 L2(@⌦).

Define M : V ! V ⇤ as

hMy,�iV ⇤,V = hDry,r�iL2(⌦) �
Z

@⌦
(g̃ + n · by)�dx.

(23)
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Then we have the following energy estimate for all y 2 V :

�̃kyk2V  hMy, yiV ⇤,V +↵̃(kg̃k
2
L2(@⌦)+kyk2L2(⌦)), (24)

which holds for some ↵̃, �̃ > 0 that depend only on ⌦,
max
i=1,2

|umin
i |, and max

i=1,2
|umax

i |.

Proof. Setting � = y in definition (21), we obtain the
inequalities

D

Z

⌦
|ry|2dx  hMy, yiV ⇤,V +

Z

@⌦
(g̃ + n · by)ydx

 hMy, yiV ⇤,V +

Z

@⌦
|g̃||y|dx+ kbk

Z

@⌦
|y|2dx,

from which we can conclude that

Dkyk2V  hMy, yiV ⇤,V +
1

2
kg̃k2L2(@⌦) +

1

2
k⌧yk2L2(@⌦)

+ kbkk⌧yk2L2(@⌦) +Dkyk2L2(⌦),

(25)

where ⌧ is the trace operator defined in Section 4. Then
it follows from a modified form of the Trace Theorem
for domains with Lipschitz boundaries [19][Theorem
1.5.1.10] that there exists a constant K, independent of
✏ 2 (0, 1) and y 2 V , such that the following inequality
holds for every ✏ 2 (0, 1):

k⌧yk2L2(@⌦)  K✏1/2kyk2V +K(✏�1/2 � ✏+1/2)kyk2L2(⌦).

Thus, for each ✏ 2 (0, 1), the inequality (25) becomes

Dkyk2V  hMy, yiV ⇤,V +
1

2
kg̃k2L2(@⌦) + b̃✏kyk2V

+ C✏kyk2L2(⌦),
(26)

where b̃✏ =
K
2 ✏

1/2+rK✏1/2,C✏ = D+K
2 (✏

�1/2�✏+1/2)+

rK(✏�1/2 � ✏+1/2), and r = max
i=1,2

|umax
i | + min

i=1,2
|umax

i |.
Note that we can choose an ✏ > 0 arbitrarily small,
independent of y 2 V , such that D > b̃✏. We fix such an
✏ > 0. Then we set �̃ = D � b̃✏ and ↵̃ = max{ 1

2 , C✏}.
This concludes the proof.

Corollary 6 Define Ag(t) : X ! X⇤ as in equation
(20). Then, for almost every t 2 (0, T ), we have the
following energy estimate:

�kyk2X  � hAg(t)y,yiX⇤,X

+ ↵(kg(t)k2L2(@⌦) + kyk2L2(⌦)3), (27)

which holds for some ↵,� > 0 that depend only on ⌦,
max
i=1,2

|umin
i |, and max

i=1,2
|umax

i |.

Proof. Comparing equations (21) and (23), we observe
that Mg(t) = �M , b = [u1(t) u2(t)]T , and g̃ = g(t) for
almost every t 2 (0, T ). Then, from the definition (20)
of the operator Ag(t), we have that

�hAg(t)y,yiX⇤,X = hMy1, y1iV ⇤,V � kf hy1, y2iL2(⌦)

+ kfky2k2L2(⌦).

Using Cauchy’s inequality and Young’s inequality [13],

hMy,yiX⇤,X  � hAg(t)y1, y1iV ⇤,V +
kf
2
ky1k22

+
kf
2
ky2k22 + kfky2k2L2(⌦).

We set � = �̃ and ↵ = max{↵̃, 3
2kf}, where ↵̃ and �̃ are

defined as in the proof of Lemma 5. This concludes the
proof.

