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Abstract— In this paper, we study the stability and con-

vergence properties of a decentralized proportional-integral

velocity controller for collective transport by a team of point-

mass robots that are rigidly attached to a payload. The

controller only requires robots’ velocity measurements, and

the only information provided to the robots is the target

speed and direction of transport. We prove that the closed-

loop system with proportional control alone is exponentially

stable, and we derive the system’s rate of convergence to the

desired transport velocity. We analyze the parameters that

affect this convergence rate and characterize its dependence on

the robots’ distribution around the payload. We add an integral

controller to the proportional controller to compensate for any

drift from the desired transport path and prove asymptotic

stability in this case. We validate our analytical results for the

proportional controller through simulations with three different

robot distributions around the payload. These simulations

demonstrate that the robots’ distribution has the predicted

effect on the convergence rate, which influences the load’s

rotation and drift from the desired path during the transient

phase of transport. We also confirm through simulation that the

proportional-integral controller drives this drift to zero while

achieving the desired transport velocity.

I. INTRODUCTION

Cooperative payload manipulation by multi-robot systems
has a variety of potential applications, including construc-
tion and manufacturing, assembly in space and underwater,
search-and-rescue operations, and disaster response. We aim
to design robot controllers that can achieve cooperative
manipulation with a quantifiable degree of predictability in
unknown, remote, and hazardous environments with limited
data and communication. Our approach is inspired by group
food retrieval in ants [1], [2], [3], a striking example of
decentralized collective transport in which the transport
team members do not follow predefined paths, use explicit
communication, or have prior knowledge about the payload,
the distribution of teammates around it, and the location
of obstacles in the environment. While the ants know the
direction to their nest, it is likely that their activities during
transport are influenced only by their local information.

Our work in this paper constitutes an effort toward multi-
robot implementation of ant-like collective transport with all
of these properties. We consider a team of identical point-
mass robots that move on a planar surface and are rigidly
attached to a payload in an arbitrary configuration, as shown
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in Figure 1. We assume that each robot can measure its
own velocity. The robots do not have global localization or
communication capabilities, and they lack information about
the payload dynamics, the number of robots in the transport
team, and the robots’ distribution around the payload. Subject
to these constraints, the robots must transport the payload to
a goal location along a straight path at a regulated velocity.
We assume that each robot knows the target direction to the
goal and the desired transport speed.

Various control strategies have been previously proposed
for cooperative manipulation in other scenarios that are not
subject to all of these constraints. In some recent control
approaches, such as [4], a supervisor (a human or a central
computer) observes the motion of the system and commu-
nicates appropriate control commands to the robots in order
to guide the payload toward the goal. Decentralized control
strategies have also been proposed to improve the system’s
robustness to errors, failures, and disturbances. Some of these
methods are leader-follower algorithms in which the leader
takes the main role in planning the payload trajectory and
controlling its motion to the goal, while the other robots
contribute to the transport motion in a coordinated manner
using consensus [5] or an estimation method based on force
sensing [6]. In other works, all robots in the transport team
are assumed to be identical. In [7], a decentralized approach
is proposed in which robots push a large load to a goal when
their line of sight to the goal is occluded by the load. In other
methods, robots communicate their measurements to each
other in order to estimate parameters of an unknown payload
[8], [9]. Other approaches do not rely on communication
or prior information about the payload’s dynamics, but they
require a supervisor to define trajectories beforehand for the
robots and the payload [10], [11], [12]. A strategy inspired by
formation control is proposed in [13] for the case of a flexible
payload that requires regulation of contact forces. In [14],
[15], [16], [17], [18], adaptive robust control approaches
are proposed that combine a stabilizing robust term with a
regression term in the controller. These approaches require
prior information about the robots’ distribution around the
payload.