Lemma 7 Given f 2 L2(0, T ;L2(⌦)3), g 2
L2(0, T ;L2(@⌦)), and an initial condition y0 2 L2(⌦)3,
there exists a unique solution y 2 C([0, T ];L2(⌦)3) to
system (18). We have the following energy estimate for
this solution:

kykC([0,T ];L2(⌦)3) + kykL2(0,T ;X) + k@y/@tkL2(0,T ;X⇤)

 K(ky0kL2(⌦)3 + kfkL2(0,T ;L2(⌦)3) + kgkL2(0,T ;L2(@⌦)),
(28)

where K > 0 depends only on ⌦, max
1i3

|umax
i |, and

max
1i3

|umin
i |.

Proof. We first determine a bound on the sum
kykC([0,T ];L2(⌦)3) + kykL2(0,T ;X) in the energy estimate
(28). Let y be a weak solution of system (19), and set
� = y in (19). Then

⌧
@y

@t
(t),y(t)

�

X,X⇤
� hAg(t)y(t),y(t)iX,X⇤

=
3X

i=1

hui(t)Biy(t),y(t)iL2(⌦)3

+ hf(t),y(t)iL2(⌦)3 .

Combining this equality with the inequality (27), and ob-

serving that
D

@y
@t (t),y(t)

E

X,X⇤
= 1

2
d
dtky(t)k

2
L2(⌦)3 , we

obtain the inequality

d

dt
ky(t)k2L2(⌦)3 + 2�ky(t)k2X

 2
3X

i=1

kui(t)kL1(0,T ) hBiy(t),y(t)iL2(⌦)3
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+ 2 hf(t),y(t)iL2(⌦)3 + 2↵(kg(t)k2L2(@⌦) + ky1(t)k2L2(⌦)).

Using Cauchy’s inequality and Young’s inequality [13],
we derive the following inequality:

d

dt
ky(t)k2L2(⌦)3 + 2�ky(t)k2X

 2
pX

i=1

kuikL1(0,T )(kBiy(t)kL2(⌦)3ky(t)kL2(⌦)3)

+ (kf(t)k2L2(⌦)3 + ky(t)k2L2(⌦)3)

+ 2↵(kg(t)k2L2(@⌦) + ky(t)k2L2(⌦)3). (29)

Let E = r ⇥ ( max
1i3

|umax
i | + max

1i3
|umin

i |), where r is

the maximum of the operator norms of the operators Bi,
i = 1, 2, 3. Then we have a bound on the first term on
the right side of inequality (29) as follows:

2
3X

i=1

kuikL1(0,T )(kBiy(t)kL2(⌦)3ky(t)kL2(⌦)3)

 2E(ky(t)kXky(t)kL2(⌦)3). (30)

Applying Young’s inequality, we can bound the term on
the right side of inequality (30):

2E(ky(t)kXky(t)kL2(⌦)3)  �ky(t)k2X+
E2

�
ky(t)k2L2(⌦)3 .

(31)
Combining these upper bounds with the inequality (29),
we find that:

d

dt
ky(t)k2L2(⌦)3 + �ky(t)k2X

 E2

�
ky(t)k2L2(⌦)3 + (kfk2L2(⌦)3 + ky(t)k2L2(⌦)3)

+ 2↵(kg(t)k2L2(@⌦) + ky(t)k2L2(⌦)3),

and therefore

d

dt
ky(t)k2L2(⌦)3 + �ky(t)k2X

 C(ky(t)k2L2(⌦)3 + kf(t)k2L2(⌦)3 + kg(t)k2L2(@⌦))
(32)

for C = E2

� + 1 + 2↵. This inequality implies that

d

dt
ky(t)k2L2(⌦)3  C(ky(t)k2L2(⌦)3 + kf(t)k2L2(⌦)3

+ kg(t)k2L2(@⌦)).

Setting ⌘(t) = ky(t)k2L2(⌦)3 and  (t) = C(kf(t)k2L2(⌦)3

+ kg(t)k2L2(@⌦)), and applying Gronwall’s lemma [13]

with these functions, we get:

max
0tT

ky(t)k2L2(⌦)3  eCT (ky0k2L2(⌦)3

+ kfk2L2(0,T ;L2(⌦)3)

+ kgk2L2(0,T );L2(@⌦)).

Then integrating both sides of inequality (32) over the
time interval (0, T ), and using the inequality above, we
obtain a bound on the sum of the first two terms in the
energy estimate (28):

max
0tT

ky(t)k2L2(⌦)3 + kyk2L2(0,T ;X) (33)

 C 0(ky0k2L2(⌦)3 + kfk2L2(0,T ;L2(⌦)3)

+ kgk2L2(0,T );L2(@⌦)),

where C 0 = max{eCT , C
� }.

Next, we derive a bound on the third term in estimate
(28), k@y/@tkL2(0,T ;X⇤). We know that Bi is a bounded
operator from X to L2(⌦)3 for each i 2 {1, 2, 3}. There-
fore, kBiqkL2(⌦)2  cikqkX for all q 2 X and for some
positive constants ci. Similarly, Ag 2 L(X,X⇤) when
g = 0. It follows that kAgqk2X  cA(kqk2X + kgk2L2(@⌦))

for all q 2 X and for a fixed g 2 L2(@⌦) and some
positive constant cA. Let v 2 X such that kvkX  1.
Then, using inequality (33) and the constants cA and ci,
i = 1, 2, 3, we find that any weak solution y of system
(18) satisfies the following inequality,

����h
@y

@t
(t),viX⇤,X

����  C 00(ky(t)kX + kf(t)kL2(⌦)3

+ kg(t)kL2(@⌦)),

for almost every t 2 (0, T ) and for the constant C 00 =
r ⇥ C 0 ⇥ max{cA, c1, c2, c3}, where r = max

1i3
|umax

i | +

max
1i3

|umin
i | + max

i=1,2
|bi| + 1. Here, we are bounding the

left-hand side of equation (19) by setting �(t) = v for
almost every t 2 (0, T ). The inequality above implies
that

Z T

0
k@y
@t

(t)k2X⇤dt  C 00
Z T

0
(ky(t)k2X + kf(t)k2L2(⌦)3

+ kg(t)k2L2(@⌦))dt.

The bound on the term k@y/@tkL2(0,T ;X⇤) follows from
the above inequality. Hence, the bounds in the energy
estimate (28) hold for K = max{2C 0, 2C 00}.

To confirm the existence and uniqueness of the solution
to the PDE (8), we note that the weak form of the PDE
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(19) is in the abstract form

dy

dt
= Ã(t)y + f̃(t), y(0) = y0, (34)

where Ã(t) = A0(t) +
P3

i=1 ui(t)Bi 2 L(X,X⇤)

and f̃ 2 L2(0, T ;X⇤) is given by hf̃(t), iX,X⇤ =
hf(t), iL2(⌦)3 +

R
@⌦ g(x, t) 1(x)dx for almost every

t 2 [0, T ]. Here, the term
R
@⌦ g(x, t) 1(x)dx defines a

bounded functional onX due to the bounds on the trace
map ⌧ [19][Theorem 1.5.1.10]. Then the result follows
from [42][Theorem 26.1] and the estimate (27).

6.3 Existence of Optimal Control

In this section, we prove the existence of a solution to
the optimal control problem (22). Toward this end, we
define the control-to-state mapping, ⌅: Uad ! Ȳ , which
maps a control, u, to y, the corresponding solution to
system (18) for f = 0 and g = 0. We introduce the
following reduced optimization problem,

min
u2U

ad

Ĵ(u) := J(⌅(u),u), (35)

where J is defined in problem (22). This problem incor-
porates the PDE system (18) into the objective func-
tional, rather than defining it as a set of constraints as in
the original problem formulation (22). We shall hence-
forth analyze the reduced problem (35).

Theorem 8 An optimal controlu⇤ exists thatminimizes
the objective functional Ĵ in problem (35).