The work in [19] proposes a decentralized approach to
the problem that we address, in which each robot applies a
force to the payload that is defined as a proportional velocity
controller. It is demonstrated that the payload moves in a
straight line toward the goal with no more than 180

� of
rotation. However, there is no stability analysis that guaran-
tees the convergence of the system’s dynamics to the desired
motion. In this paper, we investigate the stability properties



Fig. 1. Illustration of a collective transport team with four point-mass
robots and the associated coordinate systems.

of a proportional control scheme that is a modification of
the one presented in [19], in which the robots apply a force
only toward the goal. In our control scheme, the robots
also exert a force component perpendicular to the target
direction, in order to maintain a straight transport trajectory.
We prove that the closed-loop system is exponentially stable
with this controller, and we characterize the rate of the
system’s convergence to the target transport velocity in terms
of the robots’ distribution around the payload. In addition,
we introduce an integral controller to drive any drift of
the payload from the desired path to zero. We note that
our analysis on pure proportional control also applies to
our previous decentralized strategy for collective transport
[20], during the phase when the system trajectories enter the
boundary layer defined in the sliding mode controllers.

II. DYNAMICAL MODEL
We model the dynamics of the system in Figure 1, a load

that is transported by N point-mass robots, which we studied
in our previous work [20]. Here, we derive the equations of
motion for the entire system, comprised of both the load
and the robots, whereas in [20] we derived the dynamics of
each robot. We define m

r

as the mass of each robot, m

o

as the mass of the payload, and I

o

as the load’s moment
of inertia about the axis normal to the plane of the motion
and passing through its center of gravity. We also define r

c

as the vector from the center of mass of the entire system
(CM

o

) to the load’s center of mass, and r
i

as the vector from
CM

o

to the attachment point of robot i. Both r
c

and r
i

are
expressed in the inertial reference frame shown in Figure 1,
defined such that the x-axis points in the target direction of
transport. Then, the mass m and moment of inertia I of the
entire system are given by:

m = m

o

+Nm

r

,

I = I

o

+m

o

kr
c

k2 +m

r

N

X

i=1

kr
i

k2 . (1)

Each robot i applies an actuating force u
i

= [u

i,x

u

i,y

]

T to
the payload. We denote the vector of all applied forces by

u =

⇥

(u1)
T · · · (u

N

)

T

⇤

T .
We define the position of CM

o

in the inertial reference
frame as [x

o

y

o

]

T and the load’s orientation in this frame as
✓

o

. We will use q
o

= [x

o

y

o

✓

o

]

T as generalized coordinates
that describe the motion of the entire system. Then we can
write the equation of motion of the system as:



mI 0

0 I

�

¨q
o

=



I · · · I
ˆr1 · · · ˆr

N

�

u, (2)

where I is the identity matrix and ˆr is a skew-symmetric
matrix defined by r

i

⇥ u =

ˆr
i

u.
Let ẋ

i

and ẏ

i

be the speed of robot i along the x and y

axes of the inertial frame. We define the components of u
i

for each robot i as proportional velocity controllers:

u

i,x

= k(v

des

� ẋ

i

), u

i,y

= k(�ẏ

i

), (3)

where k is the controller gain and v

des

is the desired transport
speed. This controller drives each robot’s velocity to v

des

along the desired direction of transport, with no velocity
component perpendicular to this direction. When all robots
attain this velocity, the load moves in the target direction at
speed v

des

with zero angular velocity.
Using the kinematic equations of the payload, we can

obtain expressions for ẋ

i

and ẏ

i

in terms of ˙q
o

and then
rewrite Equation (3) as:

u

i,x

= k

⇣

v
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� ẋ

o

+

˙

✓
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||r
i

|| sin(✓
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+ ✓

i

)

⌘

,

u
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= k

⇣

�ẏ

o

� ˙

✓

o

||r
i

|| cos(✓
o

+ ✓

i

)

⌘

, (4)

where ✓

i

is the angle of vector r
i

with respect to a local
coordinate frame fixed to the load, as shown in Figure 2. Sub-
stituting the controller (4) for each robot into Equation (2),
we obtain the following equations for the closed-loop system:
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o

) +

˙

✓

o

N

X

i=1

||r
i

|| sin(✓
o

+ ✓

i

)

!