Proof. The functional Ĵ(u) is bounded from below,
which implies that the infimum is a finite real number.
Therefore, q = infu2U

ad

Ĵ(u) exists. We now determine
an optimal pair (y⇤,u⇤), for which J(y⇤,u⇤) = q. Let
{un}1n=1 be a minimizing sequence such that Ĵ(un) ! q
as n ! 1. Uad is a bounded and closed convex set, and
thus is weak sequentially compact. Hence, there exists
a subsequence {un}1n=1 such that

un * u⇤ in L2(0, T )3, (36)

with u⇤ 2 Uad. Recall from Section 4 that X = V ⇥
L2(⌦)2. Then, the uniform boundedness of the solution,
y, in the energy estimate (28) allows us to extract a
subsequence {yn}1n=1, where y

n = ⌅(un), such that

yn * y⇤ in L2(0, T ;X). (37)

It is necessary to confirm that ⌅(u⇤) = y⇤, since we
do not know whether ⌅ is weakly continuous. Using

the energy estimate (28), we have uniform bounds on
kynkL2(0,T ;X) + k@yn/@tkL2(0,T ;X⇤). Therefore, by the
Aubin-Lions lemma [38], we have that there exists a sub-
sequence such that

yn1 ! y⇤1 in L2(0, T ;L2(⌦)). (38)

The energy estimate (28) implies that the terms ryn1 ,
@yn

@t , and kfy
n
2 are uniformly bounded. Hence, we can

also conclude that there exist subsequences that satisfy:

ryn1 * ry⇤1 in L2(0, T ;L2(⌦)),

ryn1 ! ry⇤1 in L2(0, T ;V ⇤),
@yn

@t
*

@y⇤

@t
in L2(0, T ;X⇤),

kfy
n
2 * kfy

⇤
2 in L2(0, T ;L2(⌦)).

The first two components of un are denoted by vn and
the third component by kn. From the strong convergence
of yn1 in L2(0, T ;L2(⌦)) and the weak convergence of un

in L2(0, T )3, we can further deduce that:

knH�y
n
1 * kH�y

⇤
1 in L2(0, T ;L2(⌦)),

vnryn1 * vry⇤1 in L2(0, T ;V ⇤).

To prove convergence of the terms in the weak form of
the PDE (19) that arise from the boundary condition
(6), we apply Green’s theorem

hvn ·ryn1 ,�iL2(0,T ;L2(⌦)) +

Z T

0

Z

@⌦
n · (vny1�)dxdt

= � hvn · yn1 ,r�iL2(0,T ;L2(⌦))

(39)

for all � 2 L2(0, T ;V ). Due to the strong convergence of
yn1 in L2(0, T ;L2(⌦)) and the weak convergence of vn in
L2(0, T )2, we have that

vn · yn1 * v⇤ · y⇤1 in L2(0, T ;L2(⌦)). (40)

The convergence of all the sequences defined thus far
implies that the sequence of solutions yn = ⌅(un), which
satisfies

h@y
n

@t
,�iY ⇤,Y = hAgy

n,�iY ⇤,Y +
3X

i=1

hun
i Biy

n,�iF

(41)
with g = 0, converges to the solution y⇤ = ⌅(u⇤), which
satisfies

h@y
⇤

@t
,�iY ⇤,Y = hAgy

⇤,�iY ⇤,Y +
3X

i=1

hu⇤
iBiy

⇤,�iF (42)

with g = 0.
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It remains to be shown that Ĵ(u⇤) = q. Because J is
weakly lower semicontinuous, we can state that

q = lim
n!1

J(yn,un)  J(y⇤,u⇤). (43)

Since q was defined earlier as the infimum of Ĵ(u), we
conclude that

Ĵ(u⇤) = J(y⇤,u⇤) = q, (44)

which completes the proof.

6.4 Di↵erentiability of the Control-to-State Map

In this section, we summarize several results from our
prior work [12] that we apply to derive the gradient of
Ĵ(u). We use the gradient in the method of projected
gradient descent to numerically compute a locally opti-
mal control. The numerical computation of this gradient
is made possible by deriving an expression for the gradi-
ent in terms of the adjoint equation, which is a system of
PDEs. This method for computing the control variables
is explained in [10][Section 5.2]. See also [40][Section
3.7.1], where the method is discussed in the more general
context of optimal control of parabolic PDEs.

Proposition 9 The mapping ⌅ is directionally di↵er-
entiable at every u 2 Uad along each direction h 2
L1(0, T )3. Its directional derivative ⌅0(u) : Uad ! Ȳ in
the direction h 2 L1(0, T )3, denoted by ⌅0(u)h, is given
by the solution w to the following equation,

@w

@t
= Aw +

3X

i=1

uiBiw +
3X

i=1

hiBiy in Q,

n · (rw1 � [u1 u2]
T · w1) = n · ([h1 h2]

T y1) on ⌃,
w(0) = 0 on ⌦. (45)

Theorem 10 The reduced objective functional Ĵ is
directionally di↵erentiable at every u 2 Uad along
all h 2 L1(0, T )3. Its directional derivative along
h 2 L1(0, T )3 has the form

dĴ(u)h =

Z T

0
hn · ([h1 h2]

T p1), y1iL2(@⌦)dt

+

Z T

0
h

3X

i=1

hiBiy,piL2(⌦)3dt+ �hu,hiL2(0,T )3 ,

(46)

where p is the solution of the backward-in-time adjoint
equation,

�@p1
@t

= r · (Drp1 + v(t)p1) + k(t)H�(�p1 + p2 + p3)

in Q,

�@p2
@t

= kfp1 � kfp2 in Q,

�@p3
@t

= 0 in Q, (47)

with the Neumann boundary conditions

n ·rp1 = 0 on ⌃ (48)

and final time condition

p(T ) = W ⇤(Wy(·, T )� y⌦), (49)

where W is defined in Problem 4.

Remark 11 The adjoint equation (47)-(49) should not
be confused with the backward heat equation, which is
known to be ill-posed in H1(⌦). The well-posedness of
system (47)-(49) can be established using a standard vari-
able transformation of the form p⇤(t) = p(T � t). The
resulting equation,

@p⇤1
@t

= r · (Drp⇤1 + v(t)p⇤1) + k(t)H�(�p⇤1 + p⇤2 + p⇤3)

in Q,
@p⇤2
@t

= kfp
⇤
1 � kfp

⇤
2 in Q,

@p⇤3
@t

= 0 in Q, (50)

with the Neumann boundary conditions

n ·rp⇤1 = 0 on ⌃ (51)

and initial condition

p⇤(0) = W ⇤(Wy(·, T )� y⌦), (52)

can be shown to have a unique solution p⇤ using argu-
ments similar to those in the proof of Lemma 7.

7 Simulation Results and Discussion

In this section, we validate our approaches to the map-
ping assignment (Section 5) and coverage assignment
(Section 6) with numerical simulations. The PDE mod-
els of ensemble mapping and coverage, presented in Sec-
tion 3.2, are numerically solved using themethod of lines.
In this method, the operators associated with the PDE
are initially discretized in space. For this spatial dis-
cretization, we use a finite-di↵erence and flux limiter
based scheme on a uniform mesh. Time is viewed as a
continuous variable, and the resulting system of ordi-
nary di↵erential equations (ODEs) is solved using built-
in ODE solvers in MATLAB. See [23] for further de-
tails on this approach to numerically solving advection-
di↵usion-reaction type PDEs.
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7.1 Mapping Assignment

We validate our mapping approach in two test cases. In
both scenarios, the domain is ⌦ = [0, 100]2 m2, the en-
semble has N = 30 agents, the di↵usion coe�cient is
D = 10�4 m2/s, and the agents’ rate of recording obser-
vations over a region of interest is ko = 100 s�1, yield-
ing a high probability rate of registering observations.
The agents’ velocity field v(t) is defined to drive the
agents along a lawnmower path, as illustrated by the two
agent trajectories in Figure 1. This path is perturbed by
stochastic fluctuations arising from the agents’ di↵usive
motion.