,

mÿ
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X
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+ ✓
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Defining s

x

⌘ ẋ

o

� v

des

and s

y

⌘ ẏ

o

, the closed-loop
dynamics can be rewritten in the following compact form:

mṡ

x

+ c

t

s

x

� kf

s

(✓

o

)

˙

✓

o
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t

s

y

+ kf

c

(✓

o

)

˙

✓

o

= 0,

I

¨

✓

o

+ c

r

˙

✓

o

� kf

s

(✓

o

)s

x

+ kf

c

(✓

o
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Fig. 2. Illustration of the geometric parameters that express the position
of a robot in the local coordinate frame of the load.

where c

t

= kN , c
r

= k

P

N

i=1 ||ri||2, and:

f

s

(✓

o

) =

N

X

i=1

||r
i

|| sin(✓
o

+ ✓

i

),

f

c

(✓

o

) =

N

X

i=1

||r
i

|| cos(✓
o

+ ✓

i

). (7)

III. STABILITY ANALYSIS

In this section, we characterize the stability of the equilib-
ria of the closed-loop system (6). Defining z = [s

x

s

y

✓

o

˙

✓

o

]

T

as the state vector, we find that the system has no isolated
equilibrium point and that the set M, defined as:

M =

n

z 2 R4|s
x

, s

y

,

˙

✓

o

= 0

o

, (8)

is a continuum of equilibrium points, i.e. an invariant set.
When the system state is in this set, the payload moves
directly to the goal along a straight path (s

y

= 0) at a
regulated velocity (s

x

= 0) with no rotational motion (

˙

✓

o

=

0). The following theorem characterizes the convergence of
the system trajectories to M.

Theorem 3.1: The trajectories of system (2) with the
decentralized controllers in Equation (3) exponentially con-
verge to the set M.

Proof: We consider the following Lyapunov function:

V =

1

2

m(s

2
x

+ s

2
y

) +

1

2

I

˙

✓

2
o

. (9)

The time derivative of this function is:

˙
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2
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o

. (10)

Defining z1 = [s

x

s

y

˙

✓

o

]

T , Equation (10) can be written as:

˙

V = �zT1 Qz1, (11)

in which

Q =

2

6

4

c

t

0 kf

s

0 c

t

�kf

c

kf

s

�kf

c

c

r

3

7

5

. (12)

To prove the convergence of the system, we need to
show that Q is positive definite, or equivalently, that all its
eigenvalues are positive. These eigenvalues are given by:

�1 = c

t

,

�2 =

1

2

⇣

(c

t

+ c

r

) +

p

4k

2
(f

2
s

+ f

2
c

) + (c

t

� c
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)

2
⌘

,
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1
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+ c

r

)�
p
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+ f

2
c

) + (c

t

� c

r

)

2
⌘

. (13)

Since c

t

and c

r

are strictly positive numbers, we can con-
clude that �1 and �2 are strictly positive as well. Therefore,
we only have to determine the sign of �3. We first investigate
the term ⇠ ⌘

p

f

2
s

+ f

2
c

.

Proposition 3.2: For the system described by Equation (2)
with the robot controllers (3), ⇠ is a constant that is equal
to ||

P

N

i=1 ri||.

Proof: Using Equation (7), we can write:

⇠

2
=

N

X

i=1

||r
i

||2

+

N

X

i=1

N

X

j 6=i

||r
i

||||r
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|| cos(✓
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j

)
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N

X
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N

X

j 6=i

||r
i

||||r
j

|| sin(✓
o

+ ✓

i

) sin(✓

o

+ ✓

j

). (14)

Combining the second two terms on the right-hand side, we
obtain:

⇠

2
=

N

X

i=1

||r
i

||2 +
N

X

i=1

N

X

j 6=i

||r
i

||||r
j

|| cos(✓
i

� ✓

j

). (15)

Denoting the components of r
i

in the local coordinate frame
as x̄

i

and ȳ

i

, we have that x̄

i

= ||r
i

|| cos(✓
i

) and ȳ

i

=

||r
i

|| sin(✓
i

). We can then rewrite Equation (15) as:

⇠

2
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i=1
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2
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2
i

) +

N

X

i=1
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X

j 6=i

(x̄

i
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j
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i

ȳ

j

)

1

A
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Finally, by separating the x and y components, we can write:

⇠

2
=

�

(x̄1 + · · ·+ x̄

N

)

2
+ (ȳ1 + · · ·+ ȳ

N

)

2
�

, (17)

which implies that ⇠ = ||
P

N

i=1 ri||.

Now, we can analyze the sign of �3.

Proposition 3.3: For a transport team with a fixed number
of robots and a fixed configuration on the load, �3 in
Equation (13) is strictly positive.

Proof: First, we calculate the critical value of ⇠, defined
as ⇠

cr

, at which �3 becomes zero. If we can show that ⇠ is
always less than this value, then we can conclude that �3 is
always positive. From Equation (13), we calculate ⇠

cr

as:

⇠

2
cr

= N

N

X

i=1

||r
i

||2. (18)



From the triangle inequality, we know that ||
P

N

i=1 ri|| 
P

N

i=1 ||ri||, and by squaring both sides of this inequality,
we have:

||
N

X

i=1

r
i

||2 
 

N

X

i=1

||r
i

||
!2

. (19)

From the Cauchy-Schwarz inequality [21], we know that
 

N

X

i=1

||r
i

||
!2

 N

N

X

i=1

||r
i

||2. (20)

which means that ⇠

2  ⇠

2
cr

and consequently, ⇠  ⇠

cr

.
Excluding physically impossible configurations in which all
robots occupy a single point on the perimeter of the load,
which results in ⇠ = ⇠

cr

, �3 is strictly positive.

Since all the eigenvalues of Q are positive, Q is positive
definite. Furthermore, the Lyapunov function (9) can be
written in the quadratic form V = zT1 Pz1, where:

P =

2

4

m 0 0

0 m 0

0 0 I

3

5

. (21)

Then, we have the following inequalities, [22]:

�

min

(P)||z1||2  V (z1)  �

max

(P)||z1||2 (22)

In addition, using Equation (11), the following upper bound
can be established for ˙

V :

˙

V (z1)  � �

min

(Q)||z1||2 (23)

Therefore, we can write:

˙

V  � �

min

(Q)

�

max

(P)

V (24)

and by Theorem 4.10 in [22], we can conclude that trajecto-
ries of the system (6) exponentially converge to the invariant
set M. This completes the proof of Theorem 3.1.

IV. CONVERGENCE ANALYSIS
Given the exponential stability of the closed-loop system,

we can describe the convergence of its trajectories in a
qualitative fashion using an exponential function that gives
the lowest possible rate of convergence to M. According to
Theorem 4.10 in [22], the following inequality holds:

||z1(t)||  b||z1(t0)|| e�✏t

, t � t0, (25)

where b =

q

�

max

(P)
�

min

(P) and

✏ =

�

min

(Q)

�

max

(P)

. (26)

Thus, ✏ bounds the convergence rate of the system trajecto-
ries. We now show how ✏ can be characterized in terms of
the distribution of the robots around the load. Toward this
end, we first determine �

min

(Q).

Proposition 4.1: For a transport team with a fixed number
of robots and a fixed configuration on the load, �

min

(Q) =

�3, defined in Equation (13).

Proof: From Equation (13), we see that �3 < �2.
Therefore, we only need to compare �1 and �3. We rewrite
�3 as:

�3 =

1

2

(c

t

+ c

r

)� 1

2

(|c
t

� c

r

|+ 2%), (27)

where % is a positive number that monotonically increases
with ⇠. In this expression, if c

r

 c

t

, then �3 = c

r

� %,
which is clearly smaller than c

r

. Hence, in this case, �3 
c

r

 c

t

= �1. If c
t

 c

r

, then �3 = c

t

� %, which is clearly
smaller than c

t

. Thus, in this case, �3  c

t

= �1 as well.
Therefore, we can conclude that �

min

(Q) = �3.

To simplify our subsequent calculations, we replace the
vector z1 in our stability analysis with z2 = [s

x

s

y

r

g

˙

✓

o

]

T ,
where r

g

is the radius of gyration of the system,

r
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=
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+Nm

r

!