We define two environments, Case 1 and Case 2, with
di↵erent regions of interest, labeledActualH�(x) in Fig-
ure 2. The results of our mapping approach are shown in
the plots labeled EstimatedH�(x). To use the estimated
maps in simulations of our coverage approach (Section
7.2), we thresholded the estimated H�(x) in both envi-
ronments by defining theThresholdedH�(x), also shown
in Figure 2, as HT (x) = 1 for each x 2 ⌦ such that
H�(x) � 0.5 and HT (x) = 0 otherwise. In both cases,
our optimization method is able to reconstruct the spa-
tial coe�cient H�(x) with considerable accuracy, even
though a relatively small number of robots was used
(N = 30). The largest error in the estimates occurs in
the top half of the Case 2 environment, which can be
attributed to the increased dispersion of the agents, due
to their di↵usive motion, as they reach the upper por-
tion of the domain. We would expect a larger ensemble
of agents to generate a more accurate map, since the mi-
croscopic model converges to the macroscopic model as
N ! 1 [43].

7.2 Coverage Assignment

We validate our coverage approach in three test cases,
Cases 1, 2, and 3. The region of interest in Case 1 is
defined as Thresholded H�(x) in Figure 2(a), and the

region of interest in Cases 2 and 3 is defined as Thresh-
olded H�(x) in Figure 2(b). In all scenarios, the do-
main is ⌦ = [0, 100]2 m2, and the di↵usion coe�cient
is D = 5 ⇥ 10�4 m2/s. To illustrate the scalability of
our control methodology to large numbers of agents,
we simulate an ensemble with N = 1000 agents. All
agents are initialized in the moving state, with an ini-
tial density given by a Gaussian distribution centered at
[xo1 xo2] = [10 10]. Thus, the initial conditions (9) are:

y1(x, 0) =A exp

✓
� (x1 � xo1)2

2�2
x1

� (x2 � xo2)2

2�2
x2

◆
,

y2(x, 0) = 0,
y3(x, 0) = 0, (53)

with �x1 = �x2 = 0.02 and A defined such that the
Gaussian distribution integrates to 1 over the domain.
The final time is set to T = 800 s for Cases 1 and 2 and
T = 300 s for Case 3.

We define y⌦, the target spatial distribution in Problem
4, as follows. We partition the domain ⌦ into P = 20
cells, denoted by {⌦nm}. The cell ⌦00 occupies the re-
gion [0, 100

P ] ⇥ [0, 100
P ], and all other cells are defined

as ⌦nm =
�
100m

P , 100m+1
P

⇤
⇥ (100 n

P , 100n+1
P ], where

n,m 2 {0, 1, ..., P � 1} and n 6= 0 or m 6= 0. For
Case 1 and Case 2, we set the target number of in-
stances of desired robot activity in each cell ⌦mn to be
z⇤mn = C ⇥ µ(⌦

nm

\ �)
µ(⌦

mn

) , where C is a positive constant
and µ is the Lebesgue measure on ⌦. The target distri-
bution of robot coverage activity, which is the third com-
ponent of y⌦, is defined as y⇤3(x, T ) =

C
50 for all x 2 �.

Since we do not require the first two components of y⌦

(the densities of moving and stationary robots) to reach
target distributions at time T , we set the function W
in Problem 4 to be a diagonal operator matrix of the
form diag([0 0 I]), where I is the identity operator on
L2(⌦). We specify the following sub-cases: C = 450 in
Case 1a and Case 2a, and C = 3600 in Case 1b and Case
2b. For Case 3, coverage activity is desired only in the
upper half of the domain; we set y⇤3(x, T ) = 36 for x 2 �
with x2 � 60, and y⇤3(x, T ) = 0 otherwise.