1
2
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With this replacement, we can write the Lyapunov function
(9) as V = zT2 P2z2, where P2 = mI 2 R3⇥3, and
�

max

(P2) = m. Note that m is independent of the robot
configuration on the load. We can also write Equation (11)
as ˙

V = zT2 Q2z2. Setting �

max

(P) = m, we can calculate ✏

as:
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We see that for a fixed number of robots, the distribution of
the robots around the load (i.e., the set of vectors r

i

) affects �
through the parameters r

g

, c
r

, and ⇠. It is difficult to analyze
the effect on all three parameters simultaneously. However,
by following the procedure in the proof of Proposition 4.1,
we can write ✏ in the following form:
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2|)� 2�
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where ⇢

2
=

1
N

P

N

i=1 ||ri||2 and � is a positive number that
monotonically increases with r

g

⇠.
We now show that we can derive simplified expressions

for ✏ based on the relative magnitudes of r

g

and ⇢. From
Equation (28), the term (r

2
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2
) in Equation (30) can be

written as:
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where a = m
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/m

r

and r
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is the load’s radius of gyration.
Furthermore, we can write the vector r

c

as:
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where r
i,c

is the vector from the load’s center of mass to
robot i (see Figure 2). For each robot i, we have the relation
r
i

= r
c

+ r
i,c

, and by applying the triangle inequality, we
have that ||r

i

||  ||r
c

||+ ||r
i,c

||. Squaring both sides of this
inequality and summing the resulting terms over i = 1, ..., N ,
we obtain:
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Moreover, using the expression for r
c

in Equation (32) and
applying Equation (19) and Equation (20) to the vectors r

i,c

we can write:
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which yields the following lower bound for (r2
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Note that this lower bound is a function of a single parameter,
⇢

c

, that depends on the distribution of robots around the load.
We can now determine the sign of (r2

g

�⇢

2
) for the following

two cases:

(a) r
g

< ⇢. This case happens when ⇢

c

is sufficiently large
to make the lower bound in (36) a negative large number.
This occurs when the robots are mostly located at positions
that are far from the load’s center of mass. In this scenario,

✏ =

k

m

✓

N � �

r

2
g

◆

. (37)

This means that for a fixed number of robots, ✏ mainly
depends on the value of ⇠ through �.

(b) r
g

> ⇢. This case happens when ⇢

c

is a small number
that makes the lower bound in (36) positive. This occurs
when the robots have a uniform and close-to-symmetric
distribution around the load. Under this condition,

✏ =

k

mr

2
g

(N⇢

2 � �). (38)

Here, ✏ is not as sensitive to changes in � (and hence ⇠) as it
is in the first case, since such changes could be compensated
by the value of ⇢2.

V. DRIFT COMPENSATION BY INTEGRAL
CONTROL

When the proposed proportional controller is used, the
load will inevitably drift away from the line between its
initial position and its target position, which we will refer
to as the desired path. To eliminate this drift, we add an
integral term to Equation (3) and modify the control law as
follows:
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With this new controller, the closed-loop dynamics in Equa-
tion (6) can be rewritten as:
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This model has two more state variables than Equa-
tion (6): �

x

, which represents the accumulation of error
from the desired velocity, and �

y

, which represents the
drift from the desired path. Defining the new state vector
as ⇣ = [�

x

�

y
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T , we see that the set
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is a continuum of
equilibrium points, i.e. an invariant set, and when the system
state is in this set, then the accumulation of velocity error
�
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, and more importantly, the drift from the desired path
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, are driven to zero while �̇
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), �̇
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), and the
angular velocity ˙

✓
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still converge to zero. The following
theorem characterizes the convergence of the trajectories of
the closed-loop system (40) to B.

Theorem 5.1: The trajectories of system (2) with the
decentralized controllers in Equation (39) asymptotically
converge to the set B.

Proof: We modify the Lyapunov function V in Equa-
tion (9) as:
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The time derivative of this function is calculated as:
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Using Equation (42) and the fact that ⌘̇
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, we can cancel many terms in the expression
for ˙

W and simplify it to:
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where z1 is the same vector as in Equation (11), i.e. z1 =
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T . As we see, the time derivative is negative
semidefinite. Thus, we can conclude that W is bounded.
Also, we see that when ˙

W is identically zero, i.e. ˙

W ⌘ 0,
we have �̇

x

, �̇

y

,

˙

✓

o

⌘ 0, and from Equation (40), we can
obtain �

x

,�

y

⌘ 0. Thus, by LaSalle’s invariance principle
[22], we conclude that the system trajectories asymptotically
converge to the aforementioned invariant set. In other words,
while the objectives with the proportional controller are still
achieved, the drift from the desired path is driven to zero.

VI. SIMULATION RESULTS

A. Proportional control

In this section, we validate our analysis with simulation
results for collective transport by a team of robots that are
arranged in three different distributions around a payload. We
study the effect of the robot distribution on the convergence
rate of the system to the target transport velocity, the amount
of rotation exhibited by the load, and the translational drift
of the load from the desired path. The load is modeled as
a homogeneous circular ring with mass m

o

= 1 kg and
moment of inertia I

o

= 0.33 kg·m2. Six point-mass robots,
each with mass m

r

= 0.05 kg, are rigidly attached to the
load. The controller gain is k = 0.08 and the target transport
speed is v

des

= 0.1 m/s. The simulations were each run for
200 s.

Figure 3-Figure 5 show snapshots of the load over time
for each robot distribution. The robot locations are marked as
colored points on the perimeter of the load in its initial and
final configurations. The target path for the load’s center of
mass is shown as a red dotted line, and its actual trajectory
is plotted in blue. The red line on the load indicates its
orientation. In addition, Figure 6 plots the corresponding time
evolution of the load’s rotation and angular velocity, along
with the drift d of the system’s center of mass from the target
path for all three distributions.

In the first simulation (Figure 3), the robots have an
equally-spaced distribution, and the load is transported to the
goal with no change in ✓

o

and no drift d from the target path,
as shown in Figure 6. This is because both ||r

c

|| and ⇠ are
zero. For this case, ✏ = 0.1584. In the second simulation
(Figure 4), the robots have a nonuniform distribution for
which ⇠ = 0.179 and ||r

c

|| = 0.02. The load undergoes
a total rotation of about ✓

o

= 30

�, and its drift from the
target path increases to about d = 15 cm. For this case,
✏ has decreased slightly to 0.1582. In the third simulation
(Figure 5), the robots are clustered within a quarter of the
load’s perimeter. The load undergoes a large rotation of about
✓

o

= 140

�, and its drift from the target path reaches a
maximum of about d = 1.4 m. For this case, ||r

c

|| = 0.05 and
⇠ has increased to 0.3875, which has lowered ✏ to 0.1577.
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Fig. 3. Snapshots of the payload over time with an equally-spaced
distribution of robots around its perimeter (Distribution 1).
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Fig. 4. Snapshots of the payload over time with a nonuniform distribution
of robots around its perimeter (Distribution 2).

Finally, Figure 7 shows the time evolution of the variables
s

x

⌘ ẋ

o

� v

des

and s

y

⌘ ẏ

o

, the discrepancies between
the actual and target velocity components of the system’s
center of mass, for all three distributions. In all cases, s

x

converges to zero at an exponential rate, which is slowest for
the third distribution. For the second and third distributions,
s

y

displays an overshoot before converging to zero, with a
much higher overshoot for the third distribution because of
its relatively large value of ⇠ compared to the other two cases.
While the second distribution results in convergence to the
desired velocity within about 150 s, the third distribution
requires more than 200 s to converge.

B. Proportional-Integral control
The effect of adding the integral control for the third

distribution, which had the highest drift, is shown in Figure 8.
The system parameters are the same as in the case with
proportional control only, and the controller gains are chosen
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Fig. 5. Snapshots of the payload over time with a highly nonuniform
distribution of robots around its perimeter (Distribution 3).
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path for all three distributions.

as k = 0.1 and k

I

= 0.005. Figure 8 confirms that the large
drift in Figure 5 is driven to zero, and the payload motion
converges to the desired path after a transient phase. The
convergence of the states of system (40) is shown in Figure 9.