Figure 3 plots the time evolution of the objective func-
tion J for each case. For Cases 1a,b and 2a,b, the low
values of J at the final time T = 800 s indicate that
the target coverage density is nearly achieved. This is
in part due to the accuracy of the thresholded estimate
of H�(x) obtained from the mapping task (Section 7.1).
The lower error in the estimated H�(x) for Case 1 com-
pared to this mapping error for Case 2 contributes to
the better coverage performance (i.e., lower values of J)
in Case 1a versus Case 2a and in Case 1b versus Case
2b. For Case 3, the value of J is higher at the final time
T = 300 s than the values of J for Cases 1a,b and 2a,b
at T = 800 s, indicating that the final coverage density
is relatively farther from the target density. The poorer
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Fig. 2. Actual, estimated, and thresholded maps of regions of interest.

coverage performance in Case 3, in which coverage ac-
tivity is limited to a subset of the region of interest, is a
consequence of the limited controllability of the system,
which can be attributed to three factors. First, only three
control variables are used to control the PDE model,
which is an infinite-dimensional dynamical system. Sec-
ond, the system is constrained to achieve the target cov-
erage density by time T . Third, the time-dependent dif-
fusion, reaction, and advection operators in the PDE
model commute [26], and this commutativity of the con-
trol and drift vector fields degrades the controllability
properties of the system [2]. Thus, the ensemble would
achieve better coverage performance in assignments with
less stringent requirements on the system controllabil-
ity properties. Such assignments include those in which
the target coverage distribution is proportional to an en-
vironmental parameter, or in which the objective is to
achieve a minimum coverage density in each region of
interest rather than an exact coverage density.

Figure 4 plots the target coverage density z⇤mn for Cases
1b and 2a alongside the corresponding expected cover-
age density, y3(x, T ) from the macroscopic PDE model

(18), and the achieved coverage density, z⌦mn

3 (T ) from
the microscopic model, at the final time T = 800 s. The
lower value of the target coverage density in Cases 1a,
2a (C = 450) than in Cases 1b, 2b (C = 3600) results
in larger stochastic fluctuations of the achieved cover-
age density around the expected coverage density. These
larger fluctuations produce poorer coverage performance
(higher values of J) in Case 1a versus Case 1b and in
Case 2a versus Case 2b. The plots in Figure 4 display
the relative degree of these fluctuations in Case 1b ver-
sus Case 2a at time T = 800 s. The plots show that the
achieved coverage density from the microscopic model
approximates the expected coverage density from the
macroscopic model, due to the large number of agents
(N = 1000) in the ensemble. As demonstrated in [43],
the discrepancy between these two density fields will
tend to zero as N ! 1.

8 Conclusion

In this paper, we presented stochastic approaches to
mapping and coverage assignments for an ensemble of
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autonomous robots in a PDE control framework. This
framework enables the modeling and control of a robotic
ensemble in a rigorous way that is scalable with the num-
ber of robots. We demonstrated that temporal data ob-
tained by a small ensemble of di↵usive agents can provide
rich information about the spatial distribution of a re-
gion of interest, despite severe restrictions on the agents’
sensing, localization, tracking, and computational capa-
bilities. We also showed that we can pose the coverage
task as an optimal control problem that computes the
agents’ control inputs to achieve a target distribution of
coverage activity over the previously mapped regions of
interest.

In future work, we will investigate the controllability
properties of the PDE models that we have presented
in this paper. Additionally, we plan to incorporate pair-
wise interactions between agents, such as those defined
by attraction-repulsion potentials, in order to increase
the cohesiveness of the ensemble and improve the reach-
ability properties of the system. The component of the
robots’ velocity field that is induced by pairwise interac-
tions would be included in the advection term, resulting
in a nonlinear PDE as the macroscopic model. This type
of model would require more advanced analytical tools
than the ones used in this paper.
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