VII. CONCLUSIONS
We have presented decentralized proportional control (P-

control) and proportional-integral control (PI-control) strate-
gies for collective transport by a team of point-mass robots.
The robot controllers require only local velocity measure-
ments, and the only information provided to the robots is
the target direction and speed of transport. We proved that
the closed-loop system comprised of the payload and robots
is exponentially stable with P-control and asymptotically
stable with PI-control. We also analyzed the system’s rate of
convergence to the target velocity in the case of P-control,
finding that it is mainly affected by the robots’ distribution
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Fig. 8. Snapshots of the payload over time with proportional-integral
control for Distribution 3.

around the load and that it influences the load’s total rotation
and drift from the target path during the transient phase
of motion. Our simulations verified the correctness of our
analysis for different robot distributions around the load,
as well as the effectiveness of the PI-control in driving the
payload’s motion to the desired path.

In future work, we will modify the proposed PI-controller
to incorporate robustness against external disturbances such
as friction. In addition, we will design decentralized con-
trollers for collective transport that implement autonomous
obstacle avoidance for scenarios where the robots have no
prior knowledge about the environment and must compute
appropriate control commands based only on their sensed
distance from the obstacles. In contrast to [23], which
proposes decentralized controllers for this scenario, our
controllers will not require feedback about the payload’s
motion. We will investigate the correctness and stability of
a controller that combines the proposed PI-controller with a
repulsive component that is computed from local potential
functions constructed by each robot. As illustrated by the



0 100 200 300 400

time (sec)

-1.5

-1

-0.5

0

0.5

1

In
te

g
ra

l o
f 
ve

lo
ci

ty
 e

rr
o
r 

(m
)

σ
x

σ
y

0 100 200 300 400

time (sec)

-0.1

-0.05

0

0.05

V
e
lo

ci
ty

 e
rr

o
r 

(m
/s

)

s
x

s
y

0 100 200 300 400

time (sec)

-80

-60

-40

-20

0

20

θ
o
 (

d
e

g
)

0 100 200 300 400

time (sec)

-4

-2

0

2

ω
o
 (

d
e

g
/s

e
c)

Fig. 9. Time evolution of the integral of velocity error (�
x

) and (�
y

= d),
velocity error (�̇

x

= s

x

) and (�̇
y

= s

y

), and the load’s rotation ✓

o

and
angular velocity !

o

= ✓̇

o

for Distribution 3.

-5 0 5 10 15 20
x (m)

0

5

10

15

20

25

y 
(m

)

Obstacle

Goal position

Fig. 10. Motion of the payload over time with a controller that combines
a PI-controller for convergence to the desired path and a repulsive force for
obstacle avoidance.

preliminary simulation shown in Figure 10, this controller
seems to yield promising results. We plan to establish
theoretical guarantees on convergence and safety certificates
for this controller, and we will experimentally validate the
controller with multi-robot experiments.

REFERENCES

[1] T. J. Czaczkes and F. L. Ratnieks, “Cooperative transport in ants
(hymenoptera: Formicidae) and elsewhere,” Myrmecological News,
vol. 18, pp. 1–11, 2013.

[2] H. F. McCreery and M. Breed, “Cooperative transport in ants: a review
of proximate mechanisms,” Insectes Sociaux, vol. 61, no. 2, pp. 99–
110, 2014.

[3] A. Gelblum, I. Pinkoviezky, E. Fonio, N. S. Gov, and O. Feinerman,
“Emergent oscillations assist obstacle negotiation during ant coopera-

tive transport,” Proceedings of the National Academy of Sciences, vol.
113, no. 51, pp. 14 615–14 620, 2016.

[4] S. Shahrokhi and A. T. Becker, “Object manipulation and position
control using a swarm with global inputs,” in 2016 IEEE International
Conference on Automation Science and Engineering (CASE), Aug
2016, pp. 561–566.

[5] Z. Wang and M. Schwager, “Force-amplifying n-robot transport sys-
tem (force-ants) for cooperative planar manipulation without commu-
nication,” The International Journal of Robotics Research, vol. 35,
no. 13, pp. 1564–1586, 2016.

[6] ——, “Kinematic multi-robot manipulation with no communication
using force feedback,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), May 2016, pp. 427–432.

[7] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Groß, “Occlusion-based
cooperative transport with a swarm of miniature mobile robots,” IEEE
Transactions on Robotics, vol. 31, no. 2, pp. 307–321, 2015.

[8] A. Franchi, A. Petitti, and A. Rizzo, “Distributed estimation of the
inertial parameters of an unknown load via multi-robot manipulation,”
in 53rd IEEE Conference on Decision and Control, Dec 2014, pp.
6111–6116.

[9] A. Marino, G. Muscio, and F. Pierri, “Distributed cooperative object
parameter estimation and manipulation without explicit communi-
cation,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 2110–21 116.

[10] A. Tsiamis, C. K. Verginis, C. P. Bechlioulis, and K. J. Kyriakopoulos,
“Cooperative manipulation exploiting only implicit communication,”
in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sept 2015, pp. 864–869.

[11] W. Gueaieb, F. Karray, and S. Al-Sharhan, “A robust adaptive fuzzy
position/force control scheme for cooperative manipulators,” IEEE
Transactions on Control Systems Technology, vol. 11, no. 4, pp. 516–
528, July 2003.

[12] Z. Li, C. Yang, C. Y. Su, S. Deng, F. Sun, and W. Zhang, “Decentral-
ized fuzzy control of multiple cooperating robotic manipulators with
impedance interaction,” IEEE Transactions on Fuzzy Systems, vol. 23,
no. 4, pp. 1044–1056, Aug 2015.

[13] H. Bai and J. T. Wen, “Cooperative load transport: A formation-control
perspective,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 742–
750, Aug 2010.

[14] N. Sadati and A. Ghaffarkhah, “Decentralized position and force
control of nonredundant multi-manipulator systems,” in 2007 Inter-
national Conference on Control, Automation and Systems, Oct 2007,
pp. 2223–2229.

[15] G. B. Dai and Y. C. Liu, “Distributed coordination and cooperation
control for networked mobile manipulators,” IEEE Transactions on
Industrial Electronics, vol. 64, no. 6, pp. 5065–5074, June 2017.

[16] H. Lee, H. Kim, and H. J. Kim, “Planning and control for collision-free
cooperative aerial transportation,” IEEE Transactions on Automation
Science and Engineering, vol. PP, no. 99, pp. 1–13, 2017.

[17] A. Marino, “Distributed adaptive control of networked cooperative mo-
bile manipulators,” IEEE Transactions on Control Systems Technology,
vol. PP, no. 99, pp. 1–15, 2017.

[18] J. Pliego-Jimenez and M. Arteaga-Perez, “On the adaptive control
of cooperative robots with time-variant holonomic constraints,”
International Journal of Adaptive Control and Signal Processing,
vol. 31, no. 8, pp. 1217–1231, 2017, acs.2758. [Online]. Available:
http://dx.doi.org/10.1002/acs.2758

[19] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin, and
R. Nagpal, “Collective transport of complex objects by simple robots:
Theory and experiments,” in Proc. Int’l. Conf. on Autonomous Agents
and Multi-Agent Systems (AAMAS), 2013, pp. 47–54.

[20] H. Farivarnejad, S. Wilson, and S. Berman, “Decentralized sliding
mode control for autonomous collective transport by multi-robot
systems,” in 2016 IEEE 55th Conference on Decision and Control
(CDC), Dec 2016, pp. 1826–1833.

[21] R. Horn and C. Johnson, Matrix Analysis, ser. Matrix Analysis.
Cambridge University Press, 2012. [Online]. Available: https:
//books.google.com/books?id=5I5AYeeh0JUC

[22] H. K. Khalil, Nonlinear Systems. Upper Saddle River, N.J.: Prentice
Hall, 1996.

[23] S. G. Faal, S. T. Kalat, and C. D. Onal, “Decentralized obstacle
avoidance in collective object manipulation,” in 2017 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), July 2017,
pp. 133–138.